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1. INTRODUCTION 

The existence of order-parameter structures corres- 
ponding to the-hases A and B of superfluid 3 ~ e  is pos- 
sible under nonstationary conditions only in the case of 
slow variations of the order parameter in time and at 
sufficiently large dimensions of the spatial inhomogen- 
eities. The order parameter in the A phase i s  of the 
form 

where 6'"' a re  Pauli matrices, d i s  a unit vector in 
spin space, and p i s  a unit vector in the direction of the 
momentum of the pairing particles. In spatially homo- 
geneous stationary conditions, the complex vector rL 
takes the form \Lo = A' + i ~ " ,  where A' and A" a re  two 
mutually perpendicular unit vectors. Their product A 
x A = 1 defines the anisotropy vector. The position of the 
triad of unit vectors A', A", and 1 is specified by three 
parameters, for  example by the rotation angle 68: 69, 
= 60 x e,. In the presence of spatial and temporal in- 
homogeneities, the complex vector \I! has, generally 
speaking, six components. It i s  clear that one can 
speak of the existence of the A phase only when the 
components of the vector 69 differ little f rom No. For  
this purpose it i s  necessary that the dimensions of the 
spatial inhomogeneities by larger than the coherence 
radius, k t  << 1. As to the frequencies w ,  there a re  two 
regions where one can speak with assurance of the exis- 
tence of the A-phase structure, namely w <<r' (the hy- 
drodynamic regime) and T' << w << A (the so-calied col- 
lisionless regime). Here 7 is the characteristic relax- 
ation time which is governed in this case by the quasi- 
particle collisions and is of the order of ? " E F / T Z  >> &-'. 

The existence of the A phase at w?- 1 calls for a spec- 
ial analysis. 

In the present paper we confine ourselves to the case 
kt << 1 and W? << 1 ( near T, i t  i s  necessary to satisfy the 
more stringent condition 70 << A/T), which corresponds, 
a s  i s  well known, to the hydrodynamic approximation. 
For  the B phase the hydrodynamic equations were de- 
rived ~ o m b e s c o t  with the aid of the Bogolyubov trans- 
formation. The collision integral for the B phase was 
written out by Geilikman and ~ h e c h e t k i n > ~ '  A pheno- 
menological approach to the hydrodynamics of super- 
fluid 3He was developed in the papers of ~ r a h a m ~ ~ '  and 

question was considered from the semiphenomenological 
point of view. The results ofC3' andc4' disagree when i t  
comes to the mechanisms of the relaxation of the orbital 
oscillations and the value of the orbital susceptibility. 
A kinetic equation for the quasiparticle distribution 
function was given inC6] in the 7-approximation. A col- 
lision integral for the A phase was derived only near 
T,:"' Combescotc7] obtained the equations of the orbital 
motion for the A phase with the aid of Bogolyubov trans- 
formations in  the spatially homogeneous case. 

It can thus be stated that despite the importance of 
the hydrodynamic approximation, the question of the 
microscopic derivation of the hydrodynamics equations 
for the A phase has not yet been solved. In the present 
paper we t ry  to fill this gap deriving the hydrodynamics 
equations on the basis of the nonstationary theory of 
Cor'kov and Eliashberg, C9*101 which lends itself to s a 
simple generalization to the case of pairing with non- 
zero angular momentum. We assume that the condition 
7A>> 1 is always satisfied, i.e., we exclude from con- 
sideration a very narrow temperature region near T,: 1 
- T/T,- It must b e  stipulated beforehand that we 
shall use the weak-coupling approximation without al- 
lowance for Fermi-liquid effects. We confine ourselves 
here for simplicity to the study of the motion of only the 
orbital part of the order parameter. The orbital motion 
is separated from the spin motion, with neglect of the 
dipole-dipole interaction that orients the vector d along 
1. This i s  possible a t  kRD >> 1, where RD i s  the charac- 
teristic distance over which the action of the dipole 
forces manifests itself, RD=120tO, o r  in the frequency 
region gD/vA: << W? << 1, when the energy of the noneq- 
uilibrium excitations exceeds the dipole energy ( g D  i s  
the dipole-interaction constant and v = mp,/2n2 is the 
density of states on the Fermi  surface). Substituting the 
value of the constant g,, = pS/m2~D2,  we obtain the ineq- 
uality t t / ~ ~ ~  << W7 << 1; The kinetic equations obtained 
in the present paper a re  valid also in the case when the 
spin vector d oscillates together with 1, but remains 
parallel to i t  a t  al l  times. This occurs when the inho- 
mogeneity dimensions exceed R, and a t  frequencies a? 
<< tO2/RD2. In this case the dipole-interaction energy ED 
= -(1/2)gD(l. d)' is constant and can be disregarded. 
The validity of these equations i s  governed in this case 
also by the fact that in the unitary state the E, spectrum 
(see below) does not depend on the spin. 

