
at field H=H,= 6.3 kOe in a domain where, for H<< Hc, 
L 11 H; and to a continuous rotation of L in domains 
where L was oriented a t  angle 60" to H. In strong mag- 
netic fields, H>> Hc, independently of the orientation of 
H in the basal plane, L I H .  On change of the orientation 
of the antiferromagnetic L in the basal plane of the 
crystal, for certain positions of L in this plane there 
appears a ferromagnetic moment o, along the c axis; 
its variation can be described with sufficient accuracy 
by the expression a, = a: sin3Q. In this work we have 
determined the values of the effective fields responsi- 
ble for the magnetic properties of this monocrystal. 
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The quantum field theory methods are applied to a phase transition in a system of paramagnetic ions 
interacting with acoustic phonons. It is shown that when a threshold condition, imposed on an external 
static magnetic field and paramagnetic ion density, is exceeded, a paramagnetic crystal has a critical 
temperature T, below which it experiences spontaneous static deformation accompanied by a spontaneous 
magnetic ordering of the <S,S,)#O type. The resonant response of the spin-phonon system to an 
external rf field and to sound is determined in the range T 2  T, and one of the resonance modes is found 
to be soft. The phase transition in question is not exhibited by a crystal with a macroscopically 
inhomogeneous distribution of paramagnetic ions. 

PACS numbers: 75.40.Fa, 75.20. -g 

INTRODUCTION namic phase is characterized by a spontaneous magnetic 
order directed at right-angles to the external field and 

Investigations of a paramagnetic system interacting by a static component of the radiation field. 
with a radiation field in a resonator have shown that a 
phase transition may occur when the density of para- It is of interest to consider an analogous problem of 
magnetic ions and an external static magnetic field ex- a phase transition in a spin-phonon system. The new 
ceed certain critical values. ['I The ordered thermody- thermodynamic phase should be manifested by magnetic 
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ordering and thermal displacements of atoms in a crys- 
tal  from the positions they have occupied in the high- 
symmetry phase. In other words, such a phase transi- 
tion should give r ise  to a simultaneous static deforma- 
tion of a paramagnetic crystal. We shall solve this 
problem by considering the temperature spectrum of 
collective excitations of the spin-phonon system and 
phonon Green functions. We shall consider the spin- 
phonon interaction within the framework of the generally 
accepted Van Vleck mechanism, which is the modula- 
tion of the crystal field by the lattice 

A phase transition in a paramagnetic crystal can be 
analyzed phenomenologically by calculating the thermo- 
dynamic potential of paramagnetic ions interacting with 
static deformations of the crystal. [ 31 

The explicit form of the spin-phonon interaction for 
S = 1/2 can be written a s  f o ~ l o w s [ ~ ~  41: 

and for S > 1/2, the interaction i s  a quadratic function of 
the spin operators: 

Here, S, a re  the spin components; a, P , y ,  6 
= x ,  y, z ;  Gaar8 is a fourth-rank tensor which governs 
the spin-phonon interaction; u, a r e  the components of 
the displacement vector. The selection of this type of 
the spin-phonon interaction is dictated mainly by the 
fact that i t  has been investigated experimentally quite 
thoroughly.[51 The interaction (2) usually predominates 
for  paramagnetic ions with spin exceeding 1/2. 

In the case of crystals with the cubic lattice the inter- 
action (2) includes only two spin-phonon interaction 
constants and i s  of the form[51 

where the displacement tensor expressed in the phonon 
operator representation i s  

Here, rn is the mass of a unit cell in a crystal; N is the 
number of atoms in the crystal; o! and P a r e  the indices 
referring to the crystallographic axes; eb;P) a re  the unit 
vectors of the s-th polarization of the vibrations; a,&) 
i s  the vibration frequency; b i ,  and bk, a r e  the phonon 
creation and annihilation operators; the wave vector k 
assumes only three directions along the principal crys- 
tallographic axes. 

The total Hamiltonian of M paramagnetic ions inter- 
acting with phonons will be written in the form H = E ~ +  V, 
where 

Y 

a, - f i O 0  slf + C f in.(k)  bk,+bkl ,  
I - ,  1.. 

