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An analysis is made of the problem of nonlinear oscillations which appear in a circuit containing a 
Josephson tunnel junction. The nonlinear ac equation, describing steady-state spontaneous oscillations in 
the circuit, is solved asymptotically. Numerical methods are used to find the dependence of the oscillation 
period on the circuit parameters. Hysteresis effects are studied and the range of their existence is 
determined. The form of the current-voltage characteristics of a Josephson circuit is considered in the case 
of a constant voltage supplied by an external power source. 

PACS numbers: 74.50. +r 

The dc Josephson effect is produced by the passage, 
through a Josephson tunnel junction, of a current not 
exceeding a certain critical value z , . [~-~ '  The voltage 
drop across the junction is then zero, V = 0, and the 
current I=I, sincp is set up by an external voltage o r  
current source. [The quantity cp =sin" (I&) is known 
a s  the phase shift of the order parameter in a super- 
conducting circuit.] If the current I exceeds I,, the dc 
Josephson effect is observed: in this case a nonzero 
voltage drop V is established across the junction and the 
dependence I(V) has characteristic features.c3w41 

Usugly the ac Josephson effect is investigated either 
for a constant current I through the junction o r  for a 
constant voltage V across the junction; the majority of 
the experimental and theoretical investigations has 
been concerned specifically with these  case^.[^*^' How- 
ever, it is interesting to consider the problem of the 
ac Josephson effect in the presence of a constant ex- 
ternal voltage U (the source of U may be a battery or a 
voltage generator). This case is considered in the pres- 
ent paper. We shall also touch upon some methodolog- 
ical aspects associated with the treatment of the ac 
Josephson effect. 

We shall consider a circuit (Fig. 1) consisting of a 
generator of a constant voltage U, an external resis- 
tance R,, and a tunnel junction characterized by a ca- 
pacitance C and a voltage drop V. The equation for the 

current in the circuit is then 

where iP is the magnetic flux in the circuit, and the to- 
tal current is governed by its value passing through the 
tunnel barrier: 

Here, the first  term is the Josephson current, the 
second is the conduction current (R, is the resistance 
to the normal component of the current through the 
junction), and the third is the displacement current. 

We shall confine our attention to the case when there 
is no external magnetic field and we may assume that 
the current through the junction i s  independent of the 
coordinates in the junction plane (this condition is sat- 
isfied, for example, by small-area contacts). The val- 

FIG. 1. Schematic dia- 
gram of a circuit with a 
tunnel junction. 
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ue of cp is then given by[''41 

where ip, is a constant and e*=2e is the charge of a 
Cooper electron pair. 

Ignoring in Eq. (1) the small term c-'8@/8t (i.e., the 
additional voltage in the circuit resulting from the self- 
induction effect), we shall rewrite Eq. (1) subject to 
Eqs. (2) and (3) in the form 

~ + @ + v  sin 9 x 1 ,  (4) 

where rp = rp(r), the point denotes differentiation with re- 
spect to the dimensionless time ? = t/t,, and 

Some idea of the order of the quantities occurring in 
Eq. (5) can be obtained by substituting typical values 
e*U-A-10'3 eV (A i s  the energy gap of the supercon- 
ductor), R,-R,- ln ,C-~S/4nl-10~ cm (E-10 is the 
permittivity of the junction, S - cma is its  area, 
and 1 - cm is its thickness). Substituting these val- 
ues, we find from Eq. (5) that A -  10' and that a typical 
oscillation period is 2nt0 - 10'11 sec (this corresponds to 
-10" Hz and to the wavelength A,-2ncto-0.3 cm).'' 

We note that an equation of the (4) type can be ob- 
tained directly from the definition of the total current 
(2), if we consider I a s  a given quantity (details of the 
Josephson effect under constant-current conditions can 
be found elsewherec3q1). In our formulation of the prob- 
lem, we a re  beginning from a system of two simultane- 
ous equations (1) and (2), but we still obtain Eq. (4) ex- 
cept that in our case the current I in the circuit is not 
constant and has to be found by solving Eq. (4). More- 
over, we must bear in mind that in our case the para- 
meters of the equation depend on two quantities R, and 
R, and not on R, alone, a s  in earlier  investigation^.^^?^ 
These differences do not alter the situation in any basic 
manner and we can still use the results obtained by 
stewartc6' and ~ c c u m b e r [ ~ ]  in investigating ~ ' q .  (4). To 
avoid repetition, we shall consider in detail only those 
aspects which a re  not discussed by ~ t e w a r t [ ~ ]  and 
McCumberc7] and, moreover, we shall discuss some 
methodological features which may be of general phys- 
ical interest. 