- - 

of Khalatnikov and ~ e b e d e v ? ~ ]  Orbital hydrodynamics The description of the orbital part of the A phase in 
of the A phase is the subject of papers by Leggett and the hydrodynamic approximation should contain equa- 
~akag i" ]  and by Volovik and Mineev, where this tions that define the three components of the vector 68, 
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the kinetic equation for the quasiparticle distribution 
function, and the conservation laws for the momentum, 
energy, and number of particles. One should add also 
the equation of state. We, however, a r e  not interested 
here in the variation of the thermodynamic quantities, 
and confine ourselves to the study of the motion of the 
order parameter and of the corresponding dissipative 
processes. 

We resolve the rotation 68 into a component along 1 
and a perpendicular component 

We have 

The function @ introduced in this manner, a s  repeatedly 
noted (see, e.g.,[lll), i s  not single-valued in the coor- 
dinates, and it i s  therefore more convenient to form- 
ulate the hydrodynamics equat?ons not for the phase @ 

itself, but for i ts  derivatives and V*, which a re  well- 
defined functions. The superfluid velocity is given by 
(ti= 1) 

From this we obtain with the aid of (2) that the superflu- 
id velocity vs = ~ @ / 2 m  i s  connected with 4 and with the 
derivatives of 1 in the following manne9l2': 

From this follows, in particular,c1z1 the condition ob- 
tained by Mermin and ~ o [ " l  

1 
(~.otv'), =-e,,J[V,I x VJ].  

4111 

The hydrodynafnics equations will be formulated for the 
quantitiys 9,  @, and 1, with three independent vari- 
ables (@ and the two components of the unit vector 1). 

2. DERIVATION OF THE KINETIC EQUATIONS 

We introduce the change of the total phase of the or- 
der parameter[l3I 

For the equilibrium A phase we have 

The final equations wil! contain only derivatives of 6ap, 
expressed in terms of a, d ,  and derivatives of 1. .. 

The order parameter Ap(w, k) is-expressed in term of 
the complete Green's functionclol Fa+, ,_(p+, p-): 

where E, = E * w/2, p, = p i  k/2, and go i s  the Cooper-in- 
teraction constant. The function @ i s  obtained from the 

s y s t e ~  of_the four i ~ i a s h b e r g  equationsL101 for the func- 
tions G ,  G, F, and F'. It i s  convenient to eliminate im- 
mediately the dependence of AP on the phase 6GD, by 
making the corresponding gauge transformation. We in- 
troduce the matrices 

.. .. 
where = A,exp(-ib@,), 7, is a Pauli matrix that acts 
only on the components of the matrices @ (but not on the 
spin indices), and C are  the self-energy parts due to the 
pair interaction. The Eliashberg equations in  matrix 
form a re  

pkm-'at., .-(P+, p-)-e+r.@.., ,-(P+, P-)+Be.. ..(P+. p-)~.e- 
+ (H.,@,.-",, .--@8., .-+*,H*,l., k-1.. , .-(P+, P-1 7 (5) 

where the "collision integral" i s  

The curly brackets {. . .},,, denote contraction with re- 
spect to w and k. The functions with the suffices R and 
A are  respectively retarded and advanced (regular) 
Green's functions that satisfy Eq. (5), except that the 
right-hand side contains the "collision integral" 

The retarded and advanced functions can also be calcu- 
lated with the aid of the equations 

where 

i.e., with the aid of the ordinary diagram technique. 

