
The exit energy is then 

Finally, knowing the surface tension of a domain 
boundary,c31 we can write the expression for the period 
a: 

For HI,= 0, the variation of the period with the field 
was obtained earlier.c51 For H, = 0, 

this differs with respect to the exponent of the second 
expression in parentheses from the case 8 >> 4n, where 
the exponent is -+. In particular, for h-1 (i.e. 
HI, - /3M) the period approaches the finite value 3-1". 
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Spin-lattice relaxation of symmetrical systems of identical nuclei is considered. The exclusion principle 
causes the relaxation coefficients to be expressed in terms of partial time correlation functions (TCF), in 
which the averaging is over states belonging to only one irreducible representation of the symmetry group 
of the system. The relaxation coeficients and the irreducible TCF are calculated for interacting groups of 
three nuclei with spin 1/2, which tunnel in a periodic potential in a solid. It is assumed that the rotation 
interaction with the phonon reservoir is weak and that the rotation is essentially a quantum effect-the 
distnnce between the torsion multiplets are large. An analysis of the temperature dependence of the spin- 
lattice relaxation time (true as well as effective) has demonstrated the possibility of appearance of several 
minima with different depths and different dependences on the Larmor frequency. 

PACS numbers: 76.60.E~ 

1. INTRODUCTION 

In gases and solids at low temperature, the rotational 
motion responsible for the spin relaxation has essen- 
tially a quantum character, so that the exclusion prin- 
ciple must be taken into account in the theory of spin 
relaxation of symmetrical nuclear systems. A relaxa- 
tion theory for the region of fast motion, without ac- 
count taken of the exclusion principle, has by now been 
well developed.['' In this theory the relaxation coef- 
ficients a re  expressed in terms of the time correlation 
functions (TCF) of the molecular motion. No such ex- 
pressions have been obtained a s  yet in the theory of 
symmetrical identical nuclei. The existing analyses of 
relaxation in gaseousr31 and solidr4] methane and in 
solids containing methyl groupsr 5-71 dealt with the 
transition probabilities in the unified subsystem made 
up of the spin and ro ta t i~na l  degrees of freedom under 
the influence of a nonsecular dipole dipole (DD) inter- 
action and of the interaction V , ,  of the rotation with 

the medium. In view of the complexity of this approach, 
i t  was necessary to introduce simplifying phenomeno- 
logical assumptions. Another semi-phenomenological 
approach was used by cloughr for the relaxation of 
methyl groups in solids, he introduced in the equation 
of motion for  the spin density matrix exchange opera- 
to r s  that describe the classical hopping of the group 
and the quantum tunneling between equilibrium positions. 

The analysis of the transitions in the unified subsys- 
tem can be faulted also for i ts  insufficient rigor. In 
fact, the relaxation transitions a r e  due to interaction 
with a reservoir  that has a quasicontinuous spectrum, 
so that transitions induced by the intragroup DD inter- 
action cannot be regarded a s  relaxation transitions. In 
a consistent approach the DD interaction would be in- 
cluded in the principal Hamiltonian and the analysis 
would be based on the total density matrix of the unified 
subsystem. 

We propose in this paper a two-step approach. We 
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assume first ,  just a s  in the theories that take no ac- 
count of the exclusion principle, that al l  the non-spin 
degrees of freedom form a common reservoir-the 
lattice-and that the perturbation is taken to be the 
fluctuating part of the DD interaction. The basis for 
this approach i s  the slowness of the spin-lattice relaxa- 
tion compared with the broadening transitions between 
the rotational levels. During this stage the interaction 
V,, is bounded only from below. During the second 
stage, in the calculation of the TCF, the perturbation 
i s  now taken to be the Hamiltonian I.$,,. The general 
relations a r e  applied to a symmetrical system of three 
nuclei with S = 1/2, the rotation of which about a three- 
fold symmetry axis is hindered by a triple potential 
(the methyl and ammonia groups in solids). The choice 
of this system is dictated both by i ts  simplicity and by 
the fact that it has been relatively well studied (see, 
eeg. ,[5-151). 

2. EFFECTS OF THE IDENTITY OF THE NUCLEI I N  
THE PROBABILITIES OF THE RELAXATION 
TRANSITIONS 

We consider a system having a Hamiltonian 
H=h(E+G+F), (2.1) 

where t iE ,  R F ,  and 

a r e  respectively the Hamiltonians of the spin systems, 
of the lattice, and of the spin-lattice interaction (d2, and 
T, a r e  operators acting on the functions of the lattice 
and of the spin system). 