A qualitative study of Eq. (4) can be made by the 
phase picture method (see, fo r  example, Chap. 7 in the 
monograph by Andronov et a~.[~'). Figures 2 and 3 
show the phase pictures of Eq. (4) drawn on cylindrical 
surfaces for various values of v and A. We can see that, 
in the v< 1 case (Fig. 2), Eq. (4) has periodic solutions 
of the second kindc9' (surrounding the cylinder) and 
tending to the limit cycle located withing the interval 

where this cycle is reached for any initial conditions. 

FIG. 2. Phase picture of Eq. (4) on a cylindrical surface for 
the v < 1 case. The value of is plotted along the cylinder 
axis and the value of (P along the azimuth. One of the possible 
limit cycles, whose range of existence is defined by the in- 
equalities of Eq. (6), is shown. For given values of v and A, 
there is only one limit cycle. 

In the v > l  case (Fig. 3a), there is a periodic solution 
for vX< vcXc (vcAc is some critical value) and initial con- 
ditions in the unshaded region. If v> 1, but vA> vcXc, 
there a re  no periodic solutions and for any initial con- 
ditions (Fig. 3b) the solution tends either to a stable 
focus, corresponding to rp = sinq(l/v), or  to an unstable 
saddle point, corresponding to the solution 40 = n 
- sin-l(l/v). 

We can obtain an approximate analytic solution2) of 
Eq. (4) for small values v/A<< 1. We shall seek a solu- 
tion in the form 

v=cpo+vcpr. (7') 

Then, Eq. (4) can be represented by a system of two 
equations: 

The solution of the f i rs t  of the two equations in the sys- 
tem (8) i s  

FIG. 3. Phase picture of Eq. (4) in the v > 1 case: a) vh 
< vC&; b) vh> vC&. Here, vcAc is some critical value (see 
also Fig. 6). h the case shown in Fig. 3a there are two 
asymptotic solutions, one of which corresponds to a limit 
cycle (LC) and the other to a stable focus (SF). In the case 
shown in Fig. 3b there is only one asymptotic solution cor- 
responding to a stable focus; SA is a saddle point and SE 
denotes a separatrix. 
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The second equation in the system (8) can be solved by 
variation of the constants, which gives 

Combining Eqs. (7), (9), and (lo), we obtain 

We shall apply the method of successive approxima- 
tions, replacing cp on the right-hand side of Eq. (11) 
with Eq. (6): 

For the initial conditions cp (0) = 0 and a 0 )  = 0, we have 

Integrating twice by parts, we find from Eq. (12) that 

- vh vh 
sin X+  - cos x- - e-rlL 

1+R2 l+h' 

vh -- ,> e-'/'J cos xdt- - e-./' fsin ~ d t ,  
l+h2 

0 

where 

The expression (13) allows us to find the solution ~ ( 7 )  
for any time. 

The solution (13) applies if v< 1, v/x<< 1 and it dis- 
cribes oscillations which occur when the circuit is sub- 
jected to a constant voltage U>Ul=IcRo. We shall be 
interested in the steady-state forced oscillation regime 
in the limit 7 -  m. In this case, we find from Eq. (13) 
that cp has the asymptotic solution 

The spontaneous oscillation regime described by Eq. 
(14) is established in the circuit irrespective of the 

FIG. 4. Example of a numerical solution of Eq. (4) for A = 10 
and v = 0 . 5 ,  illustrating that the asymptotic solution i s  inde- 
pendent of the initial conditions. Curve 1 corresponds to the 
initial values yo = 1 and go = 0 .8  and curve 2 to the values 
y0=2 and $=1.2. 