We change over in (4) and in(5)-(7) to Green's func- 
tions integrated over d5,t1"I, and furthermore take the 
Fourier transform with respect to p+ - p- = k in coordin- 
ate space 

We define here also some notation which will be en- 
countered subsequently. The letters and f with the 
care ts  stand for the functions g ,  and f* with allowance 
for the spin indices, while the let ters without the carets 
denote only the orbital parts of the corresponding func- 
tions. Since we shall consider bekow only the unitary 
state, i t  follows that 

and analogously for 2 and?'. The operation Sp will de- 
note taking the trace over the matrix (not spin) indices, 
while the operation T r  stands for the trace over the 
spin indices. 

We thus have 
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The collision integral i is obtained from I by replacing 
8 with 9 . An analogous equation holds also for the re- 
gular functions. It leads to the relationc141 

The Green's functions satisfy in turnc14' 

We emphasize a circumstance of importance to what 
follows, namely that in the chosen gauge the condition 
sflR("' that follows from (10) i s  accurate to terms of 
order w/A inclusive. We write down here, for future 
reference, the equationsc151 for the stationary functions 
stfA). Since ?A>> 1, we can neglect in (9) in the station- 
ary  case the collision integral. We have 

(gf(Al ):-i:(Al i,+WAl - 1  (12) 

and 

In the case of slow spatial variation of the order 
parameter, k5 << 1, we have in the zeroth approximation 
in k5 

where tR(") = i ( e 2  A 12)112+ i6 at I E  I > [ A ~ [  and tR = 5" 
A D .  Thus, at l€l>lAD1 the 

quantities tR("' a re  the values of the function (E* 
- l ~ ~ r ~ ) " ~ ,  which i s  analytic in the complex E plane with 
cuts from -00 to - 14 1 and from I A, [ to + -, taken on 
the upper (lower) edge of the cut. We see that at 
IE[>IA,I we have *=-SA, and a t  f ~ [ < l ~ ~ f  the func- 
tions are  equal, sR = s". 

As a result _of !he condition (11) only two of the four 
functions 2, g, f , f' are  independent. To derive the kin- 
etic equation we use a procedure proposed by Larkin 
and ~ v c h i n n i k o v , ~ ~ ~ '  which makes i t  possible to recast 
the system (8) in the form of the usual kinetic equation. 
We put 

1 1 0  (1) 
3 *.,.- -J {g ..,. *ud,*-+~*f.*.~-) 

de' - u!:!..+?.f!:.'.,,3f,.-} - . 
2rr 

The spin suffices of f '1'(2' have been omitted for bre- 
vity; This expression satisfies the condition (11) iden- 
tically. The calculations will consist of substituting (15) 
in (9) and taking into account the equations for the regu- 
l a r  functions S,R*:! as  well a s  of expanding the resultant 
equation up to second order in the temporal and spatial 
derivatives. In the collision integral, in view of the low 

collision frequencies T-'<< A, we can confine ourselves 
in  the principal order in  w/A and k t .  In addition, the 
functionf2' i s  proportional to the derivation from equil- 
ibrium and i s  therefore small. For the orbital motion, 
under the conditions discussed in the Introduction, the 
distribution functions f&) andf,; are  diagonal in the 
spin indices. 

After performing the foregoing calculations we apply to 
the obtained matrix equation the Sp operation once with 
the unit matrix, and then again with ?,, making use of 
the condition s ~ Q ~ ' ~ '  = 0. At [ E  I> [ A ~  [ we have (~f .~" ' ) :  

We have changed over here to the temporal representa- 
tion in the frequency difference E, - E- = r t ~ .  The col- 
lision integrals 5, and 5, a r e  equal to 

They will be calculated in the next section. 