(5) 

fZ w0 =glllLgHo; gll  is the longitudinal g factor; pB i s  the 
Bohr magneton; H, i s  an external static magnetic field 
parallel to the axis. Without loss of generality, we 
shall assume that Gl1<<G4,. Then, substituting Eq. (4) 
into Eq. (3) and retaining only the resonance terms, we 
find that the spin-phonon interaction operator i s  

h Y 5  " 
+ s x  T t j [ b ,  exp ( i k z , )  + b, e x p  ( i k z j )  

- ib, e x p ( t k y j ) -  ib, e x p ( i k z j )  I +  H.c. (6) 

m e  first  term in Eq. (6) describes the processes of 
emission and absorption of acoustic phonons whose 
wave vector i s  q and frequency fi,(q) ~ t :  2 w,; the second 
describes the corresponding processes for phonons of f 
frequency n , ( k )  *wo and the wave vector k; 

For simplicity, we shall a t  this stage consider the 
interaction of spins only with six phonon modes. Gener- 
alization to the case of an arbitrary number of phonon 
modes presents no difficulty and will be made later. 

In the fermion representation the Hamiltonian of the 
spin-phonon system for S =  1 becomes 

where the directions of the wave vectors a r e  easily de- 
duced from Eq. (6); the indices 1, 0, and -1 refer to 
the corresponding energy levels of paramagnetic ions in 
an external magnetic field. 

2. PHONON GREEN FUNCTION 

The existence of a phase transition in our system can 
be deduced from the temperature features of the pho- 
non Green functions in the same way a s  in the case of 
second-order phase transitions in a Bose liquid.lsl 
Expanding the Green phonon functions 

a s  a ser ies  in terms of the interaction (lo), we find that 
the usual rules of the temperature diagram techniqueL 71 

give 
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Here, thin wavy lines represent zeroth phonon Green 
functions, which-according to Eq. (9)-are given by 

and the thick wavy functions represent the total phonun 
Green functions. The summation with respect to i and 
j is carried out over the crystal lattice si tes occupied 
by paramagnetic ions. The Greek symbols a r e  used for  
the phonon mode numbers. The thin curves in Eq. (1) 
a r e  the zeroth fermions propagators, which-according 
to Eq. (9)-are 

where s i s  the number of an energy level of a paramag- 
netic ion; t, = kw,, E ,  = 0; p i s  the chemical potential 
introduced to avoid the contribution of nonphysical 
states in the fermion representation of the spin opera- 
tors by means of the projection operatorL '' '] 

As pointed out earlier,[ lo] in the thermodynamic 
limit N, V -m and N /V  = const, the only important ver - 
tices a r e  the bare ones. Therefore, Eq. (A) does not 
include the polarization diagrams of the type 

For this reason in the disordered temperature range 
the zeroth fermion Green functions (12) a r e  exact be- 
cause the mass operators for  the finite-mode case 
vanish in the thermodynamic limit. 

Everywhere, unless otherwise stated, we shall use 
the formula 

1 
A (k-k') = -x exp(i(k-k') r,} =i5r,r., 

I 

which is valid for a macroscopically homogeneous dis-  
tribution of paramagnetic ions in a crystal with low 
p<< 1 and very high p -  1 densities.[ 71 

The solution of Eq. (A) fo r  v =  1 and 2 has the form 

F,,=[ (F,,")-'-h,Zn+-l-i; 

for v = 3  and 5: 

F,,=[ (F,,") -I-hZ2(rI+a+no-) I-'; 

for v =  4 and 6: 

where 

Substituting in Eq. (16) the fermion Green functions (12), 
we find from the projection operator (13) that 

where 

The termperature at which the denominator of any v-th 
phonon Green function vanishes at w, = 0 determines the 
phase transition temperature.[61 Substituting the ex- 
pressions (17) and (18) into (15), we find that for a,= 0 
there a r e  simultaneous singularities in the phonon 
Green functions of the fourth and sixth branches at a 
temperature /3, , given by the equation 

It can be seen from Eq. (18) that this equation has a so- 
lution if the following threshold condition is satisfied 

Since the average number of phonons for v  = 4 o r  6 

diverges in the limit /j --PC - 0, this phase transition 
represents the Bose-Einstein condensation. 