For symmetrical systems of identical nuclei, in 
which the molecular motion effects a symmetry trans- 
formation, i t  i s  necessary to take the exclusion princi- 
ple into account in the calculation of the relaxation- 
transition probabilities. When (anti)symmetrical com- 
plete wave functions a re  constructed, i t  is necessary 
to take into account the Longuet-Higgins rule,[16] ac- 
cording to which one should consider "realizable" sym- 
metry transformations that do not call for surmounting 
impenetrable barriers.  We do not therefore incur a 
great loss of generality greatly but abbreviate greatly 
the resultant relations if we consider cyclic subgroups 
of a point group. We introduce the index a,  which desig- 
nates an irreducible representation of a symmetry 
group, and denote by 1 om) a spin wave function that i s  
transformed under the symmetry transformation in ac- 
cord with the representation a. The corresponding co- 
ordinate function-the eigenfunction of the Hamiltonian 
F-will be designated 1 of). The known expression for 
the probability of the transition between the states of a 
spin system['* can be represented in the form 

- 

W.,n,..m.= J dt  exp(-io.,.~,~t) 
-- 

x z  p;=,(oml ( o f l ~ l o ' i ' )  lo'm') 
I f '  

X(a'rn'I (o'f'le'P'Ge-'"lof) lam) 

= J x p - o m m t }  ( o m  T,la'm') 
- - C 99' 

X(ofrn'ITq. l om) (8 , (0 )8 , .  ( t )  )On', 

where 

is the matrix element of the conditional equilibrium 
statistical operator py, with specified a, 

< 4 , t O ) 4 , ,  ( t )  )".= Cp,: 
I f '  

x(af19'q(0) lo'i')(o'f'I4,.(t) Iof) 

is the "irreducible" time correlation function, in which 
the summation extends only to states belonging to spe- 
cified irreducible representations. Thus, the effect of 
the exclusion principle on the probability of the relaxa- 
tion transitions reduces to a dependence of the irreduc- 
ible TCF on the indices a and and a'. For the sake of 
brevity, we assume the temperature to be high enough 
to make . 

independent of a. The definition (2.4) leads to symmetry 
properties of the irreducible ICE analogous to the pro- 
perties of the complete ICF: 

(2, (0) 4,. (t) ) a a ' = ( ~ q  (-t) gq. (0) >""', (2.5) 
t 4 , ( 0 ) 4 , .  (t) >m'=<P,r (O)P,(-t+ih$) )"'". (2.6) 

To calculate the irreducible TCF it  is convenient to 
use the chain of equations 

< 4 , ( 0 ) 4 , .  (t)  )""'= ~(oflp.,"4,10'f ')  

It follows therefore that the irreducible TCF can be ex- 
pressed in terms of the solution of the equation for the 
lattice density matrix with the initial condition 

It i s  particularly convenient to use relations (2.7) and 
(2.8) in the case of weak interaction of the rotational 
degrees of freedom with the medium, for  in this case 
we know the kinetic equation for the rotational density 
matrix, which is obtained from the lattice density ma- 
trix by averaging over the variables of the medium. If 
we start ,  in the very same approximation, from the ki- 
netic equation for the density matrix of the unified spin- 
rotational subsystem and, a s  noted in the introduction, 
do not regard from the very outset the interaction G a s  
a perturbation, then if the rotational relaxation is fact 
compared with the spin-lattice relaxation we again ob- 
tain the relations given above. 

3. RELAXATION EQUATIONS FOR INTERACTING 
SYMMETRICAL THREE- SPIN SYSTEMS 

Consider a solid containing N groups in which three 
nuclei with spin 1/2 a r e  located at the vertices of an 

(2.3) equilateral triangle. The nuclei a r e  coupled by DD in- 
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teraction both within the group and between the groups. 
We neglect other types of interaction. The groups ro- 
tate about a threefold symmetry axis. An example of 
such a system is a molecular crystal in which all  the 
protons belong to the methyl groups. 

