
FIG. 2. Spectral distributions of the probability of the emis- 
sion of light per unit time as  a result of the 3- 2 transition in 
the presence of a very strong field, calculated on the assump- 
tion that y, = y, . The ordinate gives P = 9 d ~ ~ ~ ( ~ ) ( d  y /21~)-'. 

difference 6E,, = 6E, - 6E2, which is of the s a m e  o r d e r  
of magnitude as the separat ion between the resonances.  

We sha l l  conclude by pointing out t h e  numerical  
c r i t e r i a  of s t rong  fields. In the  one-photon resonance 
c a s e  at optical f requencies  a field can be  regarded as 
strong if 6 > lo2 v/cmC4' and i t  is easy  to es t imate  that  
in  the two-photon resonance c a s e  considered h e r e  the 

c r i t i ca l  field is considerably higher: & > lo6 V/cm. 
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In the presence of a strong electromagnetic field (in particular, a constant magnetic field), the vacuum 
behaves, as is well known, like a medium with permittivity and permeability that depend on the strong- 
field intensities. Transition radiation and transition scattering can therefore take place in vacuum. The 
article considers the transition radiation produced when a charge crosses the boundary between a strong 
magnetic field and a field-free region. The problems solved are those of transition scattering of sufficiently 
long strong electromagnetic waves by an immobile charge with frequency doubling, and of scattering 
without a change of frequency in the presence of a strong magnetic field. The same problems are 
considered also for a moving charge (in all considered cases the scattering takes place also for a charge 
with mass M--+a ). 

PACS numbers: 41.70. + t 

Transi t ion radiation is a r a t h e r  common phenomenon 
which occurs  when a charge o r  s o m e  o ther  source  (having 
no natural  frequency) moves  with constant velocity in  or 
n e a r  an inhomogeneous medium. If the propert ies  of 
the medium (the refract ive index etc . )  v a r y  periodically 
i n  space and (or)  i n  time, then the t ransi t ion radiation 
acquires  distinct fea tures  and can be  cal led resonant 
transition radiation o r  transition scat ter ing.  The use of 
the l a s t  t e r m  i s  quite natural  when one dea l s  with a 
charge that i s  immobile relative to  the medium and 
s c a t t e r s  a permittivity wave.[" An effect analogous 
to  transition scat ter ing takes place in  vacuum when a 
gravitational wave i s  incident on an immobile e lec t r ic  
charge o r  dipole (electr ic  o r  m a g n e t i ~ ) . ' ~ '  

We consider  in  this a r t i c le  t ransi t ion radiation and 
t ransi t ion sca t te r ing  produced likewise in  vacuum, but 
i n  the presence of a s t rong  electromagnet ic  field. The 
g i s t  of the mat te r  that in  a s t rong  field electrodynamics 
becomes,  as is well known, nonlinear even i n  vacuum, 
s ince  the field gives rise to a vacuum polarization that 
is analogous to  s o m e  extent t o  polarization of a medium. 
Transi t ion radiation should therefore take place in  an 
inhomogeneous s t rong  field, and when a sufficiently 
s t rong  wave is incident on a charge,  t ransi t ion scat ter-  
ing should take place. Of course,  in a consistent quan- 
tum-electrodynamic calculation the transition effects 
a r e  taken into account ir, the corresponding problems, 
but th i s  ca l l s  f o r  c u m b e r s o n ~ e  computations. An exam- 
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ple is  the transition radiation that should appear when 
a charged particle crosses the boundary between a re- 
gion with a strong magnetic field and a region without 
a field. Yet the use of classical theory of transition ra- 
diation makes i t  possible to solve this problem without 
difficulty. Thus, the use of transition-radiation and 
transition- scattering theory with allowance for  the 
quantum-electrodynamic expressions for the vacuum 
polarization is  an adequate for the calculation of the 
corresponding cross  sections o r  energies of the tran- 
sition radiation and scattering. This is precisely the 
approach used in the present article. 

