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Nonlinear effects of the "wave-particle-wave" type in the simultaneous propagation of strong and weak 
sound in metals are considered. The gain of a weak wave propagating in the same direction as a strong 
wave that captures resonant electrons is determined, as well as the damping of a weak wave propagating 
counter to a strong one. It is shown that when the system of inequalities o l < ~ - '  <oo is satisfied (o, is 
the oscillation frequency of the captured particles, T is the relaxation time, and o, is the frequency of the 
weak wave in a coordinate frame connected with the strong wave), the gain (damping) of the weak wave is 
proportional to a -I = 0,7>1 and its absolute value is much larger than the linear damping factor. 

PACS numbers: 62.65. + k 

INTRODUCTION 

An intense sound wave propagating in a metal distorts 
strongly the trajectories of the electrons whose velo- 
city component in the wave-propagation direction is 
close to the sound velocity. This ' is  known to decrease 
the sound absorption c o e f f i ~ i e n t ~ ' * ~ ~  with increasing 
wave intensity. If the strong nonlinearity condition a 
= (w,T)-'<< 1 is satisfied, where w ,  the oscillation fre- 
quency of the trapped particles and T is the relaxation 
time, then the absorption coefficient i s  proportional to 
a. If a strong and a weak wave propagate in the crystal 
simultaneously, nonlinear effects of the "wave-part- 
icle-wave" type should be observed. Obviously, the 
influence of the strong wave on the weak one will be 
strong in the case when the weak wave interacts with 
particles whose distribution function is strongly dis- 
torted by the strong wave, o r  in other words if the 
phase veloicity of the weak wave au, falls in the inter- 
val 

where w is  the velocity of the strong wave and 6 is the 
characteristic oscillation velocity of the particles in 

FIG. 1. Electron distrllxltion function F(v,, x' = const) in the 
field of a strong longitudinal wave a t  8 > 2w. The thin line 
shows the nonequilibrium increment to the distribution func- 
tion. The velocity interval w - b(x) < v,< w + 8(x) corresponds 
to the trapped particles. 

the potential wells produced by the strong wave, 

To investigate the influence of the strong wave on 
the weak one it is useful to consider the electron 
distribution function in the field of the strong wave. 
As will be shown below, the electron distribution func- 
tion f(v,, d', E,) (the wave propagates in the x direction 
with a velocity component v,), integrated over the mo- 
tion energy in a plane perpendicular to the wave vector 
E ,  at T =0,  takes the form shown in Figs. 1 and 2: 
(F(v,,X')=~f(v,,x',~,)d~,,x'=~-wt). 

It follows from the figures that the electron distri- 
bution is dome-shaped in the velocity interval (w - 5, 
w + B ) ,  and tends to an equilibrium form outside this 
interval. The derivative a ~ / a v ,  on the peak of the 
dome is equal to  zero. In the velocity region 0 < v, 
<w the derivative aF/8vX is positive. In the linear 
theory, when a contribution is made to the absorption 
by resonant particles moving in phase with the wave, 
a positive derivative would correspond to enhancement 
of weak waves propagating with velocities 0 < w ,  < w. 
Even though in the case considered here the particle 
trajectories a re  subsQmtially distorted by the strong- 
wave field and the interaction with the weak wave is 
not resonant, we shall show that when the inequalities 

FIG. 2 ;  Electron distribution function F(v,, x' = const) in the 
strong-wave field a t  8 < 2w. The thin line shows the non- 
equilibrium increment to the distribution function. 
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(16) are  satisfied a positive derivative corresponds, just 
as  in the linear theory, to enhancement of the weak 
wave. If the weak wave travels counter to the strong 
wave, and if 2w>iJ, then it interacts effectively with 
the particles whose trajectories are weakly distorted 
by the strong-wave field, and the distribution function 
differs little from the equilibrium one (Fig. 2). The 
absorption coefficient of the weak wave differs little 
from the linear one in this case. If the condition 2w 
< 6  i s  satisfied and the waves propagate in opposite 
direction, then the weak wave is damped and, as  will 
be shown below, the damping coefficient can be much 
larger than the linear one. 

