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The character of the deformation curves of a broad class of solid polymers points to an important role of 
orientation effects in the mechanics of these media. The stretching of a polymer gives rise to partial 
orientation of the chain molecules in the direction of extension. The extent of the resulting orientation 
increases on account of the intermolecular attractive forces, and this leads to additional elongation of the 
sample (orientational striction). The developed statistical-thermodynamic theory of the deformation 
properties of polymers is based on the self-consistent field method. The resulting equation for the 
orientation state interprets orientation crystallization as a first-order phase transition. In this case the 
connection between the orientation, strain, and stress tensors is such that a discontinuous change in the 
order parameter at the transition point is accompanied by a deformation jump (a "bottleneck"). The 
orientation kinetics is studied by the methods of the theory of rotational Brownian motion. The Fokker- 
Planck equation for the orientation distribution function of the molecular segments is constructed, and on 
its basis a macroscopic equation of motion is derived for the orientation tensor by means of the method of 
moments, the relaxation times of the components of this tensor are computed, and the stability of the 
uniaxial (nematic) ordering against weak perturbations of arbitrary symmetry is investigated. The equation 
for the orientation tensor is used together with the equations of the theory of elasticity to study the 
acoustic and relaxation properties of oriented polymers. 

PACS numbers: 61.40.Km, 61.50.Jr, 62.20.-x 

0 1. INTRODUCTION 

The striking deformation properties of polymers a re  
predetermined by the anisotropy of the molecular 
forces, which is implicit in the very nature of these 
compounds: the strength of the bonds along the poly- 
mer chain molecule is significantly stronger than the 
intermolecular interactions. The principal chemical 
bond between the atoms within a macromolecule is  a co- 
valent bond; its dissociation energy is  - 2-3 eV. Be- 
tween the molecules and their individual units not joined 
by covalent bonds act van der Waals attractive forces. 
They a re  at least two orders of magnitude weaker than 
the covalent forces: a typical value of the energy of the 
intermolecular attraction is 10" e ~ / &  from 8 x lo3 
for polyethylene to 5 x 102 ~ v / A  for the polyamides?'l 
Therefore, a chain molecule can easily be stretched, 
but difficult to rupture. Linear (nonbranching) poly- 
ethylene, for example, can be stretched 1000$& without 
rupturing it at room temperature. 

In the case of uniaxial stretching of a solid polymer 
the molecules of the polymer tend to orient themselves 
in the direction of the extension. In a fully extended 
sample the molecular axes a re  laid out almost parallel 
to each other, while the centers of gravity of the ma- 
cromolecules a r e  distributed chaotically-in the theory 
of liquid crystals this type of ordering is called nematic. 
The straightening of the molecules of a polymer during 
i ts  stretching has been confirmed by double-refraction 
experiments and electron and x-ray diffraction analy- 
ses.[ll 

In the absence of mechanical s t resses  the molecules 
of an amorphous polymer a re  either rolled up into coils 
(globules), or they a re  unrolled and arranged in bun- 

dles,C2] the regions of preferred mutual orientation be- 
ing similar to those of mesomorphic clusters.c3' In a 
solid polymer a bundle is, apparently, an elementary 
structural unit of the hypomolecular organization, 
whereas the globular structure is more peculiar to 
polymer solutions. The initial phase of the extension 
process is  accompanied by quite complex changes in the 
hypomolecular organization, the nature of these changes 
being determined by the type of elementary structural 
unit. It i s ,  however, significant that in every case the 
extension, by partially straightening the molecular 
chains, helps the van der  Waals forces stretch them out 
fully and thereby facilitate the orientation crystalliza- 
tion of the polymer. In i ts  turn, a consequence of the 
crystallization should be additional elongation of the 
sample in the extension direction, i.e., a decrease in 
the s t r e s s  necessary for the production of a given de- 
formation. The foregoing considerations a re  attested 
by the character of the deformation curves of a broad 
class of solid polymers. Figure 1 illustrates the de- 
pendence of s t ress  on strain at different temperatures. 
The initial slope of the curves is proportional to the 
temperature: at small strains a polymer exhibits en- 
tropic elasticity, similar to the resilience of an ideal 
gas. Underlying the mechanism of entropic elasticity, 
which leads to Mackian polymer elasticity, is a de- 
crease in the number of possible conformations of the 
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macromolecules during extension. Orientation crystal- 
lization occurs at the central (mildly sloping) part of 
the curves; this process leads to large extensions for 
a small increase (the curve I ) ,  or  even a decrease (the 
curves 2 and 3), in the stress.  The final stage of the 
orientation crystallization-the parallel arrangement 
of the macromolecules-is accompanied by a hardening 
of the sample in the direction of the extension; there- 
fore, further deformation requires large tensile s t res-  
ses.  

Figure 1 reminds us of van der Waals isotherms: 
the dependence of the tensile s t ress  on the extension of 
a polymer is similar to the dependence of pressure on 
the density of a real gas. This similarity was noted 
back at the end of the forties by ~ l f r e ~ , ' ~ ]  ten years 
later by Thompson and Tackett (see the discussion on 
Barenblatt 's paperc 51), and, finally, quite recently this 
similarity was again pointed out by Ginzburg et a ~ . ' ~ ]  
Thus, i t  is natural to assume that a mechanical defor- 
mation of a polymer can be accompanied by a first-or- 
der phase transition. 

The possibility of such a transition occurring during 
orientation crystallization is connected with the char- 
acter of the symmetry of the order parameter, which 
in the case under consideration is a second-rank ten- 
sor .  In an orientable polymer, a s  in a liquid crystal,c71 
the symmetric traceless tensor qll=(sik), defined a s  
the mean of the "microscopic" quantity 

characterizing the orientation of the uniaxial elementary 
structural unit, can serve a s  the order parameter; 
here v is the unit vector along the axis of the bundle or  
in the direction of an individual segment of the chain 
molecule (for example, in the "folding yardstick" mo- 
d e ~ ' ~ ' ) .  The macroscopic order parameter qfk is ob- 
tained, as  usual, by averaging the tensor E,, over a 
small volume element that nevertheless contains a 
large number of bundles or  segments. 

In the case of uniaxial ordering, induced, for exam- 
ple, by an extension along the axis n, the tensor qia 
can be written in the form 

where q is a scalar anisotropy parameter. The value 
q = 1 is attained when the molecules a re  fully oriented 
in the direction n (in the theory of liquid crystals this 
unit vector is called the director); in the isotropic case 
q = 0. The normalization in the definition (1.2) has been 
chosen such that in the system of coordinates where n 
=(0,0 ,1)  we have q,=q. 