1. Let a strong magnetic field B, directed along the 
z axis be constant in time and homogeneous in the half- 
space y < 0; in the region y > 0 the field is equal to zero. 
If course under anywhere near real conditions the func- 
tion B,(y) changes not jumpwise at y =0, but over a cer- 
tain interval Ay. We shall assume below, however, the 
transition to be abrupt (Ay -0). The condition when this 
assumption i s  followed will be indicated. A particle 
with charge q and mass M moves along they axis (for 
the sake of argument, in the positive direction). The 
particle velocity v is assumed constant. This is pos- 
sible only under the assumption that the constancy of 
the particle velocity i s  maintained by some external 
source, o r  else by assuming that M - -. The transition 
radiation of interest to us, which occurs when the par- 
ticle crosses from the region y < 0 into the region y >O, 
exists in "pure form" precisely a t  constant v, and ac- 
cordingly the effect does not vanish a s  M - * (the same 
pertains to Cerenkov radiation, but for simplicity we 
disregard the interference between the transition and 
Cerenkov radiation). Thus, the foregoing assumptions 
correspond to the essence of the problem. The solution 
of this problem breaks up into two parts. It i s  f i rs t  
necessary to find the permittivity and permeability of 
the vacuum in the presence of the field B,. Second, i t  
i s  necessary to know the solution of the problem of the 
transition radiation for a ferrodielectric with corres- 
ponding permittivity and permeability, and, of course, 
with symmetry axes chosen to fit the formulated prob- 
lem. 

The magnetic field B, will be assumed to be relatively 
weak in the sense of satisfaction of the following ineq- 
uality (-e and m are  the charge and mass of the elec- 
tron) 

m'c' 
B,<B, = - = 4.4.10t3 G .  

eii 

Then, and at sufficiently low frequencies w of the 
propagating waves, the solution of the electrodynamic 
problems can be based on the Lagrangian (see, e.g.,C3' 
Sec. 126, where the induction B is designated H): 

The polarization and the magnetization P and M of the 
vacuum are  given by 

3L' 
P = - = x (2 (Ex-BL)E+7 (EB) B), 

aE 

M--= aL' x ( - ~ ( E ~ - B ~ ) B + ' ~ ( E B ) E ) .  
aB 

Since P and M depend on E and B in nonlinear fashion, 
we can introduce different material tensors. We confine 
ourselves to the particular case when 

i.e., we have a strong magnetic field B, and a weak 
field, say a wave field (El, B,). Then 

and it i s  convenient to introduce the material tensors 
for the weak field 

In connection with the last expression it should be noted 
that, by definition, M,, ,= 6 ~ , ,  Hj/4n, H, = Bl - 4nM,. We, 
however, a re  interested only in the case when 

Under these conditions we can replace H, in (6) by B,. 
Recognizing that the field B, i s  assumed directed along 
the z axis, we have 

(All the components 6c,, and 6p,,, except those written 
out, a re  equal to zero.) The weak field of the wave 
propagating in the "medium" (vacuum) with material 
constants (8) is written in the forin 

Obviously, this field satisfies the ordinary Maxwell's 
equations, by virtue of which 

(where i and j a r e  the vector indices; of course, Eqs. 
(10) a r e  equally valid for the fields El and the amplitudes 
E,,,). Substituting in (10) the tensors (a), we obtain the 
dispersion equation (the dependences of c,, and ,u,, on 
the coordinates a re  disregarded here-the field will be 
"joined together" on the boundary y = 0). From the dis- 
persion equation we obtain the refractive index n, de- 
fined by the relation I k 1 = w / ~ .  

In the case (8) the indices n depend only on the angle 
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@ between B, and k. The normal waves are  polarized 
(we are  referring to the directions of the vectors E,,,) 
perpendicular to B, and in the (k, B,) plane. The direc- 
tion of B, (the z axis) is the optical axis. For  this di- 
rection, the refractive index i s  

For waves propagating across the field B, (angle 8 
= r/2) ,  

where the symbol 11 pertains to a wave polarized along 
,Bo, a n d l  to awave polarized in the perpendiculardirec- 
tion'); expressions (11) agree (to the degree of accuracy 
with which they were derived) with those given in C4*51. 

