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The behavior of a two-level system in a continuous sinusoidal electric field of arbitrary amplitude and 
frequency is investigated. The exact solution of the initial equations is obtained at moments t, = 2nN/o.  
The quasienergy spectrum is found and the probabilities of many-photon transitions are calculated. The 
excitation of the upper lever near many-photon resonances is considered. A study is made of the behavior 
of a two-level system in a pulsed field and in the case of two alternately acting pulsed fields. It is shown 
that for certain values of the parameters characterizing these fields the probability of excitation of the 
upper level may reach unity even in weak and nonresonant fields. 

PACS nupbers: 41.10.Hv, 42.65.B~ 

INTRODUCTION 

The very first theoretical investigations of the behavi- 
o r  of an atom in a strong electromagnetic field have re- 
vealed that, firstly, the problem is complex even in the 
simplest case of a two-level system used simulating a 
real atom and, secondly, the solution of this problem 
opens up possibilities of describing basically new phe- 
nomena associated with many-photon absorption.cU 

The phenomenon of many-photon absorption by a two- 
level system has been studied primarily by the methods 
of the resonance perturbation However, in 
spite of the fact that this theory imposes serious re- 
strictions on the amplitude of the external field, it is 
not free of basic diffic~lt ies:~,~ The problem has been 
solved for moderately strong fields by a different meth- 
od avoiding the difficulties of the resonance perturba- 
tion In this way probabilities have been 
found of many-photon transitions and values have been 
calculated of the quasienergy, governing the spectrum 
of the reemitted energy under resonance and nonreso- 
nance conditions. 

The case of a strong field when the perturbation theo- 
ry is known to be inapplicable was considered by Melik- 
 an,'^] who obtained the quasienergy spectrum without 
imposing restrictions on the external field intensity but 
did not determine the transition probabyilities. The 
same case was considered by Zaretskii and ~ r a i n o v ~ ~ ' ~ '  
subject to an additional condition w << wl,. The adiabat- 
ic perturbation theory was used to determine the quasi- 
energy spectrum identical with that obtained by Melik- 
yanC61 and the probabilities of many-photon transitions 
near resonances in the limit of weak fields, which were 
found to be identical with the probabilities deduced from 
the resonance perturbation theory.cs3 

In addition to these investigations, in which the re  - 
sults were obtained by the analytic method, there have 
been several numerical calculations carried out on a 
computer. This applies particularly to the work of 
shirleycgl who carried out a machine calculation of the 
average probabilities of many-photon transitions in 
strong fields, and also to investigations of the behavior 
of a two-level system in a field of frequency w close to 
the natural frequency of the system w,, .c~O*fl l  

The present paper is concerned with the same prob- 
lem. In the first section we shall give the exact solu- 
tion (at discrete moments in time) of the equations de- 
scribing the interaction of a two-level system with a 
sinusoidal electric field. In the second section we shall 
discuss the behavior of a two-level system in the field 
of a modulated wave and we shall show that, under cer-  
tain conditions, the probability of a many-photon elec- 
tron transition may reach unity even in weak and nqn- 
resonant external fields. 

0 1. INVESTIGATIONS OF EQUATIONS DESCRIBING 
THE BEHAVIOR OF A TWO-LEVEL SYSTEM I N  A 
SlNUSOlDAL ELECTRIC FIELD 

The initial system of equations is 

ia2=ezada,dit 'Eo sin ot, 

i i l = ~ , a l + a ~ d l Z E O  sin at, 

where a, and a2 a r e  the amplitudes of the probability of 
finding an electron at the first  and second levels, r e -  
spectively; E ,  is the amplitude of the external field; E, 
and E, a re  the energies of the lower and upper levels; 
dl, i s  the dipole matrix element. 