At I t l < l ~ , l  we get 

The collision integral J, vanishes at I c I < I AD I (see below). 
In the second equation, by virtue of ?A >> 1, we can neglect 
the term withJ,. Thus, the functionsfl'and f " at [ E  [<  I A, I 
correspond to the collisionless regime. Leaving out J, and 
J, from the right-hand sides of these equations we obtainfl' 
= f ( 2 ) = 0 ,  i.e., S ,,,,- =0,  at I c l < l ~ ~ I  andkt ;<<l .  This 
can be verified also directly calculating S,,,,- in this 
frequency region (and a t  k t  << 1) with the aid of the ex- 
pression 

where the anomalous function a"' takes in the col- 
lisionless case the formcg1 

The "distribution functions" f"' and f "' have unequal 
parity in E and p, namely f:"(s)=-f!:'(-fi), and f,'*'(C) 
= f :'(-c). As noted the kinetic equations (16) and 
(17) can be reduced to standard form, by putting 

n(b, c,, r, t )  =1/2[l-(f'"+gRf") I.  
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where 

which agrees with the spectrum proposed inc6'. 

3. THE COLLISION INTEGRAL AND THE 
CONSERVATION LAWS 

In the calculation of the self-energy parts C we shall 
consider only those quasiparticle collisions that lead to 
relaxation. Interactions that cause renormalization of 
the chemical potential and of the order parameter can 
be regarded a s  already accounted for in their proper 
places. Disregarding Fermi-liquid effects, we can as- 
sume that the vertices of the quasiparticle interaction 
remain unchanged on going into the superfluid state. We 
shall use below one more simplifying assumption, which 
i s  not of fundamental character, and i s  needed only to 
abbreviate the rather cumbersome expressions. Name- 
ly, we assume that the quasiparticle interaction that 
leads to relaxation i s  pointlike 

where E, = 2niT(n, + 1/2). 

The self-energy parts take in the imaginary-frequen- 
cy representation the form 

and analogously for 2"' and c"". Here p = ip, €1, and 
the integration with respect to dp contains the sum over 
E.  Ih the derivation of these expressions we took i t  into 
account that in our case of the unitary state we have Ga6 
= ba,G, and that E , = io'"'a'*'F,,, where F X F1 = 0. Con- 
tinuing analytically the expressions for I; in frequency 
from the upper half-plane to the real  axis and changing 
over to functions in t~grated with respect to dt,, we ob- 
tain in accord with ~ l i a s h b e r g ~ ' ~ '  

where 

[8.,g&m8ln(')'. [g.?*lg&.+g.,~~(~) I., 

+#&.Pa?A)+ (g.,"-g.,') (g.?-gmA)2.?*) I .  (23) 

We have introduced here the operator 

andg,=&,,_,(p,p-k). The formulas for c ' ~ ' ~ ' ~ '  and 
c ' ~ '  (and analogously for c " ' ~ ' ~ ' ,  C"' and c * ' ~ ' ~ ' ~ '  9 c * ( ~  3 
a r e  obtained in (20) by replacing the expressions in the 
curly brackets of (20) by expressions of the type (21)-(24). 

We substitute C in the collision integrals 3, and i, 
(18) and use formulas (14). With the aid of (15), after 
rather cumbersome calculations, we find that the inte- 
gral  J , = O  at I 'E I<[A,~  and at [ c I > [ ~ , , l  we have 

The integration with respect to d ~ ,  and dc, i s  carried 
out here over the regions [> [A,, 1 (i = l ,2 ,3) ,  and 

2AAIeA< As+A'At'AzAs+A'AtAa'As 
MI-1 +- 

4ee iere i  

- A A A A  - A ha(.+ A'AI - 
4e1e2  8ee,  s e e I  ' 

