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A general theory of chemical reactions, in which account is taken of the thermodynamic fluctuations of 
the density of the reacting particles, is developed. The reversible reaction B + B l f  A is used in the analysis 
as an example. It is shown that the particle-density fluctuations lead at equilibrium to correction of the 
mass-action law: b '/a = K,(T), where b and a are respectively the densities of the numbers of particles 
A and B, and K,(T) is the equilibrium constant. These corrections, which can be called kinetic, are 
small if the density of the reacting particles is small, but differ from the corrections usually calculated in 
statistical physics and necessitated by the potential interaction of the particles. On the other hand, these 
corrections influence strongly the kinetics of the approach to equilibrium, since the evolution of the 
fluctuating part of the particle de&ty is connected with diffusion. It turns out that as t+m the 
exponential relation given by the equations of the formal chemical kinetics is replaced by a ( t )  = C / ( D ~ ) ~ / ' .  
Thus, during the later stages, any reaction is diffusiondominated (i.e., is determined by the rate of 
encounter of the reacting particles). The analysis method consists of reducing the system-evolution 
equation to that of the evolution of a mixture of two quantum Bose gases. This problem is analyzed by 
the method of separating the condensate and approximate second quantization, developed by ~ o ~ o l ~ u b o ~  
in the theory of a weakly nonideal Bose gas. 

PACS numbem 82.20.Db, 82.60.H~ 

1. INTRODUCTION 

The role of diffusion in chemical kinetics is splend- 
idly elucidated in a monograph by  rank-~amenetskiy~l 
and in later review articles.c21 New questions arise 
when account is taken of thermodynamic fluctuations 
of the concentrations of the reacting substances. "Uni- 
form'' distribution of the matter is uniform only in the 
mean-averaged over a large volume o r  over a long 
time interval, but in small volumes short-period fluc- 
tuations a re  inevitable, a s  is also Brownian motion. 
The diffusion equations for the concentrations of the 
reagents usually employed in chemical kinetics only 
smooth out the initial inhomogeneities of the density. 
It must be remembered, however, that in such a situa- 
tion we a re  actually dealing with a multiparticle system, 
and in the absence of a reaction the number of particles 
N in a certain volume V has even in a fully homogeneous 
system a variance 

where n is the density of the number of particles and 
(. . .) denotes averaging over the coordinates of all the 
particles. When a reaction takes place, the total 
number of particles of any sort, say N,, cannot be 
regarded a s  given even a t  equilibrium, since the reac- 
tion acts take place statistically a t  random and only in 
the mean is the total number of the particles A equal to 
its equilibrium value (N,). The effect of such fluctua- 
tions of the total number of particles in a chemical 
reaction was considered in a number of s t u d i e ~ . ~ ~ - ~ ]  
Their general conclusion is that, in the thermodynamic 
limit (i.e., at N , -  co, V- m,  N,/v=Tz,) the influence of 

these fluctuations vanishes. No account was taken in 
these studies, however, of the spatial fluctuations of 
the number of particles, o r  else i t  was assumed that 
they become equalized rapidly enough (the so-called 
local-equilibrium hypothesis). Yet the process that 
equalizes the spatial fluctuations due to the chemical 
reactions i s  particle diffusion, which i s  quite slow, 
especially for long-wave fluctuations. Thus, a fluctua- 
tion with characteristic dimension I becomes equalized 
within a time 12/0, (D, is the diffusion coefficient of 
the particles of sort  A). It will be shown below that 
these spatial fluctuations come into. play, a t  low densi- 
ties of the reacting particles, only in the next higher 
terms in the density of the reacting particles. The 
spatial fluctuations of the number of particles in the 
reacting system call thus for certain corrections to the 
mass-action law, and these corrections a re  small a t  
low density." These corrections, however, have a 
substantially different time behavior and, in particular, 
can determine the temporal behavior of the quantities. 

