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A theoretical analysis is given of the excitation of colliding atoms by strong optical radiation whose 
frequency is appreciably different from the resonance transition frequency of the isolated atom. The 
process is described within the framework of the adiabatic approximation of the theory of inelastic atomic 
collisions. The excitation probability is obtained for the atom as a function of the intensity of the exciting 
radiation. It is shown that the nonlinear character of this dependence is due to the deexcitation of the 
excited quasimolecule produced in the radiation field. The results are used to explain the experimentally 
established dependence of the intensity of atomic fluorescence of alkali metal vapors on the excitation 
intensity. The specific features of the proposed nonlinearity mechanism are reflected at moderate levels of 
excitation in the nature of this function which differs from the Landau-Zener-type dependence usually 
discussed in the literature. 

PACS numbers: 3 1.50. + w, 32.50. +d, 34.50.H~ 

1. The recent interest in optical phenomena in sys-  a substantial reduction in the velocity of their relative 
tems of colliding atoms (quasimolecules) has arisen for motion during this process. 
at least two reasons. Firstly, optical detection of col- The atomic fluorescence intensity S was found to in- 
lisions can be used to investigate the interatomic inter- crease monotonically with increasing intensity I of the 
action potentialc1] and, secondly, radiation is an effec- exciting radiation, and became a nonlinear function of 
tive means of influencing the collision process and, in the latter for I >  I,= 4 x lo9 ~ / c m . '  The nature of this 
particular, the relative motion of the  atom^.[^*^] nonlinearity, which was observed for the first  time, 

Until quite recently, only those quasimolecular pro- was explained by the saturation of translational elec- 
cesses that were linear in the intensity were investiga- tronic transitions in the quasimolecule in the neighbor- 
ted. The advent of high-density sources of optical r a -  hood of the "rotation-crossing" point. 
diation has meant that nonlinear optical phenbmena in 
quasimolecules have become amenable to investigation. 
Recent t h e o r e t i ~ a l [ ~ - ~ I  and work has 
been concerned with nonlinear phenomena at field inten- 
sities such that the probability of absorption or  emis- 
sion by the quasimolecule of a quantum of radiation 
during the collision time was close to unity. Construc - 
tive theoretical results have been obtainedcs1 in the ap- 
proximation of a given relative motion of colliding at-  
oms, independent of the radiation field. It will be 
shown below that the inclusion of the influence of the 
field on the motion of the atoms is essential for the 
correct description of many nonlinear processes, even 
when the given-motion approximation is justified for 
the description of the corresponding linear process. 
This shows that studies of nonlinear phenomena in qua- 
simolecules may become useful in the diagnostics of 
atomic collisions. 

2. The research reported here was stimulated by the 
experiments of Bonch-Bruevich et al.c2*31 and was con- 
cerned with the interpretation of the dependence of the 
emission of rubidium and cesium vapor at the atomic 
transition frequency w, on the intensity of the exciting 
radiation whose frequency w was not in resonance with 
w, and lay in the static wing of the atomic line. It was 
shown that the observed inelastic scattering of light 

The proposed explanation produced a value of I, that 
was in agreement with experiment, but the overall 
form of the function remained unexplained. The sta- 
tionary theory of transitions in the neighborhood of ro- 
tation-crossing pointsc81 shows that the transition pro- 
bability decreases exponentially with increasing I for 
I>Z,. The inhomogeneous character of the excitation 
associated with different directions of the axis of the 
quasimolecule relative to the electric field vector in 
the incident radiationcs1 does not, in this case, explain 
the transformation of the decreasing dependence into 
an increasing one, and predicts only a change from an 
exponential variation to the power law function S-I"/' 
for Z >> I,. 

In view of the particular features of the experiment 
(the atomic fluorescence was excited by a series of 
short, picosecond pulsesc21), it was suggested that the 
nonstationary character of the excitation process might 
have had a correcting influence on the above function. 
However, although subsequent investigations, per - 
formed with longer exciting pulses (approximately lo-' 
sec),  resulted in the smaller value I,= 5 x lo7 w/cm2, 
the form of the function S(Z) was exactly the same, so  
that the previously proposed explanations turned out to 
be inconsistent. 

was due to binary atomic collisions. Under the condi- In this paper, we shall give a different explanation of 
tions of the above experiments, the resonance defect the origin of the above nonlinearity, which will be free 
E(w, - w) was appreciably greater than the thermal en- from the defects of the explanation given previously. 
ergy of the colliding atoms and, therefore, there was The main cause of the nonlinearity can be found in the 
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FIG. 1. Optical nonresonant 
excitation of atomic fluor- 
escence in a system of col- 
liding atoms. 