If the particle (charge) moves along B,, then in the 
ultrarelativistic limit it radiates in practice by virtue 
of some acceleration (which we assume to take place) 
only in the same direction. This should pertain also to 
Cerenkov radiation, because of exceedingly small de- 
viation of the refractive indices n(@) from unity. In this 
approximation, however (and in fact in a much more 
general approximation),c51 we have n(0) = 1. Therefore 
when the source moves along the field B, the polar- 
ization of the vacuum exerts no influence on its radi- 
ation (this pertains, more accurately, to the changes 
due to the influence of the refractive index n. which a re  
the only significant ones in the relativistic case at In 
- 1 I << 1). Here, however, the field B, i s  assumed to be 
homogeneous, corresponding to a homogeneous med- 
ium. As to the transition radiation produced when a 
boundary between two media i s  crossed, i t s  intensity 
depends not only on n but also on E , ,  and p,,. However, 
both the transition radiation and other radiative effects 
are  much stronger under the considered conditions at 
8 2 0  than a s  0-0. 

Both in the calculation of Cerenkov radiation in a 
strong field,[71 and in the case of transition radiation, 
it i s  necessary to integrate over the frequencies. It i s  
therefore necessary to know the frequency region in 
which expressions of the type (11) a re  applicable, and 
how these expressions change at higher frequencies. 
The initial Lagrangian (2) i s  suitable only at sufficiently 
low frequencies and, specifically, formulas (1) and the 
more general ones at 82 n/2 are  valid under the con- 
dition's' 

where in the case of (11) we must put s in@= 1. 

At X<< 1, and in practice also at A< 1, the radiation 
absorption due to production of the electron-positron 
pairs i s  negligibly small. To the contrary, at A 2  1 the 
absorption must be taken into account, and accordingly 
the constants E and p  contain imaginary parts. To be 
sure, the product ~ p  = 1 and a t  the angle 8 = 0 we have 
n(0) = ( ~ e c p ) " ~  = 1. Using C4*51, we have a t  X>> 1 

At 8= a/2, the refractive indices a re  approximately eq- 
ual, n: = Rezp and nt = Re< ,G, where i p  and E are  given 
by (13). This conclusion agrees withc5]. 

Under cosmic conditions, a certain plasma i s  always 
present, for which (we confine ourselves to the nonrela- 
tivistic case; the contribution of a relativistic plasma 
with the same concentration N i s  less  significant) 

According to (1.3), in the case of vacuum the decrease of 
E with increasing frequency i s  slower than for a plasma. 
The refractive index of vacuum begins to change signif- 
icantly, roughly speaking, at a frequency w, determined 
from the condition A(@) = 1, i.e., at the frequency (at @ 

= n/2) 

At this frequency, the role of the plasma (its influence 
on the refractive index) i s  small if 

Near pulsars this condition i s  always satisfied. At low- 
e r  frequencies the role of the plasma, of course, in- 
creases and can be easily estimated. The influence of 
the magnetic field B, on the plasma permeability i s  de- 
termined by the frequency w, = e ~ , / m c  = 1.76 . 107B0. 
Even at B, "1012G the frequency w, - loi9 sec" is small 
in comparison with the frequency LO,, s o  that the plasma 
can usually be regarded a s  isotropic. 

2. Electrodynamic problems involving Cerenkov and 
transition radiation in a medium, particularly in an an- 
isotropic medium, with the magnetic permeability taken 
into account, were solved in a large number of papers 
(see, e.g.,C61).- The calculations and their results are  
given in a form that is convenient and general enough 
for us int8'; here we need only the final formulas for 
ultrarelativistic particles (v - c, i.e., 6 / M c 2  >> 1, where 
6 is the particle energy). For  the case in question, 
when the charge leaves the region with the field and 
goes to the region without a field, only the forward 
transition radiation (relative to the particle velocity v) 
is significant in the ultrarelativistic approximation. 
The energy radiated into a wave of type 11 (the vector E 
directed along the z axis, i.e., along the field B,) is 
here 

where $ i s  the angle between k and the particle velocity 
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v (i.e., the y axis; cp i s  the azimuthal angle that deter- in (16) and (17). As a result of integration over the ang- 
mines the projections on the axes x and z near k); in the l e s  and frequencies, we obtain 
integration with respect to J ,  only small angles a r e  sig- 

qaa"rnc' 8 ''2 q2rnc2 B. ' I ,  nificant, so that the upper limit of the integration is set  W=g ------ ($)"(=) ~3.2--(:) , 
only arbitrarily equal to ". n h c  h c  Be 8 

x'%"'(r(2'3))"(2%+3%) (2-3'") ~,~,).41, 
F o r  waves of type A. we have g- 7'1*(r(l/3))'1* 