Thus, in another paperC6' we have considered the 
irreversible reaction A + B - C and obtained new asymp- 
totic laws for the decrease of the concentration n, a s  
t - a. If n, = n, (stoichiometric mixture of the reagents), 
then n, - l /ff4 replaces the l/t  law of formal kinetics; 
if n,<<n,, then n , - e q ( - ~ f / ~ )  in place of exp(-~t) .~ '  

2. THE REACTION B+B + A,lESTIMATES 

We consider in this article the theory of chemical 
reactions in the presence of spatial fluctuations, using 
a s  an example the dissociation reaction A - B+ B and 
its  inverse, the recombination reaction B + B -A. Par- 
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ticular attention will be paid to corrections to the 
mass-action law (whose form without allowance for the 
fluctuation is b2/a=Kp(T), where a and b a r e  respec- 
tively the densities of the particles A and B, and Kp(T) 
is the equilibrium constant) and to the asymptotic laws 
that govern the approach to equilibrium. (The reaction 
B+ C=A, where the effects a re  larger, was consider- 
ed by us earlier).c121 

We precede the rigorous solution by some heuristic 
considerations. Consider the following hypothetical 
experiment: f i rs t  A is kept at low temperature, so  
that a fluctuation distribution of A is fully established, 
but there is  no dissociation. The entire volume is then 
uniformly heated to a temperature at which the dissocia- 
tion i s  noticeable, and the produced particles B a re  
measured. The kinetics of the local establishment of 
chemical equilibrium is assumed to be fast enough. The 
reaction results in local equilibrium, and until diffu- 
sion alters the concentrations we have according to 
the mass-action law 

Owing to the thermodynamic fluctuations, the densities 
a and b depend here on the coordinate x. The exact 
equality (1) i s  a restriction imposed on the fluctuations 
of the reaction products B. It is  not surprising that 
this limitation increases their chemical potential and 
therefore decreases the dissociation compared with 
true equilibrium. 

The conclusion that the dissociation decreases in the 
initial period can be reached in a different manner, on 
the basis of the mass-action law in the classical formu- 
lation, without resorting to  the concepts of statistical 
mechanics. We obtain from (1) 

(the averaging i s  over space). Since the curve f (a) 
= & i s  convex upward, it is obvious that 

To state it in words: if the particles A have a nonuni- 
form distribution the local-equilibrium amount of the 
dissociation products yields a total smaller amount 
(or, equivalently, a smaller average concentration) 
compared with a calculation from the average concen- 
tration of the initial product A. 

It i s  easy to indicate a quantitative measure of the 
discrepancy. We write 

We next have 

Averaging yields 

1  ( [ 6 a ( z )  1') 
<anh(x))=(a)7h (1 -- 

8 (a)' 

According to the preceding arguments, 

After a time t, the diffusion produces equilibrium 
fluctuations in a region with linear dimension (Dt)'I2, 
i.e., in a volume V - ( D ~ ) ~ I ~  for the new (a) = (ao) - gb). 
Substituting this in (5), we obtain the law that governs 
the asymptotic approach of the density of the partictes 
B to  equilibrium: 

b ( t )  - b ,  [ I - a / ( a )  ( D t ) " ] .  (6) 

The usual formally kinetic approach leads to the 
equations 

where w t  and wf a r e  the rate constants of the dissocia- 
tion and recombination, respectively, and K,(T) = wyw!. 
The solution of this system under the same conditions 
yields 

i.e., an exponentially rapid approach to equilibrium. 

In chemical kinetics it is customary to  distinguish 
between diffusion-controlled reactions, i.e., reac- 
tions whose rate is limited by the process of the en- 
counter of the reagents with each other, and reactions 
that proceed in the kinetic region, i.e., determined by 
the elementary chemical reaction rate itself. It follows 
from our analysis that all reactions a r e  diffusion-con- 
trolled during the last stages. 

3. OPERATOR FORM OF THE FUNDAMENTAL 
EQUATIONS 

For a consistent description of the chemical reaction 
B +  B=A with allowance for the density fluctuations we 
need a more detailed description of the direct and in- 
verse chemical processes. We consider for this pur- 
pose only two B particles. The probability density for  
finding the f i rs t  particle a t  point xl and the second par- 
ticle a t  x, will be specified by the function U,,~(X,,X,), 
while the probability density that the one produced 
particle A is located a t  the point y will be specified by 
the function uo,,(y). For  this two-particle problem, the 
condition for normalization to unity of the total prob- 
ability of finding the system at some state is 

The probability that two particles B (at points x, and 
x2) will be transformed into a particle A is specified 
by the function w-(x,- x,), and the probability that a 
particle A located at a point A will be transformed into 
two B particles, one at y and the other at x, will be 
assumed equal to w+(y - x). We need not differentiate 
between the particles B, s o  that we can regard 
~, ,~(x, ,x,)  a s  a function symmetrical in i ts  arguments. 