FIG. 5. Numerical solution of Eq. (4) plotted for h = 10 and 
v = 2, illustrating the existence of two asymptotic (in the limit 
T-  m) solutions. Solution 1 corresponds to the initial condi- 
tions qo = 1 and $0 = 0.5 (resulting in a steady regime), whereas 
solution 2 corresponds to the initiaI conditions yo = 1 and 
Go = 0 .7  (resulting in stable spontaneous oscillations). 

initial conditions3' at the moment t= 0 (see also Fig. 2). 

This i s  illustrated in Fig. 4, which shows the solu- 
tion of Eq. (4) obtained on a computer for A =  10 and 
v=0.5. We can easily see that the curves in Fig. 4 are  
described satisfactorily by analytic solutions of the (13) 
and (14) type. Naturally, the asymptotic solution (14) 
is independent of the initial values of the phase cp, and 
voltage 4, (this is also clear from the curves in Fig. 4). 
We can see that variation of the asymptotic solutions 
by some constant amount relative to one another from 
the abscissa. 

If v> 1 (i.e., for U <  U,=IcRo), we always have an 
asymptotic solution of the type 

(this solution corresponds to a stable focus in Figs. 
3a and 3b). Then, Eq. (4) describes the process of ap- 
proach of the circuit current to i t s  steady-state value 

I I ,,,=I. sin cp,, 

and 

(see curve 1 in Fig, 5). The current reaches a value 
smaller than I, and the asymptotic solution (15) repre- 
sents the usual dc Josephson effect. However, if v> 1, 
we can have not only the asymptotic solution (15), but 
also the asymptotic oscillatory solution (14) (corres- 
ponding to the limit cycle in Fig. 3a). The latter solu- 
tion is obtained by specifying some finite initial voltage 
in the system c,8,>G0 and then the solution of Eq. (4) 
reaches asymptotically the oscillatory regime of the (14) 
type in spite of the fact that the battery voltage is less 
than the critical value U< Ul and the circuit is under 
conditions corresponding to the dc Josephson effect. 
This is illustrated by curves 1 and 2 in Fig. 5, found 
by numerical integration of Eq. (4) for various values 
of iO, and also by the results in Fig. 3a. (The oscil- 
latory regime appears in Fig. 3a for initial conditons 
outside the shaded region. ) 

Figure 6 shows the dependence of i$c on v and A. For 
a given value of +0 > GC, the solution of Eq. (4) becomes 
of the spontaneous oscillation type, whereas for 4, <Go, 
the solution tends to the constant (15), i.e., it corres- 
ponds to the dc Josephson effect. The dashed curve 
in Fig. 6 joins the end points of the branches Gc. In 
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FIG. 6. Critical initial values of $, plotted as a function of 
the ratio v/A (oontinuous curves). The numbers alongside the 
curves give the values of the parameter h. If the initial 
:erixative q0 lies above the corresponding curve, i. e., if 
qo > q,, the solution of Eq. (4) gives spontaneous oscillations. 
However, if 4 < 4,. the solution is the constant cP = 9, 
= sin-* (l/v) (steady-state case). 

the range of parameters V/A to the right of the end point 
of a given branch we have only the steady-state asymp- 
totic solution (the end points on the dashed curve cor- 
respond to the critical values of the parameter v,h, in 
Fig. 3). 

Thus, in the U <  U, case (i.e., for v > 1), depending 
on the initial conditions, we can have either the regime 
(15) corresponding to the dc Josephson effect (in this 
case the voltage across the junction is V = 0) or  the 
stable oscillatory regime of the (14) type, when the vol- 
tage across the junction is V #  0. As long as the ratio 
v/A remains small  (v/h<<l), the spontaneous oscilla- 
tions which develop in the system for v> 1 a r e  des- 
cribed well by the simple harmonic expression (l4), but 
on increase of V/X these oscillations become nonsinu- 
soidal (Fig. 7). Figure 8 shows the dependences of the 
oscillations period on the quantities v and A .  We can 
see that there a r e  certain critical values v, and A,, at 
which the oscillation period tends to infinity. These 
values vc and Xc lie on the dashed curve shown in Fig. 6. 