We use for z p  and c P  first the expressions (11). 
Then in the particle-energy region 

we can assume in (16) and (17) that (MC'/&)~ i s  much 
larger than 11 - ? p  I o r  11 - cfi 1 .  In this case 

where, of course, account i s  taken of condition (1); the 
pole that can appear in principle in the integrand of (16) 
and (17) corresponds to the Cerenkov condition (see be- 
low). The flat frequency spectrum (19) extends all the 
way to frequencies w -  w, [see (14)], after which W(w) 
begins to decrease with frequency. This yields an es- 
timate of the total radiative energy . 

13 azq2 It'= ~ ( o ) d o = s - -  mc' 
4800n3 FLC 

0 

q? a Bc 8 ' 
-0.43s - mc- - 

hc B . ( b ; ) '  

8 8. (yan)'ls$, 
< I  - 
Mc2 McZ 

(20) 

where the numerical factor s, generally speaking, i s  of 
the order of unity (its exact value can be obtained with 
the aid of very cumbersome formulas that a r e  given 
incs1; if expression (20) i s  "joined" with the value (22) 
pertaining to the case 6 >> 6,, then s " 7.4. 

At & >>&, the term EL - 1 or  ; p  - 1 predominates in 
the denominators of (16) and (17), until these terms 
drop a s  a result of the dispersion that i s  taken into ac- 
count by formulas (13). Assuming l ~ t p  - 1 1'I2-~c2/C'  
we obtain from (7) an estimate for the highest radiated 
frequencies: 

As is clear from (16) and (17), at frequencies w << w,, 
(and in practice also at w 5  w,,) the spectrum W(w) is 
independent of frequency, and then (at w >> w-) it be- 
gins to decrease like w-*I3. The contribution to the in- 
tegrated radial energy from the frequency region w s w, 
"mc2B,/fiB0 turns out to be negligible. Consequently, 
we can use expressions (13) when integrating by parts 

Of course, at C' -8 ,  formulas (20) in (22) give approxi- 
mately the same results. 

The foregoing results a re  limited in the sense that 
we took into acwunt only vacuum polarization of elec- 
tron-positron types. Inasmuch a s  for muons the field 
B,,, i s  (m,/mj2-4000 t imes stronger than B, = B , ,  
(see (1); m, is the muon mass), this limitation plays 
no role from the practical point of view. As is clear 
from (15), at the frequencies w 2 w,, meaning all  the 
more in the frequency region (21), the role of the plas- 
ma is also insignificant. 

The boundary of the magnetic field was assumed 
above to be abrupt, whereas physically #is condition 
cannot be satisfied and the formulas used for c,, and p i ,  
a re  valid, in any case, if the thickness of the "bound- 
ary" is 

It i s  known from the theory of transition radiationcs1 
that i t s  intensity is determined by the dimension Lf of 
the zone in which the radiation i s  formed near the 
boundary, with 

where no account i s  taken of the influence of the plasma, 
and the angle JI is set equal to zero; more accurately, 
it is assumed that 

It is obvious [see (14) and (21)] 

Thus, at least  at 6 2 6,, the length L, >> 6/mc and the 
conditions Lf >> Ay >> >/mc a re  compatible. 