A change of variables reduces the system (1) to the 
dimensionless integral form 

where the following notation is used: 

The application of successive iterations to these two in- 
tegral relationships readily yields the formal result: 
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The functions z A ( q )  and d A ( q )  represent, according to 
Eq. (6), ser ies  of multiple integrals 

Elements of the matrix 6(5,5,) can be expressed in 
terms of the integral ser ies  

. , 
iq' 

MIZ(:.~)= - - { i l l 1  j d&.ex~[ikL,l~ini~-lql~~ dt, 
Iql ,, t. In view of the fact that the matrix $(q) is unitary, we 

have 

It follows from the definition (4) that the matrix&([, 5,) 
has the following property: 

Let a two-level system be in the ground state a t  t = 0 .  
Taking the matrix 0, + f i ( q )  to the power N, we find 
that a(2nN)  becomes 

iq' --& A e 

a (2nN) =Q (2nN) U x  - - s inNcp [ 
s in  Ncp ) (18)  

sln cp sin(N+l)cp ' 
-%*e-'*" + 

If we take the initial moment to be 5 ,  = 0  and the running 
time a s  5 =2nN, where N is an integer, we obtain the 
following expression for x(2nN): 

cp-arccos [Re (%ae-"") 1 .  (19) 

Since the operator 9 ( 2 n ~ ) 6 ,  al ters  only the phases of 
the probability amplitudes a l  and a ,  but does not affect 
their moduli, it follows that on the basis of Eq. (16) we 
can find the probability of an electron transition to the 
upper level up to a time t ,  = 2 n N / o :  

Direct calculations readily show that 

Introducing the matrix 0, 

Thus, the probability of a A-photon transition oscil- 
lates in time at a frequency 

we obtain 

varying from zero to the maximum value Substituting Eq. ( 1 1 )  into Eq. (8), we find that 

and, consequently, 
The functions dA and %A occurring in the final results 
are  defined by the system ( 1 6 )  and depend on Iql and A, 
i. e. , on the amplitudes and frequencies of the external 
field. For arbitrary values of I q l and A these functions 
clearly cannot be expressed in t e rms  of the known func- 
tions and have to be tabulated. 

The frequencies Q, represent essentially the quasien- 
ergies calculated by ~e l ikyan .~ ' '  In the I q  1 << 1  case, 
i. e. , if an external field is  such that the inequality 
E o l d 1 2  I/w << 1  applies, the frequencies a, can be calcu- 
lated i f  we confine our expansions of and ~4, in pow - 

Elements of the matrix k(271, O) ,  which we shall sim- 
ply call f i ( q ) ,  contain all  the information on the action 
of an external field on a two-level system. We shall 
write them in the form 

" 
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e r s  of Iql to just the first few terms. For  the odd val- 
ues of A ,  we obtain 

For X #  3 the expressions (23) a re  identical with the 
Melikyan results.tsl If A>> 1, the expression for 51, is 
an expansion in terms of a small  parameter l q 1 '/A, a s  
expected on the basis of the work of ~a re t sk i :  and 
~ r a ? n o v [ ~ ] .  

We shall go back to the expression (20) for P,. It 
follows from this expression that w h y  the function 
~rn(%,e-'~') vanishes, the value of P,,, becomes unity, 
i. e. , the average population of the upper level reaches 
0.5. Thus, zeros of the function 1m(%,e -"'), which do 
not coincide with the zeros of the function dk, govern 
many-photon resonances. If there i s  a resonance fo r  
X = A*, then near X* we have 

where 

is the detuning from resonance. 

If I q I<< 1 the zeros of the function 1m(dl~,e-"*) a r e  lo- 
cated near integral values of A. They can be found in 
the form of expansions in powers of 1 q 1 ': 

provided k # 1 o r  3. The zeros of the function Irn(28, 
xe-'") located near even k a r e  also zeros of the function 
d, and, therefore, they do not govern many -photon res- 
onances. The average population of the upper level 
near even values of k is -2 1 q 1 '/(k2 - 1)' +. . . . For the 
odd k, Eq. (26) gives the positions of many-photon res-  
onances. These resonances a r e  shifted relative to in- 
tegral values of k (Stark shift). 

Near the k-th resonance and for Iql<< 1, the expres- 
sion for the probability P ,  becomes 

l54Al' o t v  
pN=- s i n ~ [ ~ ( ~ d ~ ~ ~ + y z ) ' ~ ~  , 

Id,IZ+y' I 

which agrees with the result obtained by ~ r a r n o v . ~ ~ '  

The average intensity of the nonresonant excitation is ,  
to within l q 1 ', given by 

Since the value of 52, in the nonresonance case is equal, 
with the same precision, to 

the probability of a A-photon transition without allow- 
ance for resonances is (for A =  1) 

This result agrees with that obtained by Sen ~ u p t a , ' ~ ]  
who solved this problem to within second order in the 
magnitude of the interaction. 