The spin Hamiltonian E [see (2. I)] consists of the 
Zeeman Hamiltonian 

where wo i s  the Larmor frequency and 1 ,  is the compo- 
nent of the summary spin directed along the strong con- 
stant magnetic field, while E d ,  = E:\)+ E k )  is that part 
of the secular DD interaction which i s  invariant to rota- 
tion and which can be written in the form (cf., e.g.,[51) 

- 
EL"=- y% k t  P. (cos pa) TZl (0, a ) ,  

a- 8 

We have introduced here the notation: k= ti '/2/C (y  is the 
gyromagnetic ratio of the nuclei and r is the distance 
between them in the group), Pa is the angle between the 
rotation axis of the a-th group and the constant magnetic 
field, 6,, is the angle that the line joining the centers 
of the a-th and b-th groups makes with the magnetic 
field; R a b  is the distance between the centers of the 
groups; P,(x) is a Legendre polynomial of rank L; 

T,,U k) i s  an irreducible spherical tensor operator con- 
structed on cyclic components of the spins j and k be- 
longing to the a-th group (Cf;,,, i s  a Clebsch-Gordan 
coefficient): 

We note that the operators (3.4) and (3.5) transform in 
accord with the A(X= 0) and E ( A  = k 1)representations of 
the C, group upon cyclic permutation of the nuclei. 

The spin-lattice interaction Hamiltonian is that part 
of the DD interaction which fluctuates because of the 
rotation, and consists of intragroup ( G ( ' ) )  and inter- 
group ( G ( ~ ) )  contributions. The f i rs t  contribution is 
given by 

3 
GIr'= T L  zr 7 (-l)md..zzA(~.)e"'OO~l-l(hh a ) ,  

4L- l  
J rn 1-1 -1  

(3.6) 

where d',, (8,) is a factor in the finite-rotation matrix 
and depends on the second Euler angle (see, e.g., [17' ), 
and q, is the angle of rotation of the group, for  ex- 
ample the azimuthal angle of nucleus 1 in the coordi- 
nate frame in which the rotation axis coincides with the 
polar axis. We expand the fluctuating part  of the inter- 
group DD interaction in powers of r / ~ , ,  and confine 
ourselves to the first  nonvanishing term. In the ser ies  
expansion of the spherical harmonics we can use the 

results ofL8' and obtain 

G(C)=.Z~C g x z ( - 1 ) " ' 4 : ~ '  (a,  b)e-'**T,-,(h,a; 0,  b ) ,  

where 

Y,  ,(e, cp) is a spherical function. We assume that the 
Hamiltonian of the lattice is of the form 

where H,, H,, and V, ,  a r e  respectively the Hamil- 
tonians of the a-th uniaxial rotator, phonon reservoir, 
and their interaction. 

When the rotation is considered, i t  suffices to classi- 
fy the wave functions in accord with the representations 
of the group C,. The index o (see the preceding section 
then takes on the values 0 (A representation) and k1 
(E representation). The eight spin states of the a-th 
group will be designated I a,m,) , where ma i s  the 
magnetic quantum number. In a cyclic (123) permutation 
this function i s  multipled by caa. Since the cyclic per- 
mutation i s  the product of two pairwise permutations, 
the coordinate wave functions should be multiplied by 
coo upon the cyclic permutation (132). To describe the 
wave functions of the entire system we introduce the 
vector o={a,, . . . , a,, . . . , a,}. The eigenfunctions of 
the Hamiltonians will be designated I u(m}) , where 
( m }  i s  the aggregate of the remaining quantum numbers 
of the spin system. In particular, for  noninteracting 
groups we have { m} = m,, . . . , m,, . . . , m, =m. 

The spin-lattice relaxation in a solid is much slower 
than the processes of establishment of equilibrium 
within a spin system, such a s  spin-spin relaxation and 
spin diffusion, and reduces therefore to transitions 
between spin states. The same slowness of relaxation 
makes it possible to describe it by a system in which 
the number of equations i s  much less than the 8, states. 
To find the equations for the spin-lattice relaxation i t  
is convenient to expand the diagonal part of the spin 
statistical operator in the total set  of operators Q, , 
which a re  diagonal in the basis of the eigenfunctions 
E [  '91 : 

where the expansion coefficients U k  a r e  macroscopic 
observables-the modes of the spin polarization. From 
the Pauli control equation follows a system of relaxation 
equations 

We normalize the operators Q, by the conditions 

If we use for the transition probabilities the relations 
(2.3) in which 1 am) is replaced by I a, {m)) and assume 
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that the integrand has no poles on the imaginary axis in 
the interval & l i p ,  then we obtain for the relaxation co- 
efficients 

% 

x(ur, {m') I [ ~ k , . e ~ ~ t ~ , , e - ~ " j j l b ,  ( m ) )  (e, (0)  3,. (t)).... (3.13) 

Of course, Eqs. (3.11) and (3.13) can be obtained in 
more rigorous fashion directly from first  principles, 
by the known methods of statistical thermodynamics 
(see, e.g., [ 20-221). 