We compare now transition radiation with synchro- 
tron radiation and Cerenkov radiation. The synchro- 
tron radiation power is (the angle between v and Bo is 
n/2,  and 6 /Mc2 >> 1) 

It i s  reasonable to compare the transition-radiation en- 
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ergy with the energy radiated via the synchrotron mech- 
anism over the length of the formation zone, i.e., with- 
in the time L,/c. This energy i s  

(28) 
and 

Comparing (20) and (28), we see that the transition ra- 
diation can exceed the synchrotron radiation only for  
particles with very large mass  M >>m(45aZ/2~)  (here 
q =  el^).^) If furthermore we compare (29) with (22), 
then we arrive at an analogous conclusion. In fact the 
situation i s  more complicated, since i t  i s  necessary to 
distinguish between the formation zones in both media 
(in this case-in the field and in the region outside the 
field). Therefore the ratio of the synchrotron radiation 
to the transition radiation changes under certain con- 
ditions in favor of the latter. On the whole, there i s  no 
doubt that in the considered example (motion of a 
charge across a magnetic field) the synchrotron radi- 
ation is generally predominant. 

The Cerenkov-radiation power under the same con- 
ditions (for more details seec8') is 

Substituting (8) we obtain (see alsoc7') 

Obviously, radiation is possible only under the con- 
dition 

When this condition i s  satisfied, we can roughly estim- 
ate the power by integrating in (31) up to the frequency 
wc - (mc2/Pi)(Bc/Bo) above which the refractive index of 
the vacuum begins to decrease with frequency. Such an 
estimate yields 

The energy radiated over the formation zone i s  [see 
(25) and (26)] 

Comparing this expression with (22), we see that the 
transition radiation exceeds the Cerenkov radiation if 

t 8 -, 3.10-", 
Mc' Mcz 

By virtue of (32) the condition (35) is always satisfied. 

4. I£ an ultrarelativistic particle moves along the 
field Bo then, a s  already noted, the refractive index i s  
n(0) = 1 and there is neither synchrotron nor Cerenkov 

radiation. On the other hand, transition radiation is 
produced if, of course, there is a boundary between the 
region with the field and without the field. By virtue of 
the equation div B = 0 it i s  not easy to produce a bound- 
ary  along the field, although within certain limits this 
is possible i f  external currents a r e  available. It must 
furthermore be recognized that the boundary need not 
necessarily be perpendicular to the particle velocity, 
i.e., in this case i t  need not be located in the plane 
( x , y ) .  On the other hand, for a boundary perpendicular 
to the field, the transition radiation (in the case of mo- 
kion along the field) is much weaker than in the case 
(considered above. The point is that in an approximation 
such a s  (16) and (17) the radiated energy depends only 
'on n (according to (111, Eqs. (16) and (17) contain only 
the and ni). We therefore need to use for 
the calculations more exact formulas, which a re  given 
in We confine ourselves here to the result for the 
case ln(8 / M C ~ )  >> 1 : 

The total radiated energy can be estimated by inte- 
grating up to the frequency wc [see (1411 : 

At q = e we obtain 

B S  I 
W-~.Io-" (2) ln- [erg I. 

Mc' 

At pulsar surfaces the field Bo is usually estimated 
at 1012G, but i t  i s  possible that in some cases i t  is 
stronger by one order of magnitude. Thus, the para- 
meter B,/B, for pulsars can quite readily reach a val- 
ue 0.1. As to the particle concentration near pulsars, 
the estimates here a re  less  reliable. We confine our- 
selves to the remark that the condition ~ : / 8 n  >> N6 @ 
is the concentration of particles with energy 6 ) ,  a t  
which the pressure of the field predominates, i t  is sat- 
isf ied up to concentrations N - lo2' ~ m - ~  at Bo - 5 X 1012G 
and 6 - lo9 eV - erg. Even at N - loz0 the total pul- 
s a r  radiation power (38) for a particle flux Nc through 
an a rea  S - 10'' cm2 amounts to (at B,/B, - 0.1 and ln(6/ 
Mc2) - 1) 

At the same parameters we have for motion across the 
field in accordance with (23) with q = e 

We do not regard these estimates a t  all a s  realistic (as 
applied to pulsars).3' They indicate, however, that 
transition radiation can play a substantial role in pulsar 
physics. There a re  also some prospects of producing 
in the laboratory, conditions in which the parameters 
B,/B, and b'/Mc2 a r e  large enough for nonlinear pheno- 
mena to manifest themselves in vacuum (the same holds 
for certain atomic nuclei). It must be remembered here 
that the transition radiation, taken in i t s  broader mean- 
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ing, takes place whenever a medium (or the vacuum in 
a strong field) i s  inhomogeneous in space and (or) in 
time. It is advantageous, a s  already noted in the intro- 
duction, to make partial use of classical theory of tran- 
sition radiation. 