Effects produced when a strong and a weak wave 
propagate with equal phase velocities were considered 
in It was shown, in particular, that at integer k/~/q, 
where k and q are the wave vectors of the weak and 
strong waves, and the nonlinearity i s  strong (a << 1), 
higher harmonics are effectively generated. 

The purpose of the present paper is to study the in- 
teraction of a strong and weak sound waves whose 
phase velocities are unequal. We consider cases when 
the strong and weak waves propagate in the same direc- 
tion and in opposite directions. We show that weak 
sound traveling in the direction of the strong wave can 
be effectively enhanced. At the same time, a weak 
propagating counter to the strong one is damped. The 
gain (damping) is proportional to the large parameter 
l /a  and can exceed the linear damping coefficient 
by many times. 

1. SOLUTION OF THE KINETIC EQUATION 

We consider the interaction of the electrons with the 
field of the sound wave. Assume that the interaction 
can be described by a deformation potential. The com- 
plete system of equations describing the propagation 
of the sound wave consists then of the inelasticity-theory 
equation 

aa a2u an 
p7-C-+A- 

at- a t z  at 

and the Boltmann kinetic equation for the electrons 
in the strong and weak sound waves: 

Here 

cp.(z, t )  --To cos q(2-wt ) ,  

cp, ( r ,  t )  --TI cos k ( t - w , t )  

are the potentials of the strong and weak waves that 
move with velocities w and w,; u is the lattice displace- 
ments, C i s  the elastic modulus, p is t k  crystal den- 
sity, A is the deformation-potential constant, and ZCf) 
is the collision integral. The electron density n is 
connected with the distribution function f by the relation 

In the derivation of the elasticity-theory equation (1) a 

number of simplified assumptions were made; they 
are discussed in greater detail, e.g., in C41. As shown 
in the amplitudes of the higher harmonics of the 
strong wave are  small if the crystal length i s  shorter 
than the nonlinear damping wave -(aI',)". We assume 
this condition to be satisfied. 

We seek the solution of (2) in the form 

where f0[&(p) + (P,(x, t) ]+go(P,x, t) is the solution of the 
kinetic equation in the strong-wave field, and g, is the 
distribution-function increment due to the weak wave 
(pl(x, t). We recognize that at sufficiently low tem- 
peratures, when the scattering is mainly by impurities, 
the collision integral is lineaz in f. We substitute (6) 
and (2) and linearize with respect to cp, and g,: 

a* ago atpi apl+"=ag,_acprag,+l(g,) = - - - .  
at a t  a~ ap, az ap, at ae (7) 

In the derivation of (7) we have discarded small terms 
of the order of (P,,/E,. The relative "narrowness" of the 
resonant velocity region 

Iv , -w[Gmax(l /rq,  5 )  av,, 

in which the functions go and g, differ from zero, makes 
it possible to represent the collision integral in the 
form ~k, }=  f1gl, where r i s  the time of departure 
from the state p. When solving (7) it i s  convenient to 
change over to the variables s and 5 and introduce the 
notation wo = qb and b = (cpdp)lB: 

Solving (8) by the method of characteristics, we easily 
see that the particle trajectories are  determined by 
the potential of the strong wave and 

is the integral of motion. It follows therefore that all 
the particles mwing in the strong sound field can be 
divided into trapped (1x1 > I )  and untrapped ( ( H I  < 1). 
Introducing the dimensionless time of motion along the 
trajectory 

and changing over to the complex function = -Re g,), 
we obtain from (8) 

l(w,=k(w -w,)  i s  the frequency of the weak wave in the 
coordinate system connected with the strong (wave). It 
follows from (11) that the stationary solution should 
satisfy the following \;rocmdllry conditions: 
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where To(%) = 4K(n-') is the period of motion of the 
trapped particles, 

where 2 1 %I K(U) is the time during which the untrapped 
particle negotiates the distance 5 = 21. In the deriva- 
tion of (12) and (13) we took into account the periodicity 
of the function got(%, y) and go,,(%, y) in y. 