There is no point in writing down, by analogy with 
Eq. (19), the equations for the Bose-Einstein condensa- 
tion temperature of phonons of other branches because 
for  S >  /jc the phonon Green functions assume a more 
complex form compared with Eq. (15) due to the appear- 
ance of the order parameter ( b J ~ " 2 ) ,  where u= 4 o r  
6.[ '3 

3. DYNAMIC SUSCEPTlBl LlTY OF A SPIN-PHONON 
SYSTEM AT T >  T,. SOFT MODE 

The interaction of a spin system with an external rf 
probe field o r  with external hypersound is described by 

The reaction of the system to these perturbations is 
given by an analytic continuation of the polarization 
Green functionL 71 

where 

w 
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Expanding these Green functions in terms of the polari- 
zation diagrams within the framework of the model of 
Eqs. (9) and (101, we obtain 

X'" (k) =II+JN+X22[X"' (k) +~'"(k)  ]FasolT+a, 

~ " ' ( k )  =h.'[xc2' (k) +xi'' (k) IFa,DII+o, 
x 1 3 ~  (k) =a?t[X(l) (k) +X(')(k) ]F~,oII~-, 
xi" (k) -IIoJN+A.;'[X"' (k) +x"' (k) I FssOIIo-, 

where 

We have allowed here for the circumstance that analytic 
expressions for zeroth phonon Green functions p,, for  
v =  3, 4, 5, and 6 can be regarded as identical in the 
resonance case w, = w,,. Consequently, for  the pertur- 
bation of the (21) type, we obtain the following reso- 
nance frequencies 

0+0 0-0 'I. 
Qt-mb %ay* [(f ) + h l ~ ( b ) ]  , 

where w i s  the frequency of the acoustic branches 
v=3,  4, 5, o r  6. 

Next, we can see from Eq. (6) that the interaction of 
the spin subsystem with an external probing hypersound 
can be written in the form 

where 5 and q a r e  the amplitudes of the probing sound. 
The case (23) gives the following resonance frequencies 

and i t  i s  basically similar to the perturbation (21). A 
perturbation of the (24) type is of much greater interest. 
Such hypersound i s  in resonance at the following f re-  
quencies: 

It follows from Eq. (19) that the branch of the collective 
excitations 51- of the spin-phonon system vanishes at 
the phase transition. This branch is a soft mode re- 
sponsible for the spontaneous lowering of the high-tem- 
perature symmetry of the system. 

4. DISCUSSION 

In estimating the temperature of a phase transition we 
shall rewrite Eq. (19), subject to Eqs. (9) and (18), in 
the form 

and the threshold condition (22) in the form 

If the external magnetic field H,, is sufficiently weak s o  
that tiw,/k~, < 1/2, we readily find from Eq. (27) that 

Thus, the temperature of a phase transition in the spin- 
phonon system is governed by the ratio of the square of 
the spin-phonon coupling constant to the kinetic energy 
of the propagation of sound per paramagnetic ion. 

If we now turn to the experimental data, ["I we find 
that the highest spin-phonon coupling constant is exhi- 
bited by the Fez+ paramagnetic ions in a CaF, crystal: 
G4,= 540 cm", v =  6.68x105 cm/sec, r n m  1.3x10'22 g. 
If we assume that the proportion of the paramagnetic 
ions to atoms in the whole crystal is p = 1/10, we find 
from Eq. (28) that the threshold condition corresponds 
to Ho<600 Oe. It follows from Eq. (29) that the transi- 
tion temperature is T, 0.04%. Bearing in mind that 
in fact the spin of a Fez+ paramagnetic ion in CaF, i s  2, 
we may expect an approximately fourfold increase in T, 
for this paramagnetic crystal.r121 

We shall now discuss the results. If the threshold 
condition (28) is satisfied, a second-order phase transi- 
tion may occur in a system of paramagnetic ions which 
interact resonantly with acoustic phonons. The ordered 
thermodynamic phase existing in the T T, range i s  
the Bose condensate of those phonons which a r e  coupled 
most strongly to the paramagnetic ions. For this phase 
we have (b ,  /N'/') and ( b ,  + /N'/') which differ from 
zero and a r e  c numbers.[l3] Thus, according to 
~ o l o s k o v a ~ ~ ~  a spontaneous static deformation i s  ex- 
perienced by a paramagnetic crystal a t  such a phase 
transition. It i s  clear from Eq. (6) that the deformation 
is directed along the z axis. A phase transition also 
gives r ise  to a spontaneous magnetic polarization 
(S-S,) , (S+S,) . If A, > A,, the spontaneous deformation 
of a paramagnetic crystal is at right-angles to the z 
axis and the magnetic ordering i s  of the (S3 ,  (SZ) type. 