In the present paper we construct a statistical theory 
of the elasticity of orientable polymers. The order of 
the exposition is a s  follows. In 62 we derive the equa- 
tion of the orientation state, which equation determines 
the dependence of the equilibrium order parameter q 
on the mechanical s t ress  and the temperature. Here 
we use the molecular-field model proposed by Mayer 
and SaupeL8] for the description of the phase transition 

in nematic liquid crystals. Section 3 is devoted to the 
thermodynamicS of the orientation. In 64 we establish a 
relation between the orientationstate of a polymer and 
i ts  elastic properties; the obtained relations e n a b G  
to describe the deformation curves in Fig. 1. The kin- 
etics of the orientation processes is connected with the 
Brownian rotational motion of the microscopic struc- 
ture elements. In 65 we construct the Fokker-Planck 
equation for the orientation distribution function of the 
molecular segments, from which the equation of motion 
of the tensor qik is then derived by the method of mo- 
ments and the dependence of the orientation relaxation 
times on temperature and s t ress  is found. With the aid 
of these formulas we investigate in 66 the stability of 
the uniaxial configuration (1.2) against weak perturba- 
tions of arbitrary symmetry. In the last two sections 
we consider on the basis of the simultaneous solution 
of the system of equations of motion of the solid and 
the orientation tensor the elastic longitudinal vibrations 
of a rod (87) and the propagation of sound in the un- 
bounded medium ( 6 8). 

Notice that in this work we study the equilibrium 
states ( 6  6 2-4) and the weakly nonequilibrium process - 
e s  (665-8) during which the system does not stratify 
into phases with different orientations. The problem 
of the formation of a heterophase structure (the forma- 
tion and growth of nucleating centers in the course of 
the orientation crystallization, the appearance and 
propagation of a bottleneckc5] during the extension of 
the polymer), a s  well a s  the problem of the fluctuation 
of the order parameter near the critical points will be 
considered elsewhere. 

$2. ORIENTATION CRYSTALLIZATI0N.THE SELF- 
CONSISTENT FIELD METHOD 

For the construction of the statistical thermodynam- 
ics of an orientable polymer let us use the well-known 
concepts of molecular-field theory. We shall assume 
that the orienting influence experienced by the indivi- 
dual ordering "microscopic" element (e.g., a segment 
of a chain molecule) is determined by the mechanical 
s t ress  a,, and the degree, q,,, of orientation already 
attained. Then, a s  in the Weiss theory of ferromagne- 
tism, we can introduce the "effective field," 

acting on the microscopic element; here y and X are  the 
parameters of the material,') X is a constant of the mo- 
lecular field (for the linear intermolecular interaction 
energy density indicated in 8 1  and a segment length 
-10 A ,  we have X -  10-I eV). The orientation part of the 
energy of the individual element in the field (2.1) is 
equal to E = -sf&!,,, where s,, is defined by the formula 
(1.1). Omitting an unimportant constant, we have 

At equilibrium the probability for the various orien- 
tations of the segment is proportional to esfT; with 
allowance for (1.1) and (2.2) the normalized distribution 
function has the form 
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These expressions contain the macroscopic orienta- 
tion tensor q,,, which by i ts  definition is the average 
of the "microscopic" tensor s,, with the function Wo. 
Thus, for qik we obtain the self-consistent equation: 

We shall consider a uniaxial orientation of a polymer 
[see (1.211. Such ordering is possible both in the pres-  
ence of a uniform extension or  contraction along the 
axis n and in the absence of stresses.  In the latter case 
the direction of the director is degenerate; for real  
samples this degeneracy can be removed (completely 
or  partially) by imposing boundary conditions. Substi- 
tuting into (2.4) the expressions (1.2), (2.3) and o,, 
=onin,, we obtain an integral equation for the scalar 
order parameter: 

the polar axis of the system of coordinates is directed 
along n , x v  .n. It is  convenient to introduce the nota- 
tion 

and reduce Eq. (2.5) to the set of transcendental equa- 
tions : 

which determines the dependence q(T, a) in parametric 
form (the role of the parameter is played by 5). The 
scheme of the graphical solution of this system is shown 
in Fig. 2. For o =  0 (see Fig. 2a) the values of the func- 
tion q(T) a re  equal to the ordinates of the points of in- 
tersection of the curve described by Eq. (2.7) with the 
straight lines (2.8), whose slope is proportional to the 
temperature: tg$ = 4T/QX. As can be seen from the fig- 
ure,  there exists a maximum value of the angle $= $, 
such that for T> T, and o =  0 the system (2.7), (2.8) has 
only one solution with q= 0, i.e., at high temperatures 
the unstressed polymer is isotropic. Spontaneous or-  
ientation first  appears at T = T,, q(T,) = qc being nonzero 
(first-order transition). There exists two nontrivial so- 
lutions in the interval T,> T> T*; one of them, for 
which a q / a ~ >  0, is evidently unstable. This solution 
vanishes at the temperature T+ ,  when the straight line 
(2.8) touches the curve (2.7) a t  the coordinate origin. 
The value of T, is itself determined from the condition 
for the equality of the slopes at the point 5 = 0. The 
linearization of Eq. (2.7) in the vicinity of this point 
yields2' q =  25/15; from a comparison with (2.8) we find 
T += 3 ~ / 1 0 .  In the region T < T, there exist, a s  before, 

FIG. 2. Scheme for the graphical solution of the equation of 
the orientation state: a) u = 0, b) u * 0. 

two nontrivial solutions, to one of which now corres - 
ponds a negative value of the order parameter. In the 
low-temperature limit the positive solution tends asy- 
mptotically to q = 1, while the negative solution tends to 
q = -9. The first  case, a s  indicated above, corresponds 
to perfect nematic ordering of the molecules in the di- 
rection of the director (an "easy-axis" type of aniso- 
tropy). In the second case the long axes of all the mo- 
lecules lie in planes perpendicular to n (an "easy-plane" 
type of anisotropy); a s  can be seen from (1.2), the val- 
ue q =  -$ is obtained in the case when vn= 0. 

In the presence of s t resses  (see Fig. 2b) the trivial 
solution (q = 0) of the system (2.7), (2.8) disappears: 
the straight lines described by Eq. (2.8) make on the 
ordinate axis intercepts proportional to a.  To the par-  
allel straight lines 1 and 2 in Fig. 2b correspond at the 
same temperature different-in magnitude and sign- 
stresses:  o,> 0 (extension) and a,< 0 (contraction). The 
points of intersection of the straight lines 1 and 2 with 
the curve (2.7) determine in the first case a positive, 
and in the second a negative, value of the order para- 
meter. This result i s  quite understandable: an exten- 
sion either itself produces an "easy-axis" type of an- 
isotropy (q> 0), o r  increases an already existing one, 
whereas a contraction leads to an "easy-plane" type of 
anisotropy(q< 0). In Fig. 2b we show a characteristic 
straight line, 3, touching the curve (2.7) at the point 
of inflection; the angle $,,, of inclination of the tangent 
determines the critical temperature T,,. In the region 
T >  To, the system (2.7), (2.8) has a unique solution for 
all o. 