Emid and Wind, [I5] by analyzing the symmetry -1im- 
ited spin diffusionr121 between methyl groups, reached 
the conclusion that the operator set should consist of 
four operator groups. Under the normalization (3.12), 
these operators a r e  [cf. (3.111 

where the normalization factor i s  

4 .I 
l': =% {-z [PZ(WS C) 1 ' + 3 z  z ( ~ ) e [ ~ z ( e a . 8 , )  1 ' ) - l h ,  

0 b*. 
R& 

N operators 

and N operators 

8i 
Q - l T , 3 I - + T 2 l I - , + T l 3  I (3.17) 

P 

[see the definitions (3.3)-(3.15)]. 

Thus, the system (3.11) has formally a microscopi- 
cally large dimensionality. In fact, for a single crystal 
the number of equations will be small, because groups 
having identical angles and identically arranged neigh- 
boring groups will have identical relaxation coefficients, 
and Eqs. (3.11) will contain their sums. It is this c i r -  
cumstance that produces the ensemble needed for the 
application of statistical methods. For polycrystalline 
and amorphous bodies, the dimensionality of the system 
of equations is much larger, but in experiment one al- 
ways measures a certain initial section of the relaxa- 
tion curve, and this makes i t  possible to limit the set  
of relaxation coefficients. Consider, for example, the 
spin-lattice relaxation in a strong static field following 
an inverting 180-degree pulse. The detailed-balancing 
conditions allow us  to write the system (3.11) in the 
form 

where Au, is the difference between u, and i ts  equili- 
brium value up) . Since up) << u(,O) and the remaining 
u, a r e  not sensitive to the momentum, only AU\O) = -2u(,O) 
differs from zero. From this and from (3.18) we have 
for  nonequilibrium magnetization the expansion 

A M . 0 )  t' 
In- - - ~ , , t  + -z R,,?+. . . , 

A M ,  ( 0 )  2 
h + i  

where the symmetry of the relaxation coefficients i s  
taken into account. The expansion (3.19) converges 
rapidly enough if al l  the R,, a r e  of the same order. If, 
however, some diagonal coefficient is much larger than 
the others, this means rapid relaxation of the corres-  
ponding spin-polarization mode, which should therefore 
be excluded from the system (3.18). In accord with 
(3.19), we shall define a s  the true relaxation time TI 
=R;,', and the effective relaxation time can be defined, 
for example, a s  t 0 / h  2 (see, e.g.,(9)), where to i s  the 
time of passage of the magnetization zero  after a 180" 
pulse. It follows from (3.19) that 

h+1 

It is well known that formulas such a s  (2.3) for  the 
transition probabilities can be used to calculate the 
spin-lattice relaxation under the condition T, >-> T, , 
where T, is the characteristic damping time-of the TCF 
that determine T ,  (see, e.g.,12] ). We supplement this 
fast-motion condition by the inequality ( ( E : ~ , ) ~ ) ) ' / ~ T ,  << 1. 
We can then replace the evolution operator exp(z Et)  in 
(3.13) by exp(iE. t) and then calculate the sums over 
{m)  and {m') in the basis (om). 

In accord with the Hamiltonian (3.9) we postulate in- 
dependence of the rotations of the different groups. 
Under this assumption the calculation of the relaxation 
coefficients from relations (3.6), (3.7), and (3.13) for 
the operators (3.14)-(3.17) that enter in the expansion 
(3.19) has shown that they a r e  expressed in terms of 
the Fourier transforms of the irreducible ICF 

K,,"' ( t )  = ( e x p [ - i M ~ ( 0 )  ] e x p [ i M q ( t )  ])o"' c M - f  1, f 2. (3.21) 

Since the E states a r e  complex conjugate, ) of) * 
= I -of), we have in addition to the symmetry proper- 
ties (2.5) and (2.6) the relations 

KT' . ( t )  =K;' ( 4 ) .  