We can now write equations fo r  the evolution of this 
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system: 

-= D.A=u.,, ( x )  +Z J w- ( 2 - a )  uz,O ( 2 ,  z 2 )  
a t  

The terms with creation and annihilation of particles 
A and B in the right-hand sides of (10) a re  quite ob- 
vious from the definitions of the functions w+(x) and 
w_(x); D, and D ,  are  the diffusion coefficients of part- 
icles A and B, respectively. From (10) we can easily 
obtain the condition for the conservation of the total 
probability (9). 

To generalize equations of type (10) to a system of 
many particles we must introduce the functions 

which a re  separately symmetrical in the coordinates 
xi  and y,. Without writing out the corresponding cum- 
bersome system of equations in the x-representation, 
we note, examining the system (lo), that i t  is reminis- 
cent of the quantum field-theoretical system with 
creation and annihilation of particles in the Fock repre- 
s e n t a t i ~ n . ~ ~ ]  Taking account also of the symmetry of 
the functions in the variables x and y separately, we 
can attempt to write this system with the aid of crea- 
tion and annihilation operators $:(x), $,(x) and $i(x), 
$,(x), for these particles; these operators satisfy the 
Bose-operator permutation relations 

Analogous relations a re  chosen also for the particles B. 
The operators of particles A and B commute. 

This i s  possible if we introduce the operator function 

and the system "Hamiltonian" 

The equation for the evolution of the system then takes 
the form 

a a ~ / a t = ~ a ~ ,  (15) 

i.e., it is similar to the Schrbdinger equation. 

For all this outward analogy, there a re  also signifi- 
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cant differences. Thus, the operator H is not Hermi- 
tian, H f  H'. It i s  more important, however, that the 
physical quantities-the mean values-are determined 
with the aid of the operator & in accordance with en- 
tirely different rules. Thus, to set  up the norm 

with the operator d we must take the usual field- 
theoretical scalar product of Q with the function Qo de- 
fined by 

The normalization condition then takes the form of the 
equality 

It is actually satisfied if it is recognized that 

(aJ0lA=O. (19) 

The number of particles (say, A) is expressed a s  the 
mean value of the operator 

namely 

~ ~ ( t ) = < a J ~ l & ~ l a J ) .  

There is also a Heisenberg representation of the 
operators, a s  seen from the fact that 

I@,,) i s  the initial function of the system, and a mean 
value of the type (21) can be written a s  follows: 

~ . , ( t )  = < ~ , 1 e x p ( - 2 t ) & ~ e x ~  ( A t )  I D , . ) .  (23) 

The operator I?,(t) takes thus in the Heisenberg repre- 
sentation the form 

@ , ( t )  = e x p ( - A t ) @ *  exp ( B t )  

and satisfies the usual equations of motion 

d ~ . , / d t = [ @ * ,  A ] .  (24) 

Thus, the equations of motion of a classical system 
can be written in a "quantum" form. We note that the 
idea of expressing the classical Liouville equation in 
quantum form was first  advanced by P r i g ~ g i n e . ~ ~ '  

It will be convenient in what follows to express the 
Hamiltonian fi in terms of the creation operators in the 
momentum representation, a s  is customary in statisti- 
cal mechanicsc101: 

We then have 
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Here w+(k) and w,(d) are  the Fourier transforms of the 
functions w+(x) and w,(x), while w: i s  the value of w+(k) 
a t  k=0.  

4. EQUATIONS FOR THE EVOLUTION OF THE 
PARTICLE DENSITIES AND THE FLUCTUATUION 
SPECTRUM I N  THE COURSE OF A CHEMICAL 
REACTION 

The Hamiltonian (26) is similar to the Hamiltonian 
of an interacting Bose gas (even though it i s  not Hermi- 
tian). The methods of determining its eigenfunctions 
will be taken from the Bogolyubov theory of a weakly 
nonideal Bose gas.C111 Weakness of the interaction is 
guaranteed here by the low particle density, i.e., by 
the parameter n,ri<< 1 (where r, is the radius of the 
A particles). So a s  not to complicate the calculations 
unnecessarily, we shall regard also the functions w+(k) 
and w,(k) (suitably reduced to dimensionless form) a s  
small.= ) 