The result of the numerical solution of the system 
of equations (2.7), (2.8) is shown in Figs. 3 and 4. The 
curves 1 in Fig. 3, a )  and b), which a r e  characteristic 
of a first-order transition, describe the orientation 
state, q(T), of an unstressed polymer; the thermody- 
namically stable sections of the branches (see 83) a re  
depicted by the heavy curves. As the tensile stresses 
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FIG. 3. Dependence of the order parameter 7 on the dimen- 
sionless temperature 8 = T/A for different II = yu/?, in the case 
of a) extension, b) contraction: (a) 1) l l=  0, 2) II = 0.01, 3) 
n = 0 . 0 2 ,  4) n=o .20 ;  (b) 1) n = o ,  2) n=-0.02,  3) n=-0.20.  

increase (Fig. 3a), the phase transition becomes 
smeared out: the orientation jump decreases and shifts 
toward the region of higher temperatures-from T, to 
T,,. When u=a,, (the curve 3 in Fig. 3a) the jump dis- 
appears, and a t  s t resses  higher than the critical s t ress  

-- 
the orientation becomes a monotonic function of the 
temperature. 

Figure 4 shows the variation of the equilibrium or-  
ientation under the influence of mechanical stresses.  
At low temperatures (the curves 1 and 2) there occurs 
spontaneous crystallization of the polymer into a struc- 
ture of the "easy-axis" type (g> 0). This type of order- 
ing is preserved not only in the subsequent extension 
(a> 0) in the direction of the director, but also during 
contraction (o< 0) if the contractive forces a r e  not too 
strong. A sufficiently large contraction sends the poly- 
mer intoa state withan6'easy-plane" type of anisotropy ( q  
< 0). Theproturberances on the isotherms in Fig. 4 disap- 
pear a t  T > T,, (the curve 3 is the critical isotherm). 

$3. THE FREE ENERGY 

The assumption, (2.1), made above the structure of 
the effective field leads to the following procedure for 

FIG. 4.  Dependence of the order parameter on n for dif- 
ferent@: 1) 8=0 .300 ,  2) 0=0 .320 ,  3) @=@,=0.346, 4) 
0 = 0.400. 

computing the free energy of an orientable polymer. 
Regarding Hi, a s  the derivative of the macroscopic in- 
ternal energy, U, with respect to the orientation ten- 
so r ,  

glre obtain after substituting (2.1) into (3.1) and integrat- 
ing 

Here U is the volume density of the orientation part of 
the internal energy and n is the concentration of the el- 
ementary structure units. 

For the computation of the free energy we use the 
definition of the entropy in terms of the distribution 
function: S =  - n ( l n ~ ) .  With the aid of (2.3) we find for 
the equilibrium entropy 

Now from (3.2) and (3.3) we can construct an expression 
for the orientational part of the free energy E = U - TS 

In the case being considered by us of uniaxial order- 
ing,3) when qik is defined by the formula (1.2) and a,, 
= un,n,, the free energy assumes the form 

with R(5)  given by (2.6). The condition for equilibrium, 
a ~ / a g  = 0, coincides, of course, with the self-consis- 
tency equations (2.7), (2.8). 

The equilibrium values of the order parameter can 
also be determined directly from (3.5) a s  the minimum 
points of the function E(q) for fixed T and o. The plots 
of this function for the temperature T =  2 ~ , / 3  a re  shown 
in Fig. 5. At s o  low a temperature the polymer is 
spontaneously oriented, a fact which is attested by the 
minima on the curve 1 of Fig. 5; the principal mini- 
mum corresponds to an "easy -axis9' type of state (77 
> 0); the "easy-plane" state (g< 0) is metastable. An 
extension enhances the stability of the structure with 
positive orientation: the main potential well becomes 
deeper and the minimum point shifts to the right. At 
the same time the metastable state becomes less  

FIG. 5. Dependence of the orientational part of the free 
energy on the order parameter at a temperature of O= 0.2 .  
The curve 1) II=O, 2) II=0.15, 3) n=-0.15.  
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stable, and at a sufficiently large extension (the curve 
2) the minimum in the region q< 0 disappears. A con- 
tractive s t r e s s  (the curve 3), on the other hand, fac- 
ilitates the metastable orientation, so  that the state 
with g >  0 now becomes metastable, while the state 
with q <  0 becomes stable. 

The computation of the function F(T,o)  allows the 
selection of the thermodynamically stable states from 
the solutions of the equation of the orientation state 
q(T,a) (see Figs. 3 and 4). The procedure for making 
such a selection is illustrated in Fig. 6. Figure 6a 
shows a plot of the dependence F(a )  for two different 
temperatures. At low temperatures the free energy 
depends on the dimensionless s t ress  II = y a / ~  in quite 
a complicated fashion: the isotherm 1 in Fig. 6a above 
the point of self-intersection C forms a quasi-triangu- 
1ar loop ABC whose width defermines the region along 
the Il axis where q(a) is a three-valued function (see the 
curve 1 in Fig. 6b). The segments ACE and BCD of the 
curve 1 in Fig. 6a a re  lines of minima of the function 
F(a) ,  while the segment AOB is a line of maxima. As 
can be seen from Fig. 6, a) and b), on the right of the 
point of self-intersection to the absolute minimum of 
the free energy corresponds the state with q> 0 (the 
segments CE), while to the left of the point C the ab- 
solute minimum of F corresponds to the orientation 
with Q <  0 (the segments CD). A metastable state with 
with q> 0 is  possible along the segment AC , while one 
with q< 0 i s  possible along BC;  the boundaries of the 
existence domain of the metastable phases a re  marked 
by single arrows in Fig. 6b. To the point of self-in- 
tersection in Fig. 6a, where the free energies of the 
easy-axis and easy-plane types of phases coincide, cor- 
responds the line, C -C , of equilibrium transitions in 
Fig. 6b. As the temperature i s  raised, the nonunique- 
ness loop shrinks, and disappears a t  T 2 T,, (the curves 
2 in Fig. 6). 

We do not give here the free energy-versus-tempera- 
ture plots; they a r e  in many respects similar to the 
F(a)  curves shown in Fig. 6a. In particular, at not too 
high s t resses  the function F ( T )  has a self-intersection 
point that determines the equilibrium transition point 
T,(a). T, values, calculated for o= 0, a r e  given in Tab- 
le I together with other characteristic parameters of 
the transition. 

For small values of the order parameter the free en- 

FIG. 6. Dependences of F and q on stress at temperatures 
0 = 0.1 (the curves 1) and 0 = 0.5 (the curves 2). 

ergy (3.5) can be represented in the form of the Landau 
expansion. Retaining the terms not higher than the 
fourth-order terms in q ,  and limiting ourselves to the 
linear approximation in a ,  we obtain 

In this expansion there is a term with q3 (first-order 
transition), while the coefficient in front of q2 changes 
it sign, a s  it should, at the temperature O = 0.3, which 
coincides with 8 * (see Table I). All the coefficients, 
except the first ,  depend weakly on temperature. Taking 
into account the fact that the Landau expansion i s  ap- 
plicable only in the vicinity of the point O,, we can r e -  
place O by O* everywhere, retaining the difference O 
-0* only in the first term of the formula (3.6): 

Computing from here the derivative 8 ~ / 8 q ,  and equat- 
ing it to zero,  we obtain for q the cubic equation 

which for small  It correctly imparts the character of 
the curves of Fig. 3 near 0 ,. 