The collision integral 3, vanishes when 

e-pv" 
I(" - th (T) . 

a fact corresponding to an equilibrium Fermi  distribu- 
tion function of excitations that move with velocity v". 
The following remark i s  in order here. In the deriv- 
ation of the left-hand sides of the kinetic equations (16) 
and (17) i t  was implicitly assumed that the derivatives 
of the functions f"' and f '2 '  with respect to the momen- 
ta, af'"/ap and af"'/8p, a re  small. This is correct so  
long a s  the derivative of the equilibrium distribution 
function vanishes, 8f (")/ap = 0. It follows therefore 
that the obtained equations a re  valid in a reference 
frame locally co-moving with the normal component, 
i.e., in a reference frame moving with a velocity V 
equal to v" in the given point of space and at the given 
instant of time. In other words, for the substitution in 
(16) and (17) we must choose the equilibrium function in 
the form 

Of course, the derivatives off'"' with respect to the 
coordinates and the time do not contain V: 

The change to the laboratory frame is carried out in the 
final expression by the standard Galilean transform- 
ation procedure. 

In the case of low frequencies w7 << 1 the deviations 
off"' from equilibrium a r e  small, and we can linear- 
ize J ,  and J, near f '"'. We put 
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Then 

where 
erea81 

F ( i , 2 , 3 ) -  ,.,, ( i+ f :* f? '+f :"f~"+f~o l f~o ' ) .  

The integral$, is y a d e  tovanishby a functionof the type 
x"' =A€ + Bp, andJ2by the function x ( ~ )  = C, whereA, B, 
and C do not depend on c and p. This is a consequence 
of the arbitrary temperature of the excitation gas (the 
temperature i s  determined by the interaction with the 
thermostat), of the Galilean invariance of the collision 
integral, and of the arbitrary origin used for the exci- 
tation energy. 

The conservation laws for the number of particles, 
for the momentum, and for the energy follow from the 
general equations of motion (5). It is easy to verify that 
the collision integrals satisfy the necessary require- 
ments. It i s  most convenient to s tar t  directly with ex- 
pression (6), from which we get 

-the particle number conservation, 
de d'p 

~ P S P P ~ I .  ...-(P+ , P - ) I - - : - ~ -  o 
4nr ( 2 n )  

-the momentum conservation, and 
de d'p j e Sp{TrI..,..(p+. p-) I-----: - 0 
4nz (2n) 

-the energy conservation. Taking the corresponding 
moments of (5), we obtain the required conservation 
laws. 

I. The continuity equation: 

where the particle-number density ( p  i s  the chemical 
potential) i s  

and the density of the total momentum is 

(Unless indicated, the limits of integration with respect 
to d< are -m and +-. ) 

11. The law of conservation of the total momentum: 

where the flux density of the total momentum i s  

Caution must be exercised when changing in this ex- 
pression to Green's functions integrated with respect to 
d5,, since the integral contains parts that diverge if the 
integration is initially with respect to dt,, and then with 
respect to dc. In the tensor ll,, we can separate the 
term corresponding to the dissipative processes. Since 
the correction that must be introduced in the distribu- 
tion function to account for the disequilibrium decreases 
rapidly as < >T, i t  i s  possible to change over in the 
non-equilibrium part of the tensor n,, to the functions 
integrated with respect to d5,. We obtain 

where 

is determined by the equilibrium properties of the liq- 
uid. We defer the calculation of to another paper. 