Equation (11) has a solution satisfying the boundary 
conditions (12) and (13) in the form 

where 

At integer and half-integer k/q the integration in (14) 
can be carried out by expanding exp[$irn [(n, y)], 2k/q 
= m  in a Fourier ser ies  (see [=I). The corresponding 
formulas a re  rather cumbersome. However, the 
solution takes a simpler form when the frequency 
of the weak wave, in the coordinate frame connected 
with the strong wave, is lower than the collision fre- 
quency and the frequency w,: 

i.e., the particle manages to execute several oscil- 
lations and to be scattered during the time of variation 
of the weak wave. The electron "sees" in this case the 
weak-wave field averaged over the fast oscillations. The 
second inequality in (16) means that we assume satis-  
faction of the strong-nonlinearity condition a = (w,T)-' 
<<I. 

Let us calculate the integral (14) in  the principal ap- 
proximation in the parameter a << 1. We examine first  
the electron distribution function in the field of a strong 
longitudinal wave 

Here fb[& @) + cp,(x - wt) ] is the local-equilibrium dis- 
tribution function, c($) =p2/2p is the electron energy, 
and cp, ( x  - urt) is the potential produced by the strong 
wave. The function go(p,x - wt) obtained in is con- 
veniently represented, by introducing the new variables 

in the form 

1 
'pow 

go(t, x ) -  ~ . ' ( E J  J d ~ e s p [ a ( r - t )  ] s i n ~ ( r ,  r . ) ,  (1 8) -- 
where ( ( 7 , ~ )  is determined from the equation of 
motion, 

is the integral of motion (u=[~/(E+ l ) ] ) ,  and 

is an incomplete elliptic integral of the first  kind. 

Formula (18) was obtained under the assumption that 
the inequalities cp,/&, << 1 and wZl/v: << 1 are  satisfied. 
Expanding in (18) in powers of the parameter a << 1 
(this is just the case to be considered hereafter), we 
can write down the distribution functions for the trapped 
and untrapped particles respectively in the form 

vow 
gal (8, e )  - - t 

fl (sl) (ab-s), Isl G2 cos -, 2 

In (2), S=n/xK(n) is the average dimensionless velo- 
city, 

is the distance traversed in the time t by a particle 
moving with average velocity S; K(n) is a complete 
elliptic integral of the first  kind; &, is the Fermi 
energy and EL is the energy of the transverse motion. 

Expanding the right-hand side in (14) and (15) in a 
Fourier ser ies  and calculating the elementary in teg~a l s  
with respect to 7, we obtain, taking (19) and (20) into 
account, for the trapped particles 

and fo r  the untrapped particles 

where b r  and a;" a r e  the Fourier coefficients of the 
expansion of the function exp(ikq-'[(T,U)) for the trapped 
and untrapped particles (Z(n) = n/.rt~(n)): 

It follows from (21a), (21b), and (22) that the terms 
with I = O  are  of order a-': 
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where is that part  of the distribution function which 
is even in H, The interval (0,l) in the integral with 
respect to  n corresponds to the region of the untrapped 
particles, and the interval (1, lsin((/2) 1") to the region 
of trapped particles. Substituting (29) in (28) and 
changing the order of integration with respect to 5 and 
H, we obtain expressions for the gain (absorption) of 
the weak wave: 