$4. THE ORIENTATION-ELASTIC PROPERTIES 

For the study of the deformation properties of a poly- 
mer  we need the density of the total free energy 5 .  
This quantity is made up of the orientational part of the 
free energy F, (3.4), and the normal elastic energyc1']: 

where uik is the strain tensor and p and K a r e  the shear 
and bulk moduli. Since F contains the s t r e s s ,  a,,, in 
its explicit form, but not the strain,  it is convenient to 
go over to the thermodynamic potential = S - aiku,,, 
for which the role of independent variables is played by 
the components of the a,, tensor. Expressing in (4.1) 
u,, in terms of oi,,clO1 and using (3.4), we find 

TABLE I. Characteristic values 
of the dimensionless parameters 
of the first-order orientation phase 
transition. 

Index of point 

K 

Note. The definitions of the 
dimensionless temperature €3 and 
the dimensionless stress n are 
indicated in the caption to Fig. 3; 
the values of q* and qt are given 
for the upper (stable) branch of 
the function q ( T) (see the curve 
1 in Fig. 3). 
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The straintensor is obtainable from here  by differentiat- 
ing the potential & with respect to the corresponding 
components of the u,, tensor: 

(Here we have used the relation 8~,/8o,, = ~(277,~ + a,,)/ 
2T, which follows from the definition (2.3) for Z,.) 

The formula (4.3) contains a l l  the o;ientationielastic 
effects. It follows, in particular, from it  that a change 
in the degree of orientation of the polymer leads to i ts  
deformation (orientational striction). In the absence 
of internal s t resses  only the strictional deformation 
u,,=nyqir, which is linear in the order parameter, r e -  
mains. On the other hand, if for some reason a defor- 
mation is not possible (e.g., the polymer sample may 
be confined by a rigid sheath), then the formula (4.3) 
allows the determination of the s t resses  that ar ise  as 
a result of orientation crystallization. 

In the case of uniform extension in the direction of 
the director (the e axis), the following expression fol- 
lows from (4.3) for u,, =u: 

(G is the Young modulus). The orientation phase tran- 
sition considered above is possible in the temperature 
interval between T * and T,, when a <  a,,. The isother- 
mal extension of a polymer in this temperature range4' 
induces, upon the attainment of a certain value of u,(T), 
a discontinuous increase in the order parameter 7, 
which, in i t s  turn, according to (4.4), leads to a dis-  
continuous elongation of the sample-"orientational 
flow." Equation (4.4) together with the system (2.7), 
(2.8) explains the shape of the deformation curves 
shown in Fig. 1. To the "orientational flow" correspond 
the horizontal plateaus in the bottom curves of this fig- 
ure; the height of a plateau determines the "triggering" 
s t ress  o,(T), The appearance of a hum:, a t  the left edge 
of the plateau is apparently connected with the nonequil- 
ibrium nature of the deformation process: extension 
always proceeds a t  a finite rate. If this assumption is 
valid, then the height of the hump should increase with 
increasing rate of extension, approaching i ts  limiting 
value determined by the width of the metastability r e -  
gion on the q(u) isotherm (see Fig. 6). 

At temperatures T > T,, the phase transition disap- 
pears: the order parameter becomes a single-valued 
function of the s t ress .  For low s t resses  the relation 
between q and o Can be assumed to be linear, s o  that 
Eq. (4.4) goes over into the conventional Hooke law for 
hyperelastic materialscs': 

where G,, is the modulus of Mackian elasticity. At high 
temperatures ([<< 1) the solution to Eqs. (2.7) and (2.8) 
is q=ya/5(T - T,). Substituting this expression into 
(4.4). we find from a comparison with (4.5) that 

The coefficient y ,  which characterizes the "orienta- 
tional susceptibility" of the molecular segments with 
respect to s t r e s s ,  has the dimension of volume. It is 
natural to assume that the quantity y is determined by 
the volume of the elementary structure unit, i.e., y 
-n-'. Indeed, for ny - 1 and T >> T,, the formula (4.6) 
gives the well-known result of the theory of Mackian 
elasticity Gel = CnT, where C is a numerical coefficient 
of the order of unity. Setting n - loz1 cmA' we have 
that at room temperature Gel- 10' kgf/cm2. Notice also 
that, for y = 10"' cm3 and X -  10-I eV, to the value of 
the dimensionless s t r e s s  II = 1 corresponds 0- lo2 kgf/ 
cm2. 

As has already been noted, a change in the spontan- 
eous orientation of the sample under conditions when 
its deformation is impossible is accompanied by the ap- 
pearance of internal strictional s t resses .  These 
s t resses ,  according to general principles, tend through 
their effect on the orientation to weaken the cause that 
gives r ise  to them. Indeed, setting u = 0 in (4.4), we 
find a= -Gnyn. Allowance for the strictional s t r e s s  in 
the formulas (2.5)-(2.8) amounts to a simple renormal- 
ization of the molecular-field constant: X = X - 2Gny2/3. 
The replacement of X by x implies the lowering of a l l  
the characteristic temperatures (e.g., the transition 
temperature turns out to be equal to T ,  = 0.330x). Thus, 
at a fixed temperature the degree of orientation is al-  
ways higher in the case when o =  0 than in the u = 0 
case. In the latter case the necessary condition for or-  
ientation crystallization to occur i s ,  evidently, i> 0, 
i.e., 

For real  polymers with G - lo4 kgf/cm2 and the above- 
indicated n ,  y, and X values the inverse of the inequal- 
ity (4.7) is fulfilled, so  that spontaneous orientation is, 
apparently, impossible in the absence of strains. 

$5. EQUATION OF MOTION FOR THE ORIENTATION 
TENSOR 

The plan of this section is a s  follows: f irst ,  we con- 
struct a kinetic equation for the orientation distribution 
function of the microscopic structure elements and then 
derive from this equation by the method of moments 
the equation of motion of the macroscopic order para- 
meter. 

According to the developed approach, the orientation 
of a polymer is accomplished by means of a rotation 
of the elementary structure units. The relative small- 
ness of the linear dimensions of these objects implies 
that their dynamics is influenced considerably by the 
rotational Brownian motion. Thus, the orientation dis-  
tribution density, W ( v ) ,  for the microscopic elements 
should be described by a Fokker-Planck type of equa- 
tion, to the derivation of which we now proceed. 

Having in mind to consider further small  deviations 
from the spatially-homogeneous equilibrium orienta- 
tion, we include in the expression, (3.2), for the inter- 

923 Sov. Phys. JETP 47(5), May 1978 
U 

M. I. Shliomis and Yu. L. Raikher 923 



'nal-energy density a term describing the possible in- 
homogeneity of the order parameter: 

For a slight inhomogeneity in the macroscopic orienta- 
tion (the long-wave approximation), allowance for the 
derivative term in (5.1) does not require a reconsider - 
ation of the self-consistency equations. The "effective 
field" acting on a structure element is determined by 
the variational derivative 

i 6 u  1 8  a a fil'k----=-- --- ,, (,,.A n ( an.. a ~ .  a(anl./axl) ) u3 (5.2) 

so that for the orientational part of the energy of the in- 
dividual element, instead of (2.2), we now obtain 

( A  is the Laplace operator). 