From the symmetry properties (2.5), (2.6), (3.22), and 
(3.23) i t  follows that 

=exp ( - h p m u 0 f - d t  exp  ( i m u o t )  ~2:' ( t )  . (3.24) 

Eliminating the region of extremely low temperatures, 
where the conditions of fast motions a r e  apparently no 
longer satisfied, we can put in (3.24) exp (-E@mwo) = 1. 
Relations (3.22)-(3.24) have made i t  possible to express 
all  the considered relaxation coefficients in terms of the 
spectral densities 

J(YJ ( a )  -RB[(D:-' (a)+@>-' ( - 0 )  I, (3.26) 
where .. 

0:' ( a )  - .r d t  e i a 1 ~ : '  ( t )  , (3.27) 
a 

in the following manner: 
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3'r.k' 
R:: = - cos b.[sinZ p.J:I) (on) + (l+cosz B.) J:' ( 2 ~ 0 )  I ;  

16 (2N)  " (3.31) 

we have introduced here the notation X, = 1 -cos4 @,, Y ,  
= 1 + 6 cos2Pa + cos4Pa. If we assume that N = 1 and 

Kzo' ( t )  =d,Z exp ( t o r t -  I t l / ~ . ) ,  (3.32) 

where d: i s  the "relaxation effectiveness factor" and o, 
i s  the "observed tunneling frequency",['51 then relations 
(3.8)-(3.31) coincide with the corresponding results  of 
Emid and apart from a difference in the renor- 
malization 

The intergroup contribution to the spin-lattice relaxa- 
tion 

R , ~ ) = P { ~ ~  z [IZ!,' ( a ,  b )  I ~ + I ~ , ( "  (a, b)  1'1 [ Z J ? )  ( W ~ ) + J ( ~ ) ( W ~ )  I 

+ ~ Z C  ( a ,  lz+12:" (a.  b) 1 . 1  [ 2 ~ ~ " ( 2 w . ) + l " ~ ( 2 u ~ )  I 1 

is according to (3.8) of the order of ( r / ~ , ,  )'. Calcula- 
tions have shown that the intergroup contribution to R,,, 
RI3,, and R,,, is of the same order. 

Within the framework of his semiphenomenological 
apporach, ~ l o u ~ h [ ~ ]  considered intergroup interactions, 
but did not carry  out his calculations to conclusion, so 
that i t  is difficult to compare his result with (3.33). 

For reasons that will be made clear in the next sec- 
tion, we shall not consider the influence of the inter- 
group in teract i~ns  on the parameter of the non-expo- 
nential character of the relaxation 

In 2 ,,=- 
2 T Z C R  )I+1 

[see (3.20)]. 

Emid and windr1'] did not take into account the inter- 
group interaction in their analysis, yet this interaction 
can give r ise  to correlation between spin states of 
neighboring groups. We should therefore have to add 
to the operators (3.15)-(3.17) the products Q,,,Q,, , 
Q4, Q4b, etc., which commute, just a s  the operators 
(3.15)-(3.17), with the spin Hamiltonian E .  

Most experiments were performed on polycrystals, 
for which all  the rotation-axis directions a r e  equally 
probable. In this case summation over the groups is 
equivalent to averaging over P a .  The averaging results 
will be marked with a superior bar: 

where q a b  is the angle between the rotation axis of the 

a-th group and the direction joining the centers of the 
groups a and b .  

The quadratic term in the expansion (3.19) for a poly- 
crystal can be approximately written in the form 

+0.172[1!' ( a o )  12+ 0.5141-'(wo)~?' (2w0)+0.981[I-'1' (2w0)  1). 
(3.36) 

4. IRREDUCIBLE TIME CORRELATION FUNCTION 
OF ONE-DIMENSIONAL ROTATION IN  A PERIODIC 
POTENTIAL 

To calculate the irreducible TCF (3.21) we assume 
that the Hamiltonian of the operator [see (3.9)] is given 
by 

Rapa a 2n 
A H , = - + V ( q ) .  p=- i - .  = ( + )  (4.1) 

21 arp 
where I is the moment of inertia. We assume that the 
retarding potential is close to sinusoidal in the sense 
that it has minima only a t  cp = 2kn/3 and maxima only at 
cp = (2k+ 1)r3. The eigenfunctions of the Hamiltonians 
will be designated 1 uv) , vhere  v is the torsion quantum 
number. The nondegenerate level 1 Ov) and the doubly 
degenerate level Imlv) form a tunnel multiplet with a 
splitting 