We make use of the fact that a t  low density there is a 
macroscopically small number of particles A and B 
with nonzero momentum, and consequently the opera- 
tors a,', P,', a,, Po can be regarded a s  c-numbers. 
Expanding, following Bogolyubov, the Hamiltonian yp to 
term quadratic in a,, P,, Pi,  a f  (k f 0), we write H in 
the form of a sum of two terms: 

where 

and k1 is that part of the Hamiltonian I? which is quad- 
ratic in p,, a,, a;, P i  (k + 0) and which we shall write 
out later on. Since a, and Po a re  in essence classical 
variables, we can obtain equations of motion for them 
a s  for Heisenberg operators and then declare them to 
be c-numbers. We thus obtain 

These equations a re  accurate to within certain mean 
values which will subsequently turn out to be equal to 
zero. The equations for a,' and 8,' a re  similar in form 
(although they cannot obtained from (29) by the conjuga- 
tion operation, since the Hamiltonian is not Hermitian), 
and a re  satisfied a t  

Taking (30) into account, and introducing in plane of 
a, and Po the respective densities a =  a , / ~ i ' ~ ~  and b = po/  
v1I2,4 ' of the particles A and B ,  we can rewrite the 
Hamiltonian fl, in the form 

where 

The equations of motion with the Hamiltonian for 
the mean values 

opp(k,  t ) = ( O l , $ ~ ( t ) P - * ( t )  I@*n). 
o,, (k, t )  =to 1 ak(t)  a-x ( t )  I @,,), (33) 

o,,(k, t ) = (O la * ( t ) $ -a ( t )  l (D . . ) - a~ ( -k .  t )  

are  of the form 

If we add to them the f i rs t  equation of (29), written 
in the same notation: 

a s  well a s  the particle-number conservation law 

which follows from the second equation of (29), then we 
obtain the sought system of equations. It determines 
simultaneously both the dynamics of the variation of 
the particle number a s  a result of the occurring chemi- 
cal reaction, and the dynamics of the development of the 
fluctuations with time. We note that while the system of 
equations for a,,, a,,, a, is linear, i ts  coefficients 
E, and ~ ( k )  depend on the time via b(t) and a(t). 

5. CORRECTIONS TO THE MASS-ACTION LAW 

To determine the corrections to the mass-action law 
we must consider the equilibrium situation, i.e., time- 
independent a(t), b( t ) ,  and a,, , u,,, a,,. We determine 
first  u,, from (34) and substitute i t  in (35). Neglecting 
the fluctuations, (i.e., u,), we get from (35) the mass- 
action law in its classical form: 

Adding (36), we determine the equilibrium concentra- 
tions a, and b,. Allowance for the fluctuation terms 
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leads to a correction to the equilibrium concentrations: 
a- =a, + ba, where 

We shall not evaluate the integrals contained here 
for  any concrete functions w+(k) and w,(k). It i s  impor- 
tant fo r  us in principle that such corrections exist. 
It should be noted that, generally speaking, the correc- 
tions of next order in the density to the mass-action 
law can be of two kinds. First ,  potential corrections 
due to the fact that the reacting particles interact with 
one another in potential manner. The second type of 
correction, which we shall call dynamic, is due to the 
fact that the particles have a certain probability of 
reacting. It is these kinetic corrections that a re  given 
by formula (37). Of course, the detailed balancing 
principle for w,(k) ensures agreement of the final result 
with the equilibrium result calculated by thermo- 
dynamics. 

6. ASYMPTOTIC BEHAVIOR OF THE 'DENSITIES aft) 
AND bft) - 

To determine the characteristic time-dependent 
asymptotic densities a(t) and b(t) we consider the 
simplest nonstationary problem. Let initially the sys- 
tem of particles A and B be in equilibrium at  a certain 
temperature T. The particle densities a, and b, are  
determined in this case a s  in Sec. 5. Assume that the 
temperature is suddenly raised by a small amount 6T. 
The system characteristics such a s  the diffusion coef- 
ficients o r  the dissociation and recombination prob- 
abilities w+(k) and w_(k) also change suddenly. In ac- 
cordance with the fundamental system of equations, the 
equilibrium concentrations of the particles A and B 
should also change. We shall consider the approach 
of a(t) and b(t) to their new values. 

Since the initial and final densities do not differ 
greatly (in view of the small increase of the tempera- 
ture), the variation of <,,, and p* with time can be 
neglected, and the entire system (34)-(36) becomes 
linear with constant coefficients. 