3 2. EXCITATION OF A TWO-LEVEL 
SYSTEM BY A PULSED ELECTRIC FIELD 

1. We shall now return to the expression (20) for P,. 
It should be noted that oscillation of the excitation prob- 
ability P, in txme is not self-evident. The question 
ar ises  a s  to why the probability having reached a maxi- 
mum begins to fall and drops again to zero. In fact, 
even when the probability r i ses  and then later when it 
fallsthesameexternal field is responsible for the change 
in the probability. Since the action of this field on a 
two-level system is not always the same, it i s  governed 
not only by the field itself because its nature does not 
change, but also by the state of the two-level system 
itself, which should vary with time either for internal 
reasons o r  under tbe action of the external field. The 
state of a two-level system can be described in general 
by the quantity a: 

i. e. , after subtracting the normalization condition and 
the fact that a is generally defined only to within an a r -  
bitrary phase factor characterized by two numbers: 

indicating the ratio of the moduli of the probability 
amplitudes, and by the phase difference F1 -F, .  

There a r e  no other characteristics of the state of the 
system so  that these a r e  responsible for the fact that 
the action of the external field does not always increase 
the probability of excitation of the upper level but peri- 
odically produces the opposite effect. Moreover, in a 
weak external field the time dependence of the transition 
probability characterized by b'I2 is negligible but this 
is not true of the change in the phase difference F1 - F,,  
i. e.  , special attention should be paid specifically to the 
phase characteristic of the state of a two-level system. 

2. We shall now illustrate these by formulas. We 
shall first consider an unexcited two-level system. Let 
us assume that in a time tNo = 2nNo/w the probability of 
excitation of the upper level reaches its maximum. 
According to Eq. (20), by the time t = 2 t N ,  this probabil- 
ity vanishes again, i. e. , 

" 
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On the other hand, 

where ON, + + (27rNO)~(2~NO) can be represented using 
Eq. (18) in the form of Eq. (29): 

where b(N,)  = Id, 1 '/[ Id, 1 + b 2 ( a , e - ' r A ) ]  and the phase 
difference F1(No) -F,(N,) can be found from Eq. (18). 

The fact that this phase difference has a very differ- 
ent value is  responsible for the vanishing of P,,,. In 
fact, i f  we calculate P,,, from Eqs. (39) and (311, we 
obtain from the formulas derived in the first section 

sin' N,cp 
Pz~~=la2(2n2No)  I '  = -{ b(N0) 1 - (&?Ae-fin) * 

srn cp 

- [- (aAe-lkn). + 
sin N,cp 

~ X P { - ~ ( F ~ ( N ~ ) - F ~ ( N . ) ) )  1). 

It is clear from Eq. (32) that the phase difference ac- 
cumulated by the time tNo and equal to Fl(N,) -F2(N,) 
does indeed occur in the expression for P,,, and has a 
very strong iniluence on this probability. It represents 
the phase state of the system at the moment t,, and 
governs the subsequent reaction of the system to the 
field acting on it. 

By way of proof we may quote the following general 
arguments. The state of a two-level system is descrjb- 
ed by two parameters: b and F 1  - F z ,  both of which have 
definite physical meaning. The parameter b governs 
the ratio of the probabilities that an electron is  at the 
first o r  second level, whereas the parameter F, -F2 
represents the phase state of the system and governs 
the relationship between the system and the external 
field . 

3.  If the reaction of a two-level system to the field 
acting on it is governed by its phase state, i. e . ,  by the 
quantity F, - F,, and if the latter quantity changes under 
the action of the field, we can attempt to pump the upper 
level by acting on a two-level system alternately with 
two different nonresonant fields, the first of which in- 
creases the excitation probability and the second (weak- 
e r )  al ters the phase state in a special way so that the 
excitation probability continues to rise on the next ap- 
plication of the first  field. We shall use the term pump 
and phase fields for the first and second fields, respec- 
tively. Naturally, the pump field alters also the phase 
state and the action of the phase field affects the excita- 
tion probability but since the fields a re  different and the 

excitation probability and phase state a r e  two indepen- 
dent characteristics of a two-level system, a suitable 
selection of the field intensities and pulse durations may 
ensure the expected continuation of the rise of the exci- 
tation probability. 