We shall be interested mainly in the oscillations des- 
cribed by the harmonic law (14) for the quantity cp - 7 .  

In accordance with this law, the following quantities 
vary with time in the investigated circuit (Fig. 1): the 
quantity cp (T) ,  the voltage across the junction 4 = V/U 
(the charge in the tunnel-junction capacitor Q = C V  var- 
ies  proportionally to this voltage), the displacement 
current -$, the superconducting current through the 

Y FIG. 7. Example of 

;-, 

stable nonlinear spontane- 
ous oscillations in the 

u h=10 and v=6.2 c a s ~ :  a) 
phase 9; b) voltage 9; c) 

sing current sin q;--d) displace- ;k+j++ ment current +. a 
-1.. 
Y 

FIG. 8. a) Dependences of the oscillation period on the 
parameter v plotted for different values of h (these values are 
given alongside each curve). b) Dependences of the average 
voltage across the junction (G) = 21r/T on v plotted for different 
values of A (taken from stewart'sIG1 and ~ c ~ u m b e r ' s " '  
papers). 

junction Z,/Zc= sincp, and the total current in the circuit 
Z [Eq. (2)]. Figure 9 shows schematically the time de- 
pendences of all these quantities. 

We can easily calculate also the total current (Z) 
averaged over one oscillation period. The solution (14) 
can be conveniently represented in the form 

Then, bearing in mind that 

where Jl(z) is a Bessel function, we obtain 

Using the expansion J l ( z ) = i z  for  z<< 1, we find that if 
A>> 1, then the following relationships apply: 

I t  follows that the average current across  the ba r r i e r  

FIG. 9. Schematic time dependences of the voltage (Va- cp) 
and charge in the tunnel capacitor (Q = CV) , displacement 
current (Id = CdV/dt) , superconducting current (Is a- sin 9), and 
normal current (I,= V / R ~ ) .  The dashed lines are the average 
values of (1,) and 0$ ( (13 << 0,)). 
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is governed mainly by the normal component, whereas 
the superconducting current oscillates at an amplitude 
*I, but the average of this current is smalk @*)<<Ic. An 
increase in U results in an increase of the oscillation 
frequency 2n/t0, in accordance with Eqs. (5) and (14), 
and the oscillation amplitude decreases. 

An increase in U alters the voltage (V) across the 
junction and also the normal current (18). It is known 
that when the voltage across the junction attains the 
value (V) = 2A, where A i s  the energy gap of the super- 
conductor, the single-particle current r ises  strong- 
ly.C2'41 This means that the tunnel resistance R, in Eq. 
(18) is generally a nonlinear function4' of the voltage 
across the junction (V). The experimentally determined 
dependences (V)(U) and (Z)(U) can be used, in principle, 
to obtain information on the behavior of the nonlinear 
function R,((V)) or R,(U). For  example, the relation- 
ship 

yields the dependences 

The last dependence can be obtained naturally also from 
the usual measurements in the case of a constant vol- 
tage (V) across the junction. 

In discussing some qualitative aspects of our ap- 
proach we shall model the dependence R,((V)) or  R,(U) 
by a step function, a s  shown in Fig. 10. The tunnel re- 
sistance is absent right up to the point U, at which the 
transition takes place to the ac regime. The kink at the 
point U, corresponds to the appearance of the single- 
particle current; the section c represents the region 
where the current-voltage characteristic has i ts  con- 
ventional form. The dashed curve describes the region 
of possible hysteresis of the resistance. (In fact, the 
curves may be more complex.) 

Figure 11 shows schematically the dependences (Z)(U) 
and (V)(U) in the case of a constant voltage supplied by 
an external source; these dependences a re  found using 
the approximation for the function R,(U) shown in Fig. 
10. These dependences are  nonmonotonic, in accord- 
ance with the nonrnonotonic nature of R,(U) (Fig. 10). 
The dependence of (Z) on (V) corresponding to the con- 
ventional current-voltage characteristic is shown in 
Fig. 12. The sudden fall of the current from Z=Zc  to 
Z=Z, (Figs. 11 and 12) is due to the appearance of a tun- 
nel resistance R, on transition to the ac regime. The 
values of I, = u,/(R, + R,) and V, = U, R,/(R, + R,) a re  then 
governed by the total resistance of the system and they 
can be varied by a suitable choice of the load resistance 
R,. In particular, if the load resistance if high (R, >> R,), 

FIG. 10. Schematic model 
of the nonlinear depen- 
dence R t  (U) used to plot 
the current-voltage char- 
acteristics in Fig. 11. 