A , = E , . - ~ ~ . = ( - 1 ) " ( ~ . l .  (4.2) 

Assume that the barr ier  V,= V(n/3) - V(0) is high enough, 
so  that the oscillator approximation is valid for the 
lower subbarrier levels 

We assume that the rotator interacts weakly with the 
phonon reservoir  (PR), so that the inequality C ( T )  << 1 
is satisfied, where C( i s  the characteristic interaction 
frequency and T, is the PR correlation time. In accord 
with the statements made in Sec. 2, when the TCF (3.21) 
a r e  calculated the density matrix in relations (2.7) and 
(2.8) must be determined in the basis of the eigonfunc- 
tions 1 uv) of the Hamiltonian (4.1). The kinetic equation 
for the density matrix (see, e.g.,["* 231) for the uni- 
lateral Fourier transform 

yields 

(-io+iwLa,T,') p::,' ((O=c2 ( 0 )  - P ~ ( w ) ,  
0."' 

0,m * 0, 0,o. 
w .,., =a, , -o , ,  p . , ~ , = ( a t u i l p l ~ ~ u ~ ) ,  (4.4) 

+- 
J.~~:~, , (W) = J dt exp( iwt)  (Q: . , , (~ )Q~~: . , (O)  ), (4.6) 

-- 
where QYq, 2 =  (uvl[H,, ( uvz) i s  an operator in the PR 
space. 

We consider sufficiently high barr iers ,  for which 
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This inequality means that the rotation proceeds mainly 
by tunneling. We assume also that the barr ier  is so 
high and (or) the moment of inertia so  small  that al l  the 
coefficients I? satisfy the condition 

which can apparently be regarded a s  satisfied for the 
proton groups, since the torsion transitions v  - v +  1 in 
condensed media a re  observed in experiment by IR- 
spectroscopy methods.[lg* 241 For the methyl groups, 
for example, fiS1-100- 200 cm'1.r241 Since we need 
the values of the low-frequency (of the order of the Lar- 
mor frequency) Fourier components of the TCF, we 
assume the following inequality to be satisfied : 

By virtue of (4.8) and (4.9) we need retain in (4.4) only 
the density-matrix elements pt:'  (w) =p:" (w) that a re  
diagonal in v: 

The initial condition (2.8) in the calculation of the TCF 
(3.21) takes the form 

Pmo=exp(-f%4 / z e x p ( - ~ ~ ~ ) ,  

where the function 

and the coefficients A:, = (av  I exp (-i Mq) 1 t(o -M)v) 
a r e  given in the oscillator approximation byLz5] 

For the lowest below-the-ba$rier levels we have a,,<< 1. 
We introduce the matrix HoO with elements 

With the aid of this matrix, the Fourier transform 
(3.27) is rewritten as  

To analyze the matrix H"~' ,  we introduce the tunnel 
approximation for the rotator wave functions[261 : 

where 4:) is the wave function of the torsion motion in 
the k-th well. The parameters y:: 1 with v + v' a r e  de- 
termined mainly by the overlap of the functions $5") 
and J I ~ ) ,  and a r e  therefore weakly dependent on the 
number v .  The spacings 1 A, I increase steeply within- 

creasing number v.  The dimensionality of the matrix 
[HO1(w)] ", which determines the intragroup contribution 
to the spin-lattice relaxation, is limited by the level start-  
ingwithwhichIy;:~ I / l i A , + g :  (<<I, v # v l .  By way of 
illustration, we consider a case when we can confine 
ourselves to the two lowest levels. The main contribu- 
tion to 3r2(o) is of the form 

where terms of order exp(-Am) have been discarded 
and the following parameters introduced: 

The results (4.17) coincides in form with the Fourier 
transform of the TCF (3.32) postulated by Emid and 
wind,[lS1 but the definition of the frequency A, differs 
from the definition of the "observable tunneling frequen- 
cy" given in [ I. 