Next, at T, the frequency of response of the spin- 
phonon system to external acoustic vibration vanishes. 
Consequently, at a point T = T, the system becomes 
unstable in the presence of any, no matter how weak, 
homogeneous static deformation of the crystal. Thus, 
according to the theory of second-order phase transi- 
t i o n ~ , [ ~ ]  the isothermal compressibility of a paramag- 
netic crystal diverges in the limit T -T, . 

We have considered the phase transition in the spin- 
phonon system solely in the resonance approach. In the 
case of a packet of phonon modes the equation (A) for  
the Green phonon functions can be rewritten in the form 

F(k, k', on,) =Fo(k,  m)G,, ,~+Fo(k, m ) h z ( k )  n+-(m) 

1 
X~ xz h l ( k 0 ) ~ ( k " ,  k', m ) e s p [ i ( k - k " ) r , l .  

k "  2-1 

(30) 

If we use Eq. (14), we find that the phase transition 
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temperature agrees with the previous result (29). How- 
ever, if the distribution of paramagnetic ions in a crys- 
tal  is macroscopically inhomogeneous o r  if the density 
is intermediate, p<1 ,  the temperature of the phase 
transition may be broadened. To check this possibility, 
we shall f irst  assume that the phase transition does 
occur in this case. Then, in the vicinity of the crystal 
temperature the phonon Green function F(k, k' , om= 0) 
should be singular at k = kt. Hence, the solution of Eq. 
(30) can be written in the form 

F(k, k', 0) =FD (k, 0) 6 t u .  

+ P (k, 0 ) P  (k', 0) ht (k) hz (kt) A (k-k') 

1-A, (k') n+- (0) 2 Fo (¶, 0)Az (q) A (k-q) 
1 

Zero of the denominator on the right-hand side of Eq. 
(31) at k = k l  gives the phase transition temperature. If 
a (k  -kt) does not vanish in the vicinity of q = 0, we can 
show graphically that the equation 

does not have the solution Ch = 0 at any temperature. 
Here, FO(q, 12)  = - vq), h a  k1l2, and the function 
II;l ( a )  i s  such that i t  does not vanish a t  S'A = 0. Thus, 
the initial assumption of the occurrence of a phase 
transition in paramagnetic crystals in which the distri-  
bution of paramagnetic ions does not satisfy Eq. (14) i s  
incorrect. 

It i s  known[14] that interaction of spins with phonons 
results in an effective dipole-dipole interaction between 
spins. Therefore, a phase transition in a paramagnetic 
crystal of the kind discussed here is due to the same 
interactions (more exactly, due to the quadrupole-quad- 
rupole interaction). It should be noted that allowance 
for the intrinsic dipole-dipole interactions improves 
the conditions for a phase transition.[12] 

We shall conclude by considering the possibility of a 
phase transition in the S = 1/2 case. If we rewrite the 
interaction (1) in the second quantization representation, 
we find that the spin-phonon coupling constant is 

The threshold condition (20) for S = 1/2 becomes 

Typical values of G '  a r e  of the order of 10'18 erg/0e.[l5] 
If we assume that the velocity of sound in a crystal is 
5x l o5  cm/sec, the mass of a unit cell is lo-" g, and 
p =  1/10, we find that the threshold condition (32) be- 
comes unrealistic: Ho> lo7 Oe. 

The authors have the pleasure of expressing their 
thanks to G. M. Zaslavskil and B. I. Kochelaev for val- 
uable critical comments and discussion of the work, and 
to B. Z. Malkin for drawing their attention to the experi- 
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