FIG. 11. A) Time-average value (I) of the current through a 
junction plotted a s  a fundion of the generator voltage U 
(schematic representation). The section 0 < U< U1 corresponds 
to the dc Josephson effect. The fall of the current at U= U1 
corresponds to the appearance of the tunnel resistance 4 
(see Fig. 10). The kink at  the point U2 simulates a rapid 
rise of the single-particle current for (V) > 2A. Thermally 
unpaired electrons contribute the single-particle current in 
the shaded region. In the limit T- 0, this region decreases 
and the characteristic tends to the line a, b, due to nonthermal 
pair dissociation processes. The dashed curve in the range 
Uh < U< Ui corresponds to ac states of the type given by Eq. 
(14). Hysteresis of the current is possible (this is indicated 
by arrows). The point (I h ,  Uh) corresponds to the end points 
of the curves 4, (dashed curve in Fig. 6) .  For U <  Uh, only 
the dc Josephson effect is  possible. B) Time-average value 
(V) of the voltage aczoss the junction plotted as a function of 
the generator voltage U (schematically). The dc Josephson 
effect ( (V) = 0) in the range 0 < U< Ui. For U> U1, the condi- 
tions are unstable ( (V) * 0, curve a) .  On reduction of U, 
the ac regime and the nonzero voltage (dashed curve) may be 
retained right down to U= Uh (voltage hysteresis). 

the current and voltage jumps may not be observed and 
the current-voltage characteristics may have the form 
represented by the dependences a' shown a s  chain 
curves in Figs. 11 and 12. (In view of the damping of 
the high-frequency oscillations along the circuit, the in- 
fluence of the resistance R, should be much more 
marked if this resistance is in the immediate vicinity 
of the Josephson junction: see Fig. 1.) The tempera- 
ture-dependent parts of the characteristics in Figs. 
11 and 12 a re  identified by shading. In these regions 
there are, at T # 0, thermally unpaired electrons which 
contribute to the quasiparticle current. Cooling re- 
duces the number of electrons exponentially but in the 
limit T -0 the normal current in the voltage range 
U,< U< U, (section a in Fig. 11) still remains finite. 
It follows that, in this range of voltages, electron pairs 
a re  dissociated by a nonthermal mechanism and the 
distribution of electrons between the states i s  of non- 
equilibrium type. This disequilibrium is created and 

FIG. 12. Conventional current-voltage characteristic 
(I) ((V)) plotted schematically on the basis of Figs. 10 and 
11. The inset on the right gives the dependence Rt( (v)) 
corresponding to Fig. 10. 
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maintained by an  external source of the voltage U s o  oscillations in describing some of the phenomena as- 
that an ac current I passes through the junction and sociated with the ac Josephson effect. 
there is a voltage drop V across iL5' 

The dashed curves in Fig. 11 (ending with arrows) 
indicate the possibility of hysteresis effects associated 
with the existence of spontaneous oscillation states of 
the (14) type in the range U< U, [these oscillations may 
differ from the simple sinusoidal form predicted by Eq. 
(14)]. In principle, such states may appear if they a r e  
approached from the side of finite voltages (V)+ 0, as 
shown in Fig. 11. The possibility of hysteresis effects 
follows also from an analysis of the phase picture (Fig. 
3a) and from numerical sdu$iw 8 f  Bq. (4) shown in 
Figs. 5-8. The existence of hysteresis solutions has 
been pointed out earlier.c6*71 The possibility of estab- 
lishing an ac nonequilibrium state in the range of vol- 
tages U <  U, characteristic of the dc Josephson effect is 
interesting and deserves a more detailed experimental 
investigation. (Hysteresis effects a r e  discussed also in 
Solymar's monograph,c41 where the literature of the sub- 
ject i s  given.) 