FIG. 2. Formation of long-lived quasimolecules. The atoms 
collide in the unexcited states 11) and depart in states 11) and 
1 2) . 

existence of quasistationary states of the excited quasi- 
molecule formed in the radiation field. 

In what follows, we shall examine the optical excita- 
tion of quasibound motions of atoms, and will consider 
the importance of these processes in the explanation of 
the above function. 

3. Consider free-free transitions1' within the frame- 
work of the Born-Oppenheimer approximation (Fig. 1) 
for a system of colliding atoms in the presence of a 
field F cos wt, between the continuum of states 1 (un- 
excited atoms) and the continuum of excited states 2, 
subject to the conditions w < w, and w, - w << w,. The 
latter condition enables us to confine our attention to 
almost-resonant processes and to use the rotating-field 
approximation in the description of the transition dyna- 
mics. Within the framework of this approximation, a 
simple redefinition of the position of the potential for 
the lower state (Fig. 1) enables us to reduce the pro- 
blem of transitions in an alternating field to a problem 
in the stationary theory of inelastic atomic collisions, 
with term-coupling constant depending on the field 
amplitude F. The resonance points R , , which a r e  the 
solutions of the equation 

have the same role in this process as the term-cros- 
sing points in the theory of nonadiabatic collisions.c101 

The emission at the atomic transition frequency w, 
can contain contributions due to unexcited atoms colli- 
ding with relative energy E>E(w, - w) after the quasi- 
molecule consisting of the atoms, and excited in the 
neighborhood of R,, dissociates into an excited and an 
unexcited atom. The dynamics of these atoms is deter- 
mined by the shape of the potential U,,(R) for radial 
motion: 

where El is the orbital angular momentum of the resul- 
ting atoms and p is their reduced mass. 

The potential U, , (R)  corresponding to the excited 
bound state has a centrifugal barr ier  which "traps" the 
atom in the quasimolecule with energy O< E < E,  (Fig. 2) 
in the region of the resonance point 4,  and thus en- 
sures that the field exerts a prolonged influence on the 
quasimolecule. 

4. The problem of optical transitions between states 
1 and 2 will now be formulated in the language of the 
stationary theory of multichannel scattering.c111 The 
dynamics of both relative motion and electronic excita- 
tion of the atoms in the radiation field is described by 
the following set  of coupled equations within the frame- 
work of the resonance approximation: 

where $,,,(R) a re  the wave functions for the relative 
motion of the atoms occupying electronic states 1 3nd 
2, respectively. The Hamiltonian HI,, has the form 

where V is the operator corresponding to the interac- 
tion between the quasimolecule and the field and, in 
this particular scheme, has the form 

where D(R) is the dipole moment associated with the 
1-2 electronic transition. 

Henceforth, we shall confine our attention to the case 
of large detuning from resonance: E(w, - w) >> D(R)F 
and will suppose that the main contribution to the exci- 
tation of the quasimolecule is provided by the neighbor- 
hood of the point R ,. Since the 1-2 transition i s  as-  
sumed to be optically allowed, the dependence of D on 
the separation between the nuclei can be neglected in 
the zero-order approximation, and we shall hence- 
forth consider that D(R) = D(R,) = D. 

Expanding the wave functions $,,,(R) in terms of the 
spherical harmonics Y,,: 

and substituting this in (3), we obtain the following infi- 
nite set  of equations for the amplitudes Xi;:: 

where 
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and 

We shall now assume that the main contribution to 
the excitation of fluorescence is provided by atomic 
collisions other than head-on collisions, s o  that 1 >> 1. 
In the classical limit, the angular momentum compo- 
nent is m = Z sine, where 6 is the angle between D and 
F, because the angular momentum vector is perpen- 
dicular to the line joining the nuclei, i.e. to D/D. Thus, 
in the classical limit, V,,= V [see Eq. (5)]. 