It is easy to  verify that all the terms with 1 # 0  make a 
contribution of higher order in a. This is obvious in 
the n region where d/2uK(n) >a  and rl/2K(n-') >a. The 
last inequalities fail to hold only in the exponentially 
narrow region n - 1 r e'r'ta corresponding to trajectories 
that pass near the separatrix. A contribution is made 
to the concentration and to the absorption coefficient 
(after integrating with respect to x) only by the first 
few terms of the series. Using the asymptotic expres- 
sions for ar(n) and b;(n-') a s  n-1, we can show that 
each of these terms is exponentially small. The 
corresponding calculations show that the contributions 
of all terms with 1 # O  to the concentration produced upon 
integration in a wide range of n is of the order of a .  

where I?, = A2p2k/4.rrpw, is the linear absorption coef - 
ficient of the weak wave, and 

The coefficients 
Changing from 2, to g, and returning to the variable 

t, we write down the distribution function of the trapped 
and untrapped particles in the form 

determine the contribution made to the absorption by the 
trapped and untrapped particles proper. 

We note that if m is odd (half-integer k / q )  the distri- 
bution function of the untrapped particles is equal to 
zero because of the condition aEn*'(n) =O. Since the 
functions g,, and g, ,,, describe the averaged reaction 
of the electron system to  the slowly varying field of 
the weak wave they a re  proportional, as in the static 
problem, to the relaxation time 7. We discuss now 
the influence of the strong wave on the weak-sound 
propagation conditions. 

At fixed parameters of the strong wave, the ratio of 
the nonlinear absorption coefficient of the weak wave to 
the linear one is determined by the function my(m). To 
analyze this function, i t  is convenient to represent the 
coefficients a r  and b r  in the form 

1 "rc"D = 
b," (2) = - cos(mEJ2)dE 

+,,-,.z(,12),~ . ZK(2) 
2. SOUND AMPLIFICATION COEFFICIENT 

In the case of odd rn (half-integer k/q), when only 
trapped particles contribute to r ( a p 4  = 0), we obtain 
by changing in (34b) from x to y = 1 - 2x2 and using the 
integral representation of Legendre polynomials, C51 

The coefficient of amplification (absorption) of the 
weak sound, which i s  defined by the relation r=  -(2S)" 
X dS/dx (S= $pu2,~% is the sound-energy flux), is obtained 
from the law of conservation of the field and particle 
energy: 

Changing next in (32) to the variable y, we obtain at 
m = 2 n + l  

where 

Since the function ~(4-2) i s  almost constant in 
practically the entire integration region and the Legen- 
dre polynomials a re  normalized to 2/(2n+ 1), the func- 
tion (36) depends quite weakly on m. We can analogously 
consider the function my(m) at even m and explain its 
slow dependence on m. To this end it is necessary to 
express the coefficients bT(y) in terms of the Legendre 
function of f irst  order P,,,,(y). It is more difficult to 
estimate analytically the contributionof the untrapped 

i s  the nonequilibrium concentration connected with the 
functiong,, p is the density, u, is the wave amplitude, 
and the averaging i s  over the coordinates and the time. 
The right-hand side of (28) determines the work of the 
weak wave on the particles. 

To calculate the concentration we proceed from in- 
tegration over the momenta to the variables <, and n. 
In terms of the new variables we have 
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particles to the function my(m). Numerical calculation, 
whoever, shows that i t  amounts to a small fraction of 
the contribution d the trapped particles (yUt/yt - 1/10 
at m = 2). The conclusion that the function m y(m) changes 
slow1 is confirmed by computer calculations. y(1) V 
= 0.64 at m = 1 and at m = 2,3,4 the function my(m) dif- 
fers  from this value only in the second significant 
figure. 