We shall conclude by considering the physical aspects 
of the appearance of the ac Josephson effect, which 
seems to us to describe adequately Eqs. (1)-(4) and fi t  
the phenomenological approach adopted in the present 
paper. An external power source supplying a constant 
voltage U< U, = R,Ic produces just the superconducting 
dc Josephson current I, = I, sinq, -i I ,  through the junc- 
tion; the voltage across the junction then vanishes, 
V = 0, and the normal current i s  I,,= 0. On increase of 
the external voltage to U> U,, the superconducting com- 
ponent fails to ensure a current I > I ,  and an additional 
normal current I,, should appear in the circuit (Fig. 1); 
this results in a partial conversion of the superconduct- 
ing to the normal current, produces a nonequilibrium 
state, and a finite tunnel resistance R,. At the same 
time the tunnel capacitor C becomes charged and an 
electric field appears in the junction. This field accel- 
erates electrons and Cooper pairs travel faster  than 
normal excitations (in the absence of collisions of the 
superconducting system with the lattice). The resultant 
excess charge in the capacitor (Fig. 9a) produces a re-  
verse displacement current (Fig. 9b) and, in view of 
the current (2), undamped nonlinear oscillations a r e  
established in the circuit (Figs. 9c and 9d) a t  a nonzero 
voltage (V) when the junction charge i s  Q=C(V). 

Spontaneous oscillations which appear in the circuit 
a r e  described by the nonlinear equation (4); Eqs. (5) 
and (14) then show that the amplitude of these oscilla- 
tions depends on the parameter h proportional to the 
tunnel junction capacitance C.B) From the phenomeno- 
logical point of view, a Josephson tunnel junction then 
acts a s  an oscillator in the current circuit shown in 
Fig. 1 (it then resembles a conventional rf tube o r  some 
other nonlinear element). In some cases this macro- 
scopic approach may be useful because, in addition to 
the usual quantum-mechanical terminology based on 
the concept of the difference between the phases of wave 
f u n ~ t i o n s , ~ ~ * ~ ]  it allows us to employ the very illuminat- 
ing representations of the classical nonlinear theory of 

 quati ti on (4) corresponds to the quasisteady approximation 
in the theory of alternating currents. Since the character- 
istic frequencies of natural oscillations in the circuit under 
consideration are high and the corresponding wavelength is 
short, this equation clearly cannot provide an accurate 
description of oscillations in the circuit. In a more rigorous 
formulation of the problem one would have to allow for the 
delay and damping of the waves traveling along the circuit. 
However, we shall not introduce these complications because 
we are interested in the general qualitative pattern of the 
effect described by Eq. (4). 

ZhNe take this opportunity to thank S. E. ~ o n s h t e h  for a 
valuable discussion of this topic, 

3%ore exactly, the initial conditions govern only the constant 
in Eq. (14). 

4 ) ~ n  our phenomenological approach the quantity Rt occurs as 
some given parameter. We can find it by applying the 
microscopic theory and considering the kinetics of the 
processes responsible for the tunnel resistance R,. (the 
microscopic approach can be found, for example, m the 
monograph by Kulik and  ans son^^^). 

5'Disequilibrium discussed here is, in a sense, analogous to 
the disequilibrium which appears on passage of a static 
current across a boundary between a superconductor and a 
normal metal. In such a case we also have conversion 
of the superconducting to the normal current, i. e. ,  the pair 
dissociation process is of nonthermal origin. 

6 ' ~ e r e ,  it is appropriate to mention the fact that the nonlinear 
equation (4) has also an undamped spontaneous oscillation 
solution for A =  0 (i. e. , in the absence of the capacitor with 
C = 0); an analytic solution of this case can be found in the 
de Gennes monograph. lt2] In the absence of the capacitor 
electric field (C = 0) the oscillation regime is entirely due 
to the nonlinear dependence of the current of the voltage, 
represented by the term v sin cp in Eq. (4). In general, 
these two factors (i. e. ,  the capacitor field and the nonlinear 
term) play some role in the development of nonlinear 
spontaneous oscillations. 
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