For small deviations from equilibrium, let us write 
the orientation and s t ress  tensors in the form via= 9:i' 
+ c , ,  and a,, = a::' + p i , ;  below we shall drop the index 
0, which designates the equilibrium values of the quan- 
tities. In this notation the expression (5.3) assumes 
the form 

where the unperturbed energy F ,  i s  determined by the 
formula (2.2). 

The theory of kinetic processes in high-molecular 
materials is usually based on the assumption that each 
individual element (a segment of the macromolecule) 
can be regarded a s  a solid particle surrounded by a 
viscous fluid. The viscous friction thus serves as a 
model for the complex interparticle interactions that 
impede the free rotation of the selected element. We 
can neglect the inertia of its motion, in view of the 
large value of the effective internal viscosity of a poly- 
mer ,  and find the angular velocity w ,  of the element 
from the equilibrium condition for the torques acting 
on it: 

Here b is the coefficient of rotational mobility5', M and 
M, are  the moments of the normal and fluctuation f orces. 

Using the infinitesimal-rotation operator 

we can write Eq. (5.5) in the form 

o=-~DL(E+T ln W), (5.6) 

where E is the energy and W is the distribution function 
of the orientable element. The latter should satisfy the 
Fokker-Planck equation: 

The rate of rotation of the vector v entering into this 
equation is connected with the angular velocity w 
through kinematic relation fi = o x v .  Taking this into 
account, and using (5.6), we obtain from (5.7) after 
simple transformations the kinetic equation in the form 

Here we have introduced the notation T = (6bT)" for the 
Brownian rotational-diffusion time of the element. The 
steady -state normalized solution to (5.8) is the Gibbs 
distribution W,=Z,-' exp(-E,/T) -- [see  (2.3)). 

From the definition of the macroscopic order para- 
meter q,,=(sik)  and the formula (1.1) for q,, follows 
ithe following expression for the nonequilibrium part of 
the orientation tensor 

here the angle brackets without a subscript denote av- 
eraging with the function W obtained from (5.8), while 
the brackets with a subscript denote averaging with the 
equilibrium distribution Wo. To derive the equation 
of motion for E,,, let us multiply (5.8) from the left 
by v,v,  and integrate over the angles (the integration is 
easy to perform because of the Hermitian character of 
the operator i): 

To make Eq. (5.10) a closed equation in the case being 
considered of a small deviation from the equilibrium 
state, let us represent the solution to the kinetic equa- 
tion (5.8) in the form 

where the tensor a,, is assumed to be independent of 
v and linear in the perturbations. For such a choice of 
W the derivative 

which enters into (5.10), is of first  order in smallness. 
Therefore, the averaging on the right-hand side of 
(5.10) should be performed with the equilibrium distri- 
bution function, i.e., 

The quantities c,, and a,, are ,  however, not indepen- 
dent: computing the second moment (v ,v& in the form- 
ula (5.9) with the aid of the expansion (5. l l ) ,  we find a 
linear relation between them: 

The substitution of (5.14) into (5.13) allows us to write 
down a closed equation of motion for the macroscopic- 
orientation tensor for the case of small deviations from 
equilibrium: 
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(the exponent -1 denotes the taking of the inverse ma- 
trix). 

The symmetric traceless tensor E,, is determined by 
five independent quantities, a s  which it is convenient 
to choose E,,= -(c,,+ cYy),(erx - c y y ) , ~ x , , ~ y , , ~ , .  If a t  
equilibrium the polymer is uniaxially oriented, then 
the equations obtained from (5.15) for these quantities 
become uncoupled, and the computation of the equili- 
brium moments in (5.14) and (5.15) is elementary: 

- (R-6R1+5R") (n,nh6,,+n,n,6,r+. . .) + (3R-30R'+35R") n,nhnl&]. 

(5.17) 
Owing to the high symmetry (the goup D,,) of the ten- 
sor  coefficients in (5.15), which a re  given by the for- 
mulas (5.16) and (5.17), the number of essentially dif- 
ferent equations for the components of the c,, tensor 
reduces to three: 

3 (R-R") 
T€.v=-xs&,v+ 

8TR 
[ a A e . , + y ~ . ~ l ,  

Here we have introduced the following notation for the 
dimensionless decrements: 

2R(R'-R") 
X I =  

2 (R-R") R-3R'+4RN 
3(RRN-R") X2= 3(N-2Rr+Rt,)  fa' "= 6(R'-RU) 

The missing equations for the E,, and (E, -e,,) normal 
modes can be obtained from (5.19) and (5.10): one by 
means of the substitutions E,- (E, - E,,) and p, - (p, -p,,) and the other by means of the substitutions 
E,,- E,, and p,,-p,,. The first of these transformations 
implies a rotation of the initial coordinate system about 
the axis of symmetry (the z axis) through 45"; the sec- 
ond, a rotation through 90". In the first case the shear 
s t ress  p,, amounts, as it  shou~ld, to an extension along 
the x axis and a contraction in the direction of the y 
axis of the coordinate system. 

$6. THE RELXATION TIMES. DYNAMIC STABILITY 
OF THE UNIAXIAL ORIENTATION 

Let a uniformly oriented polymer, initially in equil- 
ibrium, be brought out of this state, so  that the orien- 
tation tensor q,, acquires an increment E,,. We shall 
assume that the perturbations a r e  homogeneous (Aa,, 
= 0) and that there a re  no internal s t resses  (pi, = 0). 
Then the strictional strain, u,,, that ar ises  is also 
homogeneous and connected with E,, through the relation 

ui,=nyei,. In the case under consideraticnEqs. (5.18)- 
(5.20) get simplified: 

the dependence, determined by them, of the €,,-tensor 
components on time is given by the factor exp(-xit/r). 
Thus, the problem of the stability of the iniaxial orien- 
tation reduces to the problem of the determination of 
the signs of the quantities w , :  the equilibrium is a I 

stable one i f  all the three decrements a re  positive. The 
formulas (5.21) determine the dependence x,(() ,  where 
the argument 5 is itself a function, (2.6), of the thermo- 
dynamic coordinates T and u through the equation of the 
orientation state (2.7), (2.8). The multivaluedness of the 
solutions of this equation in the region T <  T,, and a< a,, 
gives rise to a complicated dependence of the decre- 
ments on temperature and s t ress .  

Proceeding to the investigation of this dependence, 
we note that the decrement x i  should vanish at the boun- 
daries of the region where the equation of state is non- 
unique, and where the derivative a2CP/8q2 changes its 
sign (the points A and B in Fig. 6): at these points the 
metastable orientation rl,, = q becomes absolutely un- 
stable against perturbations of the same symmetry 
(E,,). Let us show that not only x,, but also the remain- 
ing decrements a re  closely related with the second de- 
rivatives of the thermodynamic potential through the 
corresponding components of the orientation tensor. 
According to the general phenomenological approach, 
the rate of variation of the orientation tensor should be .  
determined by the equation 

where r is a coefficient, which is assumed to  have no 
singularities near the phase-transition point, and the 
subscript 0 indicates that the order parameter should 
be se t  equal to its equilibrium value after the differen- 
tiation. From the complete expression for @, (4.2), we 
find 

[the tensor N,,,, is defined by the formula (5.1411. After 
substituting (6.3) into (6.2) and computing the compon- 
ents of the tensor N,,, , with the aid of the formulas, 
(5.16) and (5.17), for the equilibrium moments, we ob- 
tain the equations 

where the f, a re  found from (5.21); the factor An in in- 
cluded in I?. As can be seen from (6.2) and (6.4), the 
functions f, a re  proportional to the second derivatives 
of iP and, consequently, should change their signs at 
the singular points of the thermodynamic potential. 