3. DISCUSSION OF THE RESULTS 

We proceed to a discussion of the results. If the 
strong and weak waves propagate in the same direc- 
tion, and the strong wave runs ahead of the weak one 
(w, < w), then < 0 according to (30)-(33), corresponding, 
to amplification of the weak sound. If the velocity of 
the weak wave exceeds that of the weak wave exceeds 
that of the strong one, then the weak wave attenuates 
( r > 0 ) .  In the case when the weak wave propagates 
counter to the strong one, the weak sound is absorbed 
at both w >w, and w<w,. To interpret these results, 
we turn again to the electron distribution function (17) 
in the strong-wave field. Integration of (17), with 
account taken of (19) and (20), with respect to the 
energy of motion in a plane perpendicular to x yields 

We recall that S=S(s ,  S); 

Plots of the distribution functions (37) and (38) in the 
dimensional coordinates v, and x a r e  shown in Figs. 1 
and 2. 

In the expansion of fo(c) in (37) and (38) we took into 
account the terms linear and quadratic i n s  and pro- 
portional to f:(&,). The terms quadratic in s and pro- 
portional to$(&J have been left out from the expan- 
sions of fo(E) and g,(s, 5, &J. The point is that in the 
case of Fermi statistics integration of terms propor- 
tional to f:(&,) with respect to E, yields the exponen- 
tially small factor e'"lT, while integration of fA(&J yields 
unity. 

The terms quadratic in s which were included by us 
in the expansion of fo(&) cause the distribution function 
to become dome-shaped in the velocity region corres- 
ponding to the trapped particles. It is readily seen 
that the sign of I' is determined in final analysis by the 
factor in the square brackets in the equation (11) for 
g,. In the approximation considered by us, when the 
sign of agdas  is constant in the entire interal of the 
velocities corresponding to the trapped particles 
(these are  precisely the particles that make the main 
contribution to the damping), the factor in the square 

brackets in (11) coincides with the derivative 

and i ts  sign i s  determined by the difference w -w,. 
Therefore the sign of the coefficient I' corresponds 
in each of the cases considered to the sign of the de- 
rivative of the distribution function with respect to the 
projection of the velocity on the wave propagation di- 
rection. This statement is illustrated by Fig. 1. 

The sign of the factor in the square brackets in (11) 
is not constant for the untrapped particles. In our 
approximation, however, when only the terms with 2 = 0 
are  significant in the sum over 1 in (21b), the sign 
of the function g, .,, and accordingly the contribution to  
the damping of the untrapped particles, is also deter- 
mined by the difference w - w,. 

According to (30), the gain (damping) of the weak 
wave can exceed greatly the linear damping coefficient 
I',(k), since I' - l / a  >> 1. w e  recall that the damping 
coefficient of the strong wave is proportional to a 
= (w,r)-l.) 

Our result, as  already noted, is valid if the inequalities 

kl w-w,  I/qF<a< 1 

a re  satisfied. It must be noted, however, that when 
the velocities of the strong and weak waves a re  close, 
i.e., the inequality (w - w,)/m << 1 is satisfied, the coef- 
ficient r can become smaller than the next terms of the 
expansion in a .  As shown in c31, the coefficients des- 
cribing the interaction of the strong and weak waves at 
w = w, are  of the order of a at integer m and of a ln(l/a) 
at half-integer m. 

Since the dispersion of the sound velocity in crystals 
is exceedingly small, and the methods for artificially 
increasing the dispersion in the considered frequency 
region a re  of low efficiency, the enhancement effect 
considered above can be observed only i f  two acoustic 
modes with different phase velocities are  simultaneously 
excited. If each of these waves is partially longitudinal, 
then our theory accounts for the order of magnitude of 
their interaction. The increase of the damping of the 
weak wave in the field of the strong one can be observed 
when both waves a re  purely longitudinal. To this end 
it is necessary that the strong and weak waves pro- 
pagate in opposite directions. According to (32), the 
damping coefficient of the weak i s  then 

Numerical estimates show that the conditions (22), which 
a re  necessary for the observation of the considered ef- 
fects, can be satisfied, for example, in bismuth and 
indium antimonide, a s  well as  in pure metals. The 
required strong-wave intensity is of the order of 10 
w/cm2, and the frequencies of the strong and weak 
waves should be of the order of lo9 Hz. 