We shall now study this possibility. We shall assume 
that the two-level system is subjected to alternate puls- 
e s  of two different fields. Let the frequencies of these 
fields be identical and equal to w and let their amplitudes 
and pulse durations be different. Moreover, let us a s -  
sume that the fields a re  weak. Up to a moment t =k(Nl 
+N2)2r/w the alternate action of k pulses of the pump 
field Iq, I of duration N, periods and k pulses of the 
phase field Iq2 I of duration N2 periods the amplitude of 
a two-level system a becomes, according to Eq. (13), 

Taking the matrices in Eq. (33) to the required power 
and using the definitions (15) of the matrix elements 
M(q), we can find the excitation probability of an initial- 
ly unexcited two-level system by the time t,,,lq,: 

- sin' Nlcp, sin2Nzcpz 1 
l'~~n-,+n-,~ - sln7cp1 sin2cpz sin' a 

Q1' XI [ i  I l n ( % ~ ( q ~ ) e - ' ~ ~ ) + c t ~  N2cpz sin p2] -dL(q , )  
lq1l 

where 

sin N2q2 sin N,cpl 
cos g = ------ ----- 

sincp, sincp, 
+ctgIV*%sin q,1 [ i  Im(%i(q,)e-'")+ctgN,cp+ sincp,l 

and the quantities cpl and q2 a re  given, in accordance 
with the above, in the form 

Thus, the transition probability varies with time a s  
sin2at and its frequency is 

the maximum value depending of the fields q ,  and q , ,  
and also on the pulse durations Nl and N,. We shall 
show that a suitable selection of these parameters can 
ensure that the maximum value of the probability reach- 
e s  unity. We shall assume that the acting fields a r e  re-  
lated by 

where x <  1. Assuming, for simplicity, that h is not an 
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integer, we shall write out d, and 29, with just the f i rs t  
terms: 

An 
Re (%Zie-"'" =cos nnh- IqIZ -sin nb+ . . . , 

nhz-I 
(39) 

Since the fields a re  weak, 19, I < I q ,  I << 1, the above 
terms in the expansions a r e  quite sufficient. 

Substituting Eq. (39) into Eq. (34) we easily find that 
in the case when the field intensitles I qi I and Iq, I and 
pulse durations N, and N, a r e  such that 

where n is an integer, the value of P,, becomes unity. 
The excitation probability considered a s  a function of 
time i s  then 

where 52 i s  given by Eq. (37) and amounts to 

The condition (40) represents the pumping condition. It 
is valid for any value of A. 

We have thus shown that indeed it i s  possible to pump 
the upper level of a two-level system by a weak nonres- 
onant field if this field is modulated in a suitable man- 
ner. The effect i s  due to the fact that the phase field 
alters the phase state of the system in the interval be- 
tween the two consecutive pump field pulses and at the 
beginning of each new pulse of the pump field the system 
is in a state most suitable for excitation. We may also 
attempt to achieve a similar effect by using other modu- 
lated fields, for example, an alternating field with 
smooth variation of the amplitude o r  frequency-modu- 
lated fields. In any case, the behavior of a two-level 
system under the action of a modulated external field is 
very different from its  behavior in a monochromatic 
field. 

4. Since the essence of the problem reduces to a 
suitable change in the phase state of a two-level system 
in the time intervals between the pump field pulses, 
one might try to leave simply the system to  itself during 
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these intervals. In fact, the phase state of the system 
varies with time without any external influence and the 
phase difference F ,  - F,  i s  a linear function of time 
simply because of the difference between the level ener- 
gies. If the intervals between the pump field pulses a r e  
selected suitably, we can achieve a situation in which a 
two-level system tunes itself in a suitable manner at the 
beginning of each new pulse. In this way we can pump 
the upper level with one pulsed field I q  I. The pumping 
condition can easily be obtained using the results ob- 
tained above for the general case of two alternately act - 
ing fields assuming that q,  = 0 and ~ ( 9 , )  = 1. This con- 
dition becomes 

The probability of excitation of a two-level system up to 
the moment t , c N l + N 2 ,  oscillates at the frequency 

varying from zero to unity. The upper level can be 
pumped by a pulse field only for fractional values of 
N,X. If N,X is  an integer, the change in the phase differ- 
ence of a two-level system in the interval between two 
consecutive field pulses i s  a multiple of 277, i. e . ,  at the 
beginning of each new pulse the system is in exact% the 
same state a s  at the end of the preceding pulse. 

Th: author regards it a s  a pleasant duty to thank V. P. 
Krainov for his valuable advice and help in the analysis 
of the material and preparation of the manuscript. 
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