Comparing (6.4) with (6.1), we conclude that the role 
of the relaxation times T ,  = T / X ~  in (6.1) is played in 
(6.4) by the quantities (rf,)". Thus, the simple argu- 
ments leading to Eqs. (6.4) allow us to find the function 
f,, which determines the sign of the decrement xi. The 
coefficients coupling x, and f, in (5.21) have an appre- 
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ciable influence on the magnitude of the decrement (for 
5 >> 1 they grow in proportion to t ) ,  but remain of fixed 
sign (positive) at all values of T and a. 

The dependence of the decrements x i  on T and a is 
shown qualitatively in Figs. 7 and 8. For convenience 
of interpretation, we show the orientation-phase dia- 
grams q(T) and $0) in the same figures. Let us  first 
consider the temperature dependence of the decrements 
for a =  0 (the continuous curves in Fig. 7). In Fig. 7a 
three solutions to the equation of the orientation state 
at some temperature lower than T, a re  distinguished 
by Roman numerals. To each of the solutions corres- 
ponds i ts  own value of the decrement x i ,  denoted in 
Fig. 7,  b), c), and d) by the same numeral. The de- 

-. - 

crements of the state with q= 0 (the point I) a re  given 
by the general formula 

s o  that the isotropic phase is absolutely unstable right 
up to T, and stable against weak perturbations at T 
> T,. As has been noted above, an "easy-plane" type of 
orientation (the point 11) is metastable. Indeed, it can 
be seen from Fig. 7, b) and d) that it is stable against 
weak perturbations of the same symmetry (t,,) and 
neutral with respect to perturbations of the form c,, 
and E,,,. However, the state w i g  q< 0 i s  unstable 
against the normal modes E,, and (E,, - c,,) (see Fig. 7c, 
where to the point I1 corresponds x,< 0). The develop- 
ment of this instability should lead to the appearance 
of an "easy -axis" type of state with the direction of 
orientation lying in the xy  plane. Finally, the solution 
with q> 0 (the point I11 in Fig. 7a) i s  stable against per- 
turbations with decrements n, and x, and neutral with 
respect to the c,, and f,, modes ( x ,=  0). The neutral 
perturbations are ,  in the present case, small devia- 

4 2  

b 
I I FIG. 7. Temperature de- 

I - pendence of the decrements 
xi (b, c, d) and of the order 

I parameter TJ (a) for a= 0 
(the continuous lines) and 
a >a, (the broken lines). 

C 

FIG. 8. Dependence of the 
decrements (b, c, d) and 
the order parameter (a) on 
stress for T < T, (the 
continuous lines) and 
T > T,, (the broken curves). 

tions of the macroscopic-orientation vector n from the 
z axis (infinitesimal rotations about the x and y axes). 
In the absence of s t resses  the direction of the director 
is completely degenerate, and therefore such perturba- 
tions neither attenuate nor intensify in the entire exis - 
tence domain of the spontaneous orientation (T< To). 
Out of the two positive solutions to the equation of the 
orientation state that exist in the temperature interval 
between T*  and T, (see Fig. 7a) only the upper one i s  
stable; the second solution, for which a q / a ~ >  0, is  un- 
stable with respect to the E,, mode-the corresponding 
decrement, x, ,  is negative. The distortion of the de- 
crement spectrum under the action of a tensile s t r ess  
i s  depicted in Fig. 7 by the dashed curves. An exten- 
sion completely removes the degeneracy in the direc- 
tions of the orientation axis, a s  a result of which the 
state with q> 0 becomes absolutely stable; all the self- 
intersection points on the x,(T) graphs for o >  a, dis- 
appear. 

Figure 8 shows the s t ress  dependence of the decre- 
ments for two different temperature values. The con- 
tinuous lines depict isotherms corresponding to a low 
temperature (T > T ,) at  which the polymer is already 
oriented in the absence of stresses;  the broken lines 
depict isotherms corresponding to a high temperature, 
when spontaneous orientation is impossible. In the fig- 
ure we have indicated the projections of the points, A 
and B, that delimit the nonuniqueness interval along the 
a axis. The solutions ot the equation of the orientation 
state (Fig. 8a) within this interval and the correspond- 
ing decrements of the normal modes [ ~ i g .  8, b), c), d)] 
a re  numbered by Roman numerals. Summarizing the 
information furnished by these graphs, we conclude 
that out of all conceivable states with a uniaxial orien- 
tation only the orientation of the "easy-axis" type (q 
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> 0) is stable under the action of tensile s t resses  (o 
> 0). In the case when a =  0 such an orientation i s ,  a s  
has been noted above, neutral with respect to the E,, 

and eye modes, but these perturbations grow (see the 
point 111 in Fig. 8d) even in the presence of an arbitrar-  
ily small contraction (o< O), which indicates the ten- 
dency of the easy axis to settle in the xy plane. The 
state with 77 < 0 (the "easy -plane" type) is unstable 
against perturbations with the decrement x,, while the 
section between A and B in Fig. 8a is unstable with re  - 
spect to the normal modes with the decrements x, and 
x,. As the temperature is  raised, the loops in the x, 
and n, plots shrink and disappear a t  T > T,,: the decre- 
ments become single-valued functions of the s t ress  (the 
dashed lines in Fig. 8). 

Let us note in conclusion that the relaxation times 
considered -- in this section determine the evolution of 
only small deviations from the-equilibrium orientation. 
On the other hand, a s  a highly nonequilibrium process, 
the orientation transition itself should be characterized 
by times of an entirely different nature: for the kin- 
etics of a first-order phase transition such factors a s  
the probability of formation and the rate of growth of the 
nucleation centers of the new phase a re  important. 

57. ELASTIC VIBRATIONS OF A ROD 

As shown in 94, the orientation-elastic interaction 
has an appreciable influence on the deformation prop- 
erties of a polymer. This influence should, perhaps, 
manifest itself most distinctly in nonstationary defor- 
mation regimes, since the establishment of mechanical 
equilibrium i s ,  in the final analysis, determined by the 
orientation relaxation times, which a re  the longest of 
all the solid-state times. In particular, anomalies a re  
to be expected in the elastic properties near the orien- 
tation-transition points, with approach to which the cor 
responding relaxation times increase rapidly. 