The diagonal elements of the matrix H1"l depend little 
on v (they do not contain the spacings A, ), and some of 
the off-diagonal elements a re  comparable in magnitude 
with the diagonal ones. In the calculation of the function 
@;-'(o) i t  is therefore necessary to take into account a 
larger number of levels than in the calculation of @$"(w). 
For this calculation i t  is necessary to specify the form 
of the potential V ( q )  and the Hamiltonian of the interac- 
tion with the PR, and to use numerical methods, a pro- 
cedure beyond the scope of the present paper. At suffi- 
ciently low temperatures, however, a situation is pos- 
sible wherein an analytic solution can be obtained. 
From the symmetry properties of the spectral densities 
(4.6) and from the degeneracy of the levels of E it fol- 
lows that Y::'= ~2- l  em(-R Bwbb). Since the diagonal 
coefficients ykr l  contain a term with the spectral densi- 
ty of the PR at'zero frequency [see (4.6)], there exists a 
region with temperatures low enough to  have 

Neglecting the terms of order exp (-APS1) we obtain here  

If we have in analogy with (4.19) 

then according to (4.18) we have A, = A, and v = c;. 
An analysis of the relations (4.17), (4.18), and (4.20) 

shows that the temperature dependence of T ,  can have 
several minima. We consider the case when the split- 
ting of the ground level A, is much larger than the Lar- 
mor frequency w,. If we assume that when the condition 
(4.19) i s  satisfied y:;" can be of the order of w,, then 
TI has a minimum that stems from the intergroup con- 
tribution (the spectral densities J (  ') (mw,) in (3.35)), 
with a classical dependence on the Larmor frequency,["1 
TI mi" a wo. 

For two-spin groups (e.g., CH2D), we have in place 
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of (3.35), taking into account only the intragroup con- 
tribution 

Comparison of (3.35), (4.22), and (4.20) explains the 
large depth of the low-temperature minimum(approxi- 
mately three times lower than classical) compared 
with the CH, groupr141 (see alsotz7] ). 

If the condition (4.21) were satisfied, the intragroup 
contribution would lead to a minimum of T, at $:-A,, 
with a depth A,/w, lower than classical. 

We note that A, determined by (4.18) can strongly de- 
pend on temperature. If we neglect the matrix elements 
between the wave functions ~ l p  ) [see (4.16)] in different 
wells then, a s  follows from (4.5), y z z  does not depend 
on the indices o and the relation gA/fl: = exp (-fipS1) i s  
valid. Of course, the inequality (4.21) is not satisfied 
here. We assume also that fl:>> I A, 1 , and then 

A,=A"- IA, l  cxp (-/[PQ). (4.23) 

It follows therefore that in a certain temperature region 
-T,, when A, goes through the interval (+ 2 w,, -2 w,), 
minima should be observed on the temperature depen- 
dence of T, in the narrow interval AT -4(w,k,~,/ 
~,tiS1)T,. If vZ w,, then all  these minima merge into 
one. At v-  w, the depth of the minimum i s  close to 
classical and depends strongly on w,. At v>> w, the 
depth of the minimum i s  v/w, times lower than classical 
and does not depend on w,. It i s  natural to assume that 
we a re  dealing here with a high-temperature minimum. 
Of course, a minimum of T, can occur also at A,>>w,, 
when v becomes of the order of A,, but i t s  depth is of 
the order of w,/A, compared with classical. 

The situations described above were observed in ex- 
periment. [6,10~11r12.141 

We proceed to estimate the deivation (3.34) of the re-  
laxation from exponential. Within the framework of the 
interpretation proposed, here, the low-temperature 
minimum i s  due to the intergroup contribution, i.e., in 
the region of this minimum the spectral density 
J(') (mu,) >>)d/)(mw,) 1 .  The intermolecular contribu- 
tions to q contains, in the first  non-vanishing approxi- 
mation in r/A,  , the products d (m w,)d ') (m' w,), and 
consequently q i s  of the order of d)) (m1w0)/d (mw,) 
-W;/A;, i.e., the relaxation should be exponential in 
the region of the low-temperature minimum. The region 
of the high-temperature almost-classical minimum will 
be analyzed on the basis of relation (4.17). In this re-  
gion, the situation A, 5 w o 5  v should be realized. Esti- 
mates based on (3.25), (3.34)-(3.36), and (4.17) yields 
9 %  0.2. 

An analysis within the framework of the approximation 
(4.17) has shown that a strong deviation from exponen- 
tiality (q - 1) can be observed at low temperatures when 
v<< W,% A , ,  ~ , / 2 .  

Thus, a great variety of experimental situations can 
be observed, depending on the singularities of the rotor- 
phonon interaction, which determines the coefficients 
Y Z Z : .  Consequently, a relaxing three-spin system can 
serve a s  a probe for  the study of the dynamics of a mo- 
lecular crystal. 
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