IIL The energy conservation law: 

a 8  - + div jr=O, 
at 

where 

and the energy flux density i s  

where 

de dip 
x[@.:..-@:',.-~i.~')-- 4ni ( 2 ~ ) '  ' 

4. EQUATIONS OF MOTION OF THE ORDER 
PARAMETER IN THE HYDRODYNAMIC APPROXIMA- 
TION 

Taking the results of Sec. 2 into account, we get from 
(15) 

An expression for f :+,,_ i s  obtained from (35) by replac- 
ing f R'A' with f +R'A' and f !') with -f (E2'. Substituting 
(35) in (8), we obtain an equation that determines the 
six components of the complex vector @. Our task, 
however, i s  not a complete calculation of @, but to sep- 
arate, from the available six equations, those which de- 
scribe the changes of the anisotropy vector 1 and of the 
phase @. As already mentioned, the changes of 1 and 
9 reduce to rotation of the vector rIr, = A' + Sf'. The 
sought equation obviously correspond to the components 
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of (8) that a re  orthogonal to @,, and the equation that 
describes the motion of 1 i s  obtained from the compo- 
nent orthogonal to the (A', A") plane, while the equation 
that gives the phase 9 l ies in the (A', A") plane. 

We consider f i rs t  the reactive terms (which do not 
contain 7 and are  proportional to the frequency squared). 
The stem from the first  and second terms of (35). We 
shall show that in the equation of motion of 1 their role 
is always small. For simplicity we confine ourselves to 
the case T, - T << T,, for i t s  is precisely in this region, 
according to the results ofC6', that one could expect a 
manifestation of the effects connected with the presence 
of the reactive terms. The calculations show that the 
corresponding contribution to the right-hand side of (8) 
takes near T, the form 

This leads to an "orbital susceptibility" 

7E (3) Ao'v 
Xorb= 24nZTZ . 

This expression differs from the formula given incs1 for 
xorb. This i s  quite natural, since the latter was obtained 
in the collisionless limit 7-' << w << A. Formula (36) dis- 
agrees also with the result of Volovik and Mineev, "' 
according to whom the susceptibility x,,, i s  proportional 
at a<<;-' to A/T raised to the zero power. According 
to (36), the contribution of the reactive terms if of the 
order of Au2/T2, and the contribution due to the dissi- 
pative processes, a s  follows from (16) and (251, i s  of 
the order of A2?w/T. Their  ratio i s  -A?T/w >> 1, and 
offers evidence in favor of the dissipative terms in the 
entire temperature region. Thus, the reactive terms 
should be discarded from the equation for 1. 

We return to the case of arbitrary temperatures. To 
separate the equation that determines the motion of 1, 
we rewrite (8) in the form1' 

The left-hand side of (37), a s  i s  well known, can be re- 
presented in the form of a variational derivative of the 
equilibrium functional of the free energy 5, and is equal 
to A;lbS/d**. We separate the component perpendicu- 
lar  to the (A', A") plane, multiplying for  this purpose 
(37) by -le,,,l,@,* and the expression for I *  by 
-le,,l,Jr,. Adding these two equations, we get 

This equation i s  of standard form (cf. e.g.,[12'), i ts  left- 
hand side contains the moment of the forces exerted on 
1 by the superfluid part of the liquid, and the right-hand 
side contains the moment of the friction forces. 

To obtain an equation that describes the phase oscil- 
lations 61p, we must multiply (37) by I *  and subtract the 
complex-conjugate expression, but retain in (35) the 
terms proportional to d. There i s  no need, however, 
for an explicit expansion, since i t  can be verified with 
the aid of (17) that this equation i s  equivalent to the con- 
tinuity equation (27) obtained above. 

The explicit calculation of the friction-force moment 
i s  quite difficult, since the collision integral has a rath- 
e r  complicated structure. It simplifies considerably, 
however, near the critical temperature (this was 
pointed out by Pethick et al.c7~1"). In fact, the main 
contribution to the collision integral when the integra- 
tion i s  with respect to d ~ ,  and dc, i s  made by frequen- 
cies el,, - T. Therefore the cators M,,, can be replaced 
near T, by unity. Furthermore, the important role in 
the right-hand side of (38) i s  made by frequencies 
x " ' ~ A / E ,  in the case of large E ,  the contribution of the 
terms x',':, X(ti, and ~!~,-,,  to J1 i s  small compared with 
cdl' (and the contribution of d:!,,, to J, i s