When the orientation effects a re  taken into consider- 
ation, the dynamical problems of the theory of elasti- 
city reduce to the problem of finding simultaneous solu- 
tions to the equations of motion of the orientation ten- 
sor ,  (5.15), and the equations of motion of a solid 

Here u i s  a displacement vector, which i s  connected 
with ufk through the relation 

from this definition and Eq. (7.1) follows the equation 
for the strain tensor: 

In this and the following sections we study the propa- 
gation of weak perturbations in a homogeneously de - 
formed polymeric solid. Retaining the previous nota- 
tion, let us write the s t ress  and orientation tensors in 
the form aik+pfk and qrk+c ik, where 

a re  the constant equilibrium values of the quantities 
while p,, and e,, a re  small changes made in them by 
the acoustic wave. A quantity of the same order of 
smallness is the strain u,,, which is measured from the 
equilibrium strain-the latter is determined by the val- 
ues of q and o. The equations for the weak perturba- 
tions, 

1 1 1 
l&  ' k -  - - 2~ ( p . .  - -p..a,) + ,P I .~ ,~+~YE~I ,  

3 

which a re  obtainable from (7.2) and (4.3), together with 
the Eqs. (5.15) for E,, form a complete system. 

Let us begin with the consideration of longitudinal 
waves in a long rod of thickness a. Weshall  assume 
that the anisotropy axis n is directed along the length 
of the rod (the z axis), so  that the wave vector k= kn. 
We a re  now dealing with waves whose wavelength is 
long compared to the rod thickness (&a<< 1). The oppos- 
si te limiting case, when the rod can be assumed to be 
unbounded in all  directions, will be considered in the 
following section. 

When the condition ka << 1 is fulfilled, the longitudinal 
waves in the rod a re  simple extensions (contractions) 
propagating along its  axis, in synchronization with 
which the cross section of the rod decreases (increas- 
es). If no external forces act on the lateral face, then 
only the p, component of the s t ress  tensor is nonzero 
in such a deformation. With allowance for this we find 
from (7.4) and 15.18) the equations 

The substitution of u,, from (7.5) into the general equa- 
tion of motion (7.3) yields 

The last two equations describe plane waves in the rod. 
Assuming E,, and p,, depend on the coordinates and 
time a s  exp[i(kz - wwt)], we obtain from the condition 
for the consistency of the equations 

Upon the neglect of dissipation, to which formally cor- 
responds T = 0,') the last equation can easily be solved 
for w: 

Retaining here only the leading powers of k, we have 
w2 = Gk2/p,  i.e., the velocity of the short waves is de- 
termined by the same formula, (G/~)'", a s  in the case 
of an isotropic solid.r101 This result is a consequence 
of the freezing of the equilibrium orientation in the 
high -frequency limit. 
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At low frequencies the terms with ak2  in (7.9) can be 
neglected. An exception is the x, = 0 case: a s  indicated 
in 66, the decrement x, vanishes at temperatures T 
< T,, and s t resses  a< a,, at the boundaries of the exis- 
tence domain of the metastable phase. In this case, re-  
taining the dominant terms in (7.9), we find 

from which it can be seen that the velocity of propaga- 
tion of the oscillations tends to zero at low frequencies 
like w l f 2 .  Naturally, this should be accompanied by 
anomalously high absorption of the wave energy, a fact 
which can be verified easily by computing the damping 
factor Imw from the general dispersion equation (7.8). 
For long waves we obtain Imw-rk2, so  that the ratio 
1mw/~ew tends to a finite limit a s  k - 0. 

For n , P  0 and small k Eq. (7.9) assumes the form 

Let us call the quantity 

the modulus of orientation elasticity. Using the defin- 
ition (7.10), the preceding equation can be written in 
the form w2=Gk2/p, where is a reduced modulus re-  
lated with G and G, through 

To elucidate the meaning of the modulus G,, let us note 
that the expression for it can be derived directly-by 
differentiating the strictional part of the equilibrium de- 
formation (4.4) with respect to the equilibrium stress:  

The computation of the derivative 

dq dq dS -=-- 
do de do 

is carried out with the aid of the self-consistency equa- 
tions !2.7), (2.8), from which we have 

The substitution of the expression obtained from dq/do 
into (7.11) leads to the formula 

27h 
G,= 4T [ I - ~ ( ~ ~ R I " ] ,  

9ny2(ln R)" 

which coincides with (7.10). At high temperatures (5 
<< 1: the region of Mackian elasticity) we should set  
(1nR)" = 2 in the last formula, which immediately yields 
G,= G,, [see (4.6)] ; in the low-temperature limit (5  >> 1) 
we have (lnR)"= 5" and 

Figure 9 shows the temperature dependence of the 
modulus G, and the relaxation time r,= rx,-l. So long 

928 Sov. Phys. JETP 47(5), May 1978 

FIG. 9. Temperature dependences of the modulus Gi (a) and 
the relaxation time 7, b) for II = 0 (the curves 1) and II = 0.1 
(the curves 2 ) .  The shape of the curves 1 near the transition 
temperature @t is shown on a large scale; the heavy lines 
correspond to the equilibrium transition. 

a s  the tensile s t r ess  does not exceed the critical value, 
the graphs exhibit self-intersection near the equili- 
brium-transition temperature T, (the curves 1). No- 
tice that this temperature separates the regions where 
the polymer behaves like a vitreous ( a G , / a ~  < O), and a 
hyperelastic ( a G , / a ~  > O), material. The value of 
G,(T,) determines the smallest initial slope of the de- 
formation curves shown in Fig. 1. Therefore, if the 
bottom isotherm in this figure corresponds to the tran- 
sition temperature, then the deformation curves should 
shift upwards both a s  the temperature is raised (the 
direction of increase of temperature is indicated by the 
arrow in Fig. 1) and a s  it is lowered. The extrema on 
the graphs of Fig. 9 become flatter and shift toward the 
region of higher temperatures as the s t ress  is increas- 
ed (the curves 2). 

As the oscillation frequency w decreases, the wave - 
length of the longitudinal waves can become greater 
than the length, 1 ,  of the rod. At frequencies corres- 
ponding to kl<< 1, the rod will execute uniform (along 
its entire length) forced vibrations. In this regime the 
internal s t resses  p , , - ~ - ' ~ ~  vary in phase with the ex- 
ternal force applied to the ends of the rod, whereas 
there develops between the s t ress  and the deformation 
a phase difference that is due to the relaxation proc- 
esses. The motion under consideration, i.e., the mo- 
tion satisfying the condition kl<< 1, is quasistationary. 
In this approximation the equation of motion of the rod, 
(7.7), is replaced by the equation for elastic equilibrium 
apza/8z = 0, from which i t  follows that the derivative 
a2~,/az2 in (7.6) is also equal to zero. Eliminating E,, 

from the Eqs. (7.5) and (7.6), we obtain in the periodic 
regime for the amplitude of the forced vibrations that 

The complex form of this formula is connected with an 
already noted circumstance: the deformation lags in 
phase behind the s t ress ,  which leads to mechanical 
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losses (hysteresis). Separating the real and imagina'ry 
parts of u,, we find the tangent of the angle of lag: 

The angle 6 attains its maximum value 6, a t  the fre- 
quency o,; from (7.13) we obtain 

As can be seen from Fig. 9a, the modulus G, increases 
without restriction a s  T - 0 and T-m (in the first case 
like T"; in the second, like T). Therefore, at both of 
these limits the angle 6,=G/2G, tends to zero. The 
quantity 6, passes through a maximum at the tempera- 
ture T,, in the vicinity of which the relaxation proces - 
ses  should manifest themselves most clearly. In this 
region G ,  << G, s o  that tg6,= +(G/G,) ' /~.  