Next, we consider the situation where, owing to the 
presence of the centrifugal barrier,  the system has 
quasistationary levels in the state corresponding to the 
upper term. The position E n  and width rn of these lev- 
els depend on I. It is well knownc"' that the probabili- 
ty of inelastic scattering is a function of the energy E 
of the colliding particles and exhibits a resonance in 
the neighborhood of E = En. In our case, the position 
and width of these resonances a re  functions of field in- 
tensity. 

5. The scattering problem will now be formulated a s  
follows: Before the field is introduced, the atoms a re  
in the eigenstate *, corresponding to the lower term 
with angular momentum I ,  - 1 and energy E (the nor- 
malization is chosen so that the current density in each 
of the two traveling waves producing the standing wave *, is equal to unity). When the field is  turned on, r e -  
flected waves appear in all channels while the incident 
current is present only in the state corresponding to 
the lower term and, a s  before, is equal to unity. 

When E is close to the resonance energy E,(l,), and 
the resonances corresponding to different I are  well re-  
solved (do not overlap), the most probable transitions 
are  those from the initial state to the state with I=  I,. 
Transitions to other states with Z f  I, a re  of lower pro- 
bability, especially for large departures from reson- 
ance." The set  of equations given by (7) can therefore 
be simplified by neglecting the "nonresonant" terms in 
them. The result is 

In accordance with the above formulation of the pro- 
blem, we write the formal solution of (10) for x =x:0srn 

in the form 

.. 
where Go and G, are  the operators (E - Hto,,+ is)-' and 
( E  - H,,,,,, - l i ~ a i s ) - ~  (with s - 0), whose spectral dis- 
tribution has the asymptotic behavior of a diverging 
wave: 

where %(R) a re  the eigenfunctions (standing waves) for 
the term corresponding to the potential Uto,2(R), nor- 
malized to the 6-function of the energy in the contin- 
uous part of the spectrum. The symbol Cg represents 
summation over the discrete, and integration over the 
continuous, spectra. 

Substituting 

in (11) and using the spectral representation of Green's 
function (12), we obtain the following integral equation 
for the coefficient cg: 

This equation can be simplified by recalling that the 
wave functions corresponding to the continuous spec- 
trum with 6 %  E, can be approximately factorized in the 
inner region [R,, R , ] ~ ~ ~ ~  

where 9(R) is the wave function for the bound state with 
energy E,, normalized to unity, which appears i f  the 
barr ier  is assumed to  be impenetrable and 

where A= 1 (we shall use this system of units hence- 
forth). 

Using the factorized wave functions (15) to evaluate 
the integrals in (14), which is justified since the neigh- 
borhood of R,, which lies within the interval [R,, R,], 
provides the dominant contribution, we obtain 

where 

w=v2(s,  [8++6-]0). 

Equation (17) can be solved by multiplying both sides 
by g(6) ,  then summing over & and, finally, evaluating 
the sum 

and substituting i t  into the right-hand side of (17). The 
resulting expression for cg enables us to determine 
X ( R )  from the expansion given by (13): 

where 
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The asymptotic expression for x(R - 03) determines 
the density of the current o f  excited atoms which, for 
the above normalization, i s  dimensionless and equal to 
the transition probability w. The asymptotic form of 
(19) can readily be determined with the aid of  Green's 
function in the form 

and the expression given b y  (15) which determines 
q,(R) in the region of the main contribution to the inte- 
gral (19). In these expressions, v, = k , /k  = [ ( E  - U,,,(m)) 
/2k] lJ2  is  the velocity of the outgoing atoms and 6 ,  i s  
the elastic scattering phase for the potential U,,,(R). 
Evaluation of the current with the aid'of ( 1 9 ) ,  ( 2 1 ) ,  and 
(15) yields 

2nV2g2 (E) 
w =  I (Q, YE) 1'. 