Consider, for example, the general solution of the 
linear system of equations (34) without the term with 
~ ( k ) .  In this case uBB(k, t) contains time exponentials 
of the form 

e s p  [ - 2 m , ( k ) t ] ,  oxp { - [ o , ( k ) + m ? ( k )  It), exp [ - 2 6 ) z ( k ) t l ,  (38) 

where 

The asymptotic form, a s  t - a ,  of the quantity 

in (35) is  determined by small k. If k is small, w,(k) 
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tends to  w,, i.e., to a finite value, and w,(k) tends in 
this case to D,,,k2 and leads to a quantity that depends 
on time in power-law fashion 

and with it to the particle density a(t). 

In fact, a t  two>> 1 the terms in oBB(k, t) containing the 
exponential exp[-w,(k)t] can be neglected. Obtaining 
the solution from (34), we get for uBe(k, t) 

where 6uz2(k), 6u%)(k) and 6ug' a re  the changes of the 
quantities at equilibrium, due to the temperature r ise  
6T. If 

has a power-law dependence on t, then we can discard 
from (35) a t  large t the term with the derivative db/dt  
and we have the following asymptotic behavior with 
change in t: 

6a ( t )  = - 
Voo 2 .  

To calculate the integral with respect to k a s  t -  a, 

we must put k = 0 everywhere in the pre-exponential 
factor, after which we have 

Here D,,, is the effective diffusion coefficient, which is 
expressed in terms of the initial parameters in the form 

For  'K. we have 

An interesting feature of the expression for the 
effective diffusion coefficient is that it does not vanish 
even if both diffusion coefficients, D, and D,, a r e  rigor- 
ously equal to zero. The reason for the remaining 
effective diffusion coefficient is that the very process 
of creation and annihilation of particles at points dif- 
ferent from the initial position leads to diffusion and to 
equalization of the concentration. We note that the 
exponent in the asymptotic form coincides with that 
obtained by us on the basis of heuristic considerations. 

To complete the analysis, we note that the function 
I @ ) ,  which is a solution of the equation 

has the structure 
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and consequently all the mean values of the type 

vanish, thus justifying the discarding, mentioned in 
Sec. 4, of the mean values in the derivation of the fun- 
damental equations. 

')we note that the classification of the contribution to any 
quantity by the degrees of the density of the reacting parti- 
cles is  not trivial, since the effective-mass law relates 
quantities of different order in density. 

')The last formula was derived earlier by Balagurov and 
~ a k s . [ ~  

3)0therwise it is necessary to carry out an extra summation 
of the ladder diagrams of perturbation theory, to take into 
account the dynamics of motion with a potential w-(x). Our 
approximation is equivalent to the Born approximation in 
quantum mechanics. 

4 ) ~ t  will subsequently be shown that 
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Partial bleaching of a crystal or total reflection of light were observed during propagation of 
monochromatic laser radiation parallel to the optic axis of the ferroelectric LiNbO,. It was found 
theoretically and experimentally that both effects are due to the appearance of a periodic refractive index 
grating under the influence of the transmitted and reflected (from the rear face) light waves. The nature 
of the effect is governed entirely by the direction of the polar axis of the crystal. 

PACS numbers: 78.20.Jq, 78.20.Dj, 42.10.Fa 

0 1. EXPERIMENTAL RESULTS 

Action of monochromatic laser radiation of A =  5145 
wavelength on LiNb0,:Fe crystals produced the following 
effects: a beam of Z 0 8  1 W/cm2 intensity incident nor- 
mally parallel to the optic axis" ( k t t c )  resulted in al- 
most complete transformation into a reflected beam. 
The intensity of the radiation transmitted by a crystal 
0.3 cm thick was less than 5% although its initial value 
was 60%. The time dependences of the reflection R 

= Z,/I, and transmission F = z,/z, coefficients were deter- 
mined (Fig. 1). The time taken to  establish the final 
pattern decreased on increase of the intensity of light 
(Fig. 1). A change in the direction of the optic axis 
&,4+c) altered drastically the nature of the effect. The 
crystal became bleached, i.e., the transmission coeffi- 
cient F increased and the reflection coefficient R de- 
creased. The maximum increase in F amounted to 14%. 
When the direction of incidence deviated from the nor- 
mal, the reflection and bleaching effects of narrow 
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