The conclusions drawn about the nature of the temp- 
erature dependence of the phase shift agree with the re -  
sults of Kornfel'd and Pozdnyak's experimental investi- 
gation.c121. These authors established that the s t ress  
and the deformation coincide in phase in both the vi- 
treous (low-temperature) and the developed hyperelas- 
tic state of the polymer, but that a phase shift occurs 
in the temperature region lying between these states. 

In conclusion of this section, let us consider the uni- 
form longitudinal vibrations of a rod whose length is 
perpendicular to the direction, n, of preferred orienta- 
tion of i ts  molecules. In the coordinate system in 
which the z axis i s  directed along n and the x axis i s  
directed along the axis of the rod, only the component 
p,, of the s t ress  tensor is nonzero. The oscillation of 
this component excites two normal oscillatory modes 
of the orientation: E +  = E, + E,, and c - = E,, - E,,, the 
equations for which follow from (5.18) and (5.19): 

(7.14) 
The solution of the system (7.14) yields 

Substituting this expression into the formula u,, = Gap,, 
  YE,,, which is obtainable from (7.4), we find 

FIG. 10. Temperature dependence of the relaxation time r2 
for ll = 0 (the curve 1; the heavy lines correspond to the 
equilibrium transition), ll = 0.02 (the curve 2). and If = 0.10 
(the curve 3). 

Here we have used for the relaxation times the notation 
7, = H;~T, r2 = nilr and introduced a second orientation- 
elasticity modulus 

The dependence of G, on temperature s t ress  is similar 
in many respects to the dependence of G, on these quan- 
tities (see Fig. 9a). The two moduli, a s  functions of 
temperature, have the same asymptotic form: G, 
=3G1 for T<<T, and G,=G, for T>>T,. 

In Fig. 10 we show plots of the function r2(T). The 
main thing is that 7, differs from 7, (cf. Fig. 9b): the 
jump in i ts  magnitude at the transition temperature is 
greater. The substantial difference between the relax- 
ation times 7, and 7, in the vicinity of T, leads in the 
case under consideration to a phase -shift dispersion 
that is more complicated than (7.13). 

08. SOUND IN THE UNBOUNDED MEDIUM 

Let us proceed to the study of elastic waves in the 
unbounded medium; there are ,  a s  is well known)10' 
serious differences between them and waves in rods. 
Let us begin with the case when a plane acoustic wave 
propagates along the anisotropy axis n =  (0, 0 , l ) .  In the 
unbounded body the displacement u produced by such a 
wave depends only on the coordinate z and the time. 
Therefore, out of the six components of the strain ten- 
s o r  only three--u,,,u,,, andu,,-are nonzero; the first 
of them corresponds to a longitudinal wave, while the 
remaining two correspond to a transverse with two in- 
dependent polarization directions. 

Let us first consider the longitudinal wave. From 
(7.3) we have for it 

The diagonal components of Eq. (7.4) contain along with 
p,, the s t resses ,  p,, and p,, , arising in the transverse 
directions. The conditions u, =u,, = 0 and S ~ E , , =  0 al-  
low us to express the sum of the "transverse" s t resses  
in terms of p,, and E,,: 

With the aid of this relation we can express the zz -com- 
ponent of Eq. (7.4) in the form 

Eliminating u, from (8.1) and p ,  + p y y  from (5.18), we 
arrive a t  the system of linear homogeneous equations 
for p,, and E ,,: 
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where c, is the velocity of the longitudinal waves with- 
out allowance for the orientation effects. 

Neglecting the dissipation (7 = O), we obtain from 
(8.2) the dispersion equation for  the plane waves: 

Let us  compare this formula with (7.9). The main dif- 
ference between them consists in the appearance of an  
additional t e rm in the numerator of (8.3), as a result  
of which the longitudinal velocity, c,,(k), of the sound 
in the unbounded medium is always nonzero. Let us  de- 
note by 

the characteristic value of the wave number. For short  
waves (k >> k,) it follows from (8.3) that c,, = c,, whereas 
in the long-wave region (0< k < k,) we obtain 

(c, i s  the transverse velocity of sound in an  isotropic 
solid). The minimum value 

is attained at n, = G, = 0. 

Let us  now consider the transverse waves. Elimin- 
ating u,, from (7.3) and (7.4), we have 

the same equation is obtained for the yz -component. 
From (8.6) and (5.20) we find (the dissipation is neglec- 
ted): 

For a spontaneously oriented polymer (a= 0, T <  T,) the 
decrement n,= 0 by virtue of the degeneracy with re- 
spect to the directions of the director  n (cf. 86). As can 
be seen from (8.7), the wave number k,, (8.4), then 
separates the regions of normal and anomalous dis-  
persions: 

c,k for k ~ k ,  .= ( (-+)I" k2 for k < t .  
2pny 

Thus, the transverse sound velocity c, vanishes in the 
long-wave limit (c, "k). 

A tensile stress removes the degeneracy in the di-  
rections of n, the decrement n, becomes positive, and 
the formula (8.7) in the region of values of k<< k, as- 
sumes the form 

Here we have introduced the notation 

for the third modulus of orientational elasticity." The 
modulus G,, as T - 0,  tends to the finite limit a/ny and, 
at high temperatures,  goes over into the Mackian-elas- 
ticity modulue (4.6). 

In conclusion, let u s  give the results  of the calcula- 
tion of the longitudinal and the two t ransverse  sound 
velocities for  the case  when the wave vector is perpen- 
dicular t o  the director: 

For T>>T*, when all the G,=Ge1>>3p, from (8.10) fol- 
low the relations c,, = c, and cil)= c:'= ct. 

"~enerally speaking, the effective field should have been 
written in the form Hik=~in!muln+ hiklmqllm The scalar co- 
efficients in (2.1) are the f ~ r s t  terms of the expansions of 
the corresponding tensor coefficients in powers of ?lik-the 
only tensor that determines the structure of the polymer. 

 or greater details about the asymptotic form of the func- 
tion R([), which is related to the error integral, see the 
Appendix in Ref. 9. 

)Notice that in this case Zo = R ([)e-Qn/4T. 
4)As can be seen from- able I, (T, - T*)/T*= 0.153. Thus, 

if T* lies in the region of room temperatures, then the 
width of the indicated interval is about 50". 

5 ) ~ e  assume that this coefficient is a scalar (see footnote 1). 
%et us recall that the bare Brownian time 7 is defined as 

(6bT)", where b-' is the friction coefficient, which is pro- 
portional to the effective viscosity of the medium. 

7)~ot ice  that the quantity 3p  in (8.8) plays the role of the 
Young modulus G:  for the "incompressible" (transverse) 
perturbations under consideration we should set the bulk 
modulus K =  * in the definition of G ,  (4.4). 
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