We note in conclusion that in semiconductors i t  i s  
possible to simulate within certain limits the nonlinear 
phenomena that occur in a vacuum, by using much 
weaker fields (B,- lo5-106G). Roughly speaking, what 
is done here i s  replacing the "gapJ' 2mc213 lo6 eV in vac- 
uum by the width of the forbidden band in the supercon- 
ductors 6,- 1 eV. In particular, in a strong constant 
magnetic field a semiconductor has rather unique elec- 
trodynamic properties (see, e.g., ["I). It is possible 
that interest attaches in this connection to an analysis 
of certain features of the transition radiation and scat- 
tering in semiconductors situated in strong fields. In- 
cidentally, the foregoing pertains not so much specific- 
ally to semiconductors a s  in general to nonlinear media 
(for more details see  

5. We dwell now on transition radiation, which is the 
simplest mechanism of conversion of waves of one type 
into waves of another type by a charge (or by some 
other source of polarization of the medium), without 
requiring (sometimes an important factor) a change in 
the motion of the charge itself. 

We assume below for simplicity that the charge q i s  
immobile (pinned). Its electric field, without allowance 
for  the nonlinearity of the vacuum can be written in the 
form 

Eq=qr/r3, 

Let there be incident on this charge an electromagnetic 
wave whose field is equal to 

EW=E,e cos (mot-k,r+cp,), wo= 1 k ,  1 c ,  e2= l ,  k = { k ,  o } ,  

E,w-1/~E,eIe-'~6(m-mO)d(k-k,) +e*6(o+mo)6(k+k, )  1 ,  (42) 

if the wave is coherent and monochromatic. If the in- 
cident waves have a broad spectrum, a re  not correlated 
in phase, and a re  not polarized, then 

The magnetic field Bw and the time-average energy W 
of the waves are  respectively, for the coherent case, 

BY =E,[n.e]  cos (mot-kor+cpt), n l=k, / j  ko l ,  

1 E,. (44 
W=-- { (E~) :+ (B ' ) ' ) - - .  

8n 8 n  

For  an incoherent field, the average energy is 

I E I k2--E,26 (k -k , ) ,  (W)=EOZ/8n .  (46) 

Consider now a process in which the incident wave of 
frequency wo i s  converted into a scattered wave with 
frequency 2 w,. In quantum language this corresponds 
to absorption of two quanta fiw, with emission of one 
quantum of energy 2Aw0. In the case of the spectrum, 
we are  dealing here with doubling of each of the fre- 
quencies w = c 1 k 1 .  Assuming that (EW)' = (BW)' and 
(Ew Bw) = 0, it i s  necessary for the process in question 
to retain in formulas (3) for P and M the terms that a r e  
linear in the field Eq of the charge and quadratic in the 
field Ew of the wave 

For  the wave (42) we obtain hence 

P='/ ,x (4e(eEq) +7[11,,e] ( [ n , e ] E q ) }  (Ifcos (2mot-2kor+2qo),  

M='/ ,x{-4[np]  (eE9) + 7 e ( [ n , e ] E q ) )  (L+cos(200t-2kor+2cp.). 
(48) 

Thus, the polarization and the magnetization have oscil- 
lating terms with frequency 2w, and wave vector 216. 
These alternating polarization and magnetization pro- 
duce transition scattering by the charge q. The inten- 
sity of the scattering can be easily obtained by the 
method described inc1', being equal to the power radi- 
ated by a current of density 

The radiation power for the scattered wave (set over 
both polarizations), i s  

where E ,  i s  equal to B, in the cgs esu, i.e., 

R,=4.4, 101kcgs esu =1.32. 10'V/cm 

The result (50) coincides in fact with that obtained inc1'] 
on the basis of a cumbersome quantum electrodynamic 
calculation (the calculations inc1'] were carried out also 
for the region of high frequencies w). 