" 
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The temperature and frequency dependences of the permittivity were determined in the vicinity of the 
phase transition (in either direction) from the smectic C phase to the smectic A phase in a chiral smectic 
liquid crystal DOBAMBC. The results obtained were compared with the temperature dependences of the 
tilt angle 9 of the molecules in the smectic layers, spontaneous polarization P,, and helix pitch p,. The 
experimental results were analyzed using a dynamic model based on the phenomenological theory of the 
chiral smectic C phase put forward by Pi in and Indenbom. The relative role played by piezoelectric 
effects of various kinds in the spontaneous polarization of DOBAMBC was analyzed and conclusions were 
drawn. 

PACS numbers: 77.20. + y, 77.30. +d, 77.60. +v, 64.70.E~ 

INTRODUCTION an ex te rna l  a l ternat ing field includes important  infor- 
mation on the fea tures  of the dipole ordering,  dynamic 

The existence of fe r roe lec t r ic  propert ies  in  ch i ra l  p rocesses  associated with the deformation of the helix, 
smec t ic  C liquid crystals ,  pointed out by Meyer  et al.,[" and relat ive role of the piezoelectr ic  effects  of var ious 

h a s  now been confirmed by numerous experimental  kinds in  the appearance of the spontaneous polarization. 
measurements  of the optical and polarization switching We shal l  r e p o r t  the t empera ture  and frequency depen- 
propert ies  of this  class of compounds. C2-81 A distin- dences of the permittivity in the vicinity of a phase 
guishing feature of liquid-crystal fe r roe lec t r ics  is the transition (in e i ther  direction) f r o m  the smect ic  C phase 
"orientational" nature of the dipole ordering, asso-  
ciated with the short-range nature of the f o r c e s  which 
give rise to a paral le l  tilt of the molecules in  the smec-  1 j / y Z p  & & & i  
tic layers .  In th i s  case the polarization is due to pie- 
zoelectr ic  effects of var ious kind allowed by the sym- 
met ry  of ch i ra l  smec t ic  C liquid c rys ta l s .  

a 
A charac te r i s t i c  feature of these c rys ta l s  is a l so  a 

helical distribution of the permanent dipole moments  
U-- 

of the molecules in  the smect ic  l ayers  (Fig. l a ) .  In Po- 
I ,  , 1'1 7, @ 6 ,  ,+ 

each helix pitch (-4p) the re  are -2 x lo3 disc re te  direc-  
tions of the dipole moment in  the l a y e r s  (apart  f r o m  
allowance for  thermal  fluctuations of the direct ions of ! 4 ,' ,4 $ @ .' I 
the  dipole moment). If a sample is sufficiently thick, 
th i s  helical s t ruc ture  corresponds t o  the equilibrium 
state of the ch i ra l  smec t ic  C phase 'and its appearance 
as a resu l t  of a phase transition is due to the limiting 
nature of the symmetry  group of the parae lec t r ic  high- 
temperature phase ( ~ / 2 ) .  A s  i n  the case of splitting of 
sol id fe r roe lec t r ics  into domains, the appearance of a 
helical s t ruc ture  helps to  retain this  macrosymmetry  
also in the polar  phase. 

The interaction of the dipole moments of the mole- 
cules  with an external  electric field resu l t s  i n  a homo- 
geneous polarization of a liquid crystal ,  i. e . ,  it causes  
"untwisting" of the helix. Therefore,  we may assume 
that  the dielectr ic  response of a liquid c r y s t a l  sys tem to 

FIG. 1. Distribution of molecules and their permanent dipole 
moments in the chiral smectic C phase. The smectic layers 
a re  parallel to the xy plane. Inside the layers the molecules 
a re  titlted at an angle 0 relative to the normal of the smectic 
planes: (a) helical structure in the absence of external per- 
turbations; @) homogeneous orientation of the director n and 
dipole moments P in an external electric field E= nEp . 
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