11-QWI' 

6 .  Let us now exaiine the expression given b y  ( 2 2 )  in 
the quasiclassical approximation. In the region in 
which we have a linear dependence on the field intensi- 
t y ,  the transition probability is  given b y  

where 52, i s  the vibrational quantum (frequency of oscil- 
lations in a well with energy E,) and 

is  the probability of the inelastic process under the 
conditions of term c ro~s ing ) '~ '  which i s  linear in inten- 
sity, v ,  = [ (E  - ~ , , , ( ~ , ) ) / 2 p ] ~ ~ ~  i s  the velocity at the 
term-crossing point (resonance point), AU'=U;,,(R,) 
- 

U;o-l., (R,)eUi(R,) -U;(R,) i s  the rate at which the 
terms diverge at R,, and S,(E)  is  the difference be- 
tween the classical action evaluated for the potential 
U,,,(R) in the region [R,, R,] and the action for the po- 
tential U,o-l.l(R) in the interval [R, ,  R,] (see Fig.  2) .  

When E = E,, the probability w, reaches its maxi- 
mum value 2Q,p-/rrO, which, in the case of narrow 
resonance a,>> r,, i s  much greater than the linear 
Landau-Zener transition probability p- evaluated with- 
out taking the barrier into account. When w,> 1,  the 
linear approximation is  not valid even if  p_ << 1 ,  and it 
i s  essential to take into account the transition satura- 
tion ef fect .  

To  determine the form of  w in the nonlinear region, 
we use the method of stationary phase and the quasi- 
classical representation of Green's function in the form 

where k,(R)= [ ~ C I ( E  - U,,,,,,(R) - E w ) ] ~ / ~ ,  v l= K,(-) /cI ,  

and R: are the turning points of  the potentials Ulotl,,(R). 
We shall assume that R and R' are greater than R:, and 
will use R> to represent, as usual, the greater and 

< 
smaller of  the values R and R'. We shall write the re-  
sult in the form 

where A is  a real quantity proportional to VZ, p =p_+p+, 
and p+ is  analogous to p- but is  associated with the po- 
tential U ,,,,,, (R) .  

Substituting ( 2 6 )  in ( 2 2 ) ,  and using (20) and ( 2 3 ) ,  we 
obtain the following expression: 

from which it i s  clear that A determines the intensity- 
dependent shift of  the quasistationary level and 52,P de- 
termines its field width. As in the linear case, the 
transition probability i s  a resonant function of the ener- 
gy of  the colliding atoms, since A(E) and p(E) are slow- 
ly-varying functions on the scale of  the resonance 
width. 

We must now examine the limits of validity of (27),  
which was obtained b y  solving the truncated set of equa- 
tions (10) in which the nonresonant amplitudes X F * ~ : ~  
were neglected. In the first order in the field, the 
equation for the larger of these, ~ p - ~ * ~  is 

which is  analogous to the equation for the resonant 
amplitude X P  rn in the approximation linear in the field. 
The probability of the x:o-'' rn- x F - ~ ~ ~  transition i s ,  

,therefore, given b y  ( 2 3 ) ,  in which the energy difference 
in the denominator is close to the difference between 
the energies o f  the neighboring levels, E,(I,) and 
E,(Z, - 2 ) ,  i.e., the energy of the rotational quantum 
c,,(l ,) .  Therefore, the nonresonant amplitudes can be 
neglected, provided the field-broadened resonances can 
be well resolved: 

and this restricts the allowed power levels. Of course, 
the field should not, under these conditions, produce an 
appreciable change in the energy structure of  the sys- 
tem ( p  << 1) .  

It i s  important to note that, i f  the term-crossing 
point ( F i g .  2 )  can lie above the dissociation energy of 
state 2 for large 1 ,  and, at the same time, remain in 
the region o f  the quasibound motion, then it can also be 
a turning point at the same time. The quantity p _  in 
( 2 3 )  i s  then given not by ( 2 4 )  but b y  the expression given 
inclol 

Next, consider the expression given by ( 2 7 ) .  It i s  
noticeable that w is  a nonmonotonic function of the ra- 
diation intensity I - V 2 :  at low intensities, w - I ,  where- 
as,  at high intensities, when the field width exceeds the 
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detuning E -E,, the probability varies as -I-'. This 
somewhat unexpected result can easily be explained in 
the language of quasistationary states. In particular, 
w is the probability of finding the excited atom well 
away from the region of quasibound motion [R,, R,], 
and its values determine the competition between field 
deexcitation ("downward" transition) and tunneling dis - 
sociation of the quasimolecule. During the time 7(E) 
necessary for the tunneling dissociation,c121 the radia- 
tion frequently (=T(E)S~ times) stimulates the deexcita- 
tion of the quasimolecule as the oscillating atom t ra -  
verses the neighborhood of tt,e point R,. As the inten- 
sity increases, the probability of deexcitation begins to 
predominate over the probabLiity of tunneling dissocia- 
tion because the former incrc ases with increasing I. 
The probability of detecting 2 Cree excited atom will, 
therefore, fall, beginning w i t h  certain I(E), 