For arbitrary nonmonochromatic waves, the Fourier 
components 6j of the current density a re  given by 

hi.,,= J ~ , , j . , . . ( k +  kt,  k~)Ej.,,E,,a,E..,-,,-~,dk, dks, 

k= { k .  0 ) )  , dk=dk dl*. 

The values corresponding to a random quasimonochro- 
matic field in (43) and (5) a re  where e,,, i s  a unit antisymmetrical tensor of third 
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rank. The radiation power of the current (51) a t  the 
frequency w = c ( )  k, I +  lk, 1 )  for random waves, averaged 
over the phases with the aid of (43), i s  of the form 

where n = k/k, n, = k,/k,, % = $/k,, k, and k, are  the 
wave vectors of the scattered wave, k is the wave vec- 
tor and dSZ i s  the solid angle of the scattered waves; 
finally 

In the case of a quasimonochromatic random wave i t  i s  
necessary to substitute (46) in (53) and (54). The result 
coincides with (50). This means that the result (50) re- 
mains in force for a scattered wave packet of sufficient- 
ly general form in the case when i ts  spectral width is 
Aw << w, and the total energy i s  equal to E2,/8a. The lat- 
ter  is important for a possible experimental confirm- 
ation of the effect with the aid of, for example, scatter- 
ing of intense laser  radiation by massive ions. 

In connection with the nonlinearities of the vacuum, 
the effect most frequently discussed was the so-called 
Delbriick scattering (seec3], Sec. 125, andc13'). This ef- 
fect can be considered by using the nonlinear polar- 
izations P and M, if two of the fields in the terms cubic 
in the field in (3) a re  taken to be the charge field Ea, and 
one i s  taken to be the wave field EW, i.e., if it is as- 
sumed that P, M (Eq)'EW. Calculation of the intensity 
of the radiation of the scattered field with the aid of 
such P and M leads to integrals that diverge at large 
values of k, (of the momenta a,) of the field of the scat- 
tering charge. This demonstrates that the Lagrangian 
L', which i s  suitable under the condition k, << rnc/E, 
cannot be used to describe the process. Terminating 
the integration at k,, =rnc/R, we obtain the correct es- 
timate of the power of the Delbrick scattering [['I, 
formula (125.1)] : 

If the wave of the field E w = E o  is weak (in the sense that 
Eo <<E,), but 

then when the frequency i s  doubled the scattering power 
(50) exceeds power (55) of the Delbrick scattering 
which takes place without a change of frequency. At 
sufficiently low frequencies, the condition (56) is read- 
ily satisfied.c43 It i s  important here that the power (2) 
can be correctly calculated on the basis of the use of 
the Lagrangian L', since the lengths that play an impor- 
tant role are  those of order X, = 2nc/wo. 

- 2w0, can be regarded a s  transition scattering due to 
the nonlinearity of vacuum. 

We make two additional remarks. First ,  formulas 
(53) and (54) describe scattering in the case of arbit- 
rary  frequency and angular distribution of the scattered 
wave. Thus, for example, in the case of a standing 
wave 

We obtain from (53) and (54) 

E ' 
Q= Q (0) 2n sin 0 d0, Q (0) = qlxzk:cn sinz 0 (260+ 139 cos' 0),  

16 

Second, the intensity of scattering by a moving, and in 
particular, relativistic charge is obtained by simple 
recalculation from (50) and (58). The integral intensity 
can be calculated by using the arguments presented, 
for example, in [I4], Sec. 73. As to the spectral and 
angular distribution, it can be obtained by the method 
described above, using for Ea the field of the moving 
charge. The highest frequencies are  obtained in the 
case when the waves move opposite to each other 

The maximum frequency (59) is radiated in the direc- 
tion of motion of the particle n = -q,. As u - c we have 

The intensity of the scattering of a coherent o r  quasi- 
monochromatic random wave is determined by the re- 
lation 

Here E, i s  the amplitude of the wave field in a reference 
frame in which the particle has a velocity v, and 9 i s  
the angle between k and k, o r  the angle between k and 
-v. The maximum scattering intensity takes place in 
directions close to the particle velocity, 0-McZ/6 = (1 
- v2/~2)1'2,  and the integral scattering intensity i s  equal 
to (at u - c )  

Attention is called to the strong dependence of the 
scattering intensity on the particle energy. 

6. We dwell also on the nonlinear effect in vacuum- 
scattering of a wave by a charge q in the presence of a 
strong magnetic field B,. We assume first  that the 
charge.is immobile and consider the scattering process 
when the frequency of the scattered wave is equal to the 
frequency of the incident wave. In this case 

Thus, Delbriick scattering, just a s  the scattering w, Assuming the field of the charge to be weak, we take in- 
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to account the t e r m s  that are l inear  in  Ea i n  the expres-  
s ions  (3) f o r  the polarization P and the magnetization M. 
In the corresponding expressions that are quadrat ic  in 
the field ew and B,, the t e r m s  of o r d e r  B: and (EW)' de- 
sc r ibe  the two types of p rocesses  which have already 
been discussed above, and the process  of in te res t  to  u s  
h e r e  is described by t e r m s  of o r d e r  B, EW and BOBw. 
These  par t s  of the polarization and magnetization are of 
the f o r m  

We present  here  the final fo rmula  f o r  the scat ter ing in- 
tensity of a wave propagating in the direct ion of the 
magnetic field B, ( ~ = ~ , B , / B , )  in the case of a charge 
at rest: 

F o r  ul t rarelat ivis t ic  par t ic les  moving opposite to  the 
wave in the magnetic field, we obtain 

The maximum frequency is radiated in a direct ion close 
to the part ic le  velocity, and is equal to 

We emphasize that formulas (65) and (66) d o  not con- 
tain integration with respect  to  l a rge  k and are there- 
f o r e  exact within the framework of the assumptions. 

P u l s a r s  possibly accelerate  ions to  6 ' / M c 2 -  lo6. Un- 
d e r  these conditions, the discussed scat ter ing with pow- 
er  (66) can be  of interest .  However, as already indi- 
cated, no es t imates  were  made in the p resen t  article 
f o r  real is t ic  pulsar  models. 

The authors  are grateful to V. I. Ritus f o r  r e m a r k s  
made when reading the manuscript. 

')1n a medium with double (electric and magnetic) anisotropy 
the refractive indices of both normal waves depend on the 
angle 9 (see, e.g., [61). Therefore the designations"ordi- 
nary" and "extraordinary:' which are customary for uniaxial 
nonmagnetic crystal (i.e., at pi,= bij), can be applied tothese 
waves only in a most arbitrary sense. 

 his comparison of the integral intensity of the radiation is 
not always representative of the real situation, since the 
spectral compositions of the transition and synchrotron radi- 
ations are  different. For synchrotron radiation the maximum 

frequency 

i s  substantially lower than w, - r n c ' ~ ~ / E ~ ~  [see (14)l a t  
g < < 6 c ( 2 a ~ / 4 5 n m ~ ) 1 / 2 .  If the last inequality is satisfied, 
then in the interval w,d w 4 w,, we have exclusively 
transition radiation, even if M << m (45nz/2a ). 

S ) ~ h e  particle concentration in the magnetosphere of pulsars 
has not yet been established with any degree of reliability. 
Frequently, however, the estimate N - W?,/4nec - 10"- 
loi3 cm4 is used (here 0 is the angular velocity of the rota- 
tion of the neutron star,  which for the known pulsars does 
not exceed S2- 200 sec"). Birefringence influences particu- 
larly strongly the radiation polarization (this pertains in 
particular to x-rays from pulsarsCB*iO1). We note also that 
transition radiation is produced in vacuum also in the case 
of an abrupt change of the magnetic field in time, for exam- 
ple in a "starquake" of a magnetized neutron star.  

' m e  note that the estimate (55) can be obtained from (50) by 
setting in one of the factors (E,/E,)~ in (50) the field Eo equal 
to the field of the charge q at the distance rc -ii/mc from its 
center (then EVE;- f fq2 /~c) ,  and by taking into account the 
fact that the dimension of the area responsible for the scat- 
tering is small by a factor (r,/&)2- ( t i w d r n ~ ~ ) ~ .  This yields 
qualitatively the two small factors in (55). 
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