7. We now use (27) to interpret the function S(I). 
Since the incident current is noncoherent both in 1 and 
E ,  we shall calculate the current J, of excited atoms 
flying apart with angular momentum 1: 

(30) 

where j,,,(E) is the energy (thermal) distribution in the 
current of atoms colliding with 2 * 1,  w,,,(E) is the pro- 
bability of transition from these states to the quasidis- 
crete levels En,,  in the potential U,,(R) over which the 
sum is evaluated, and q,,, = 2nI?,,,/52,,, is the barrier 
factor (probability of tunneling dissociation) for these 
levels. We have neglected the variation of A(E), p,(E), 
and j,,,(E) on the scale of the resonance width," and 
have substituted j,,, FJ j,,l X j, a t  the end. To determine 
the resultant current, we must sum (29) over 1 and av- 
erage aver 8. The resultant current obtained in this 
way is the sum of nondecreasing functions of the field 
intensity and, therefore, corresponds to a nondecrea- 
sing function S(I). This result is in qualitative agree- 
ment with experiment. 

For a quantitative comparison with experimental da- 
ta,  we note that the intensity characterizing the trans- 
ition from the linear to the nonlinear region is deter- 
mined by the minimum value of q,,, in the expression 
for the resultant current. Estimates performed within 
the framework of the quasiclassical approximation for 
the Morse potential with the parameters given inc3' 
show that states with q,,, < lo-' a re  easily realized for 
12 100, which corresponds to rif, > lo-' sec. However, 
the maximum value of the dissociation time of the ex- 
cited quasimolecule with which the atomic fluorescence 
can be associated must be less than the radiative decay 
time Y - ~ X  10- sec  since, unless the tunneling process 
succeeds in taking place in the time y-', the frequency 
of the photon emitted by the quasimolecule will be sub- 
stantially different from w,. Hence, the characteristic 
value of the field F ,  can be estimated from (in cgs units) 

For the parameter values adopted inc2], AU: = 0.5 X lo-* 
dyn/cm, D = 3 x  10-I8 cgs,' u,=2x lo4 cm/sec, y =  10' 

secel, and &? = 1012 sec-l, we have I,= lo7 ~ / c m ,  which 
is in reasonable agreement with the experimental re-  
sult under prolonged excitation. It is important to note 
that the value of the intensity for which the nonlinearity 
of the above process se ts  in ( p  - q << 1) is much smaller 
than that corresponding to the Landau-Zener nonlinear- 
ity ( p  = lC5'). Complete comparison between the exper- 
imental and theoretical functions S(I) requires, a s  al- 
ready noted, averaging over 9 and summation over the 
contributions to the emission due to all resonances and 
the over-barrier states ignored in (29). The former 
can easily be carried out in a general form but does not 
lead to an important change in the final result: the 
function S(I) remains a saturating function for I- m. 

The summation is a relatively difficult and independent 
problem. Nevertheless, it is clear that the presence of 
the broad resonances q,,, >>p,,, (I >I,) and over-barrier 
states provides nonsaturating contributions to the func- 
t i ~ n  S(I). This, and the fact that I, is close to the mea- 
sured value, may be regarded as an indication that the 
above model correctly explains the origin of the non- 
linearity of S(I). 

The authors a re  indebted to A.M. Bonch-Bruevich for 
his support and interest in this research, and V.V. 
Khromov for useful suggestions and discussions at all 
stages. 

')we follow the transition scheme discussed in C21. 
2)The conditions for the validity of this approximation will be 

specified more precisely later. 
3)!I'he function S (E) varies slowly with E on the scale of the 

resonance width because the quasiclassical phase changes 
by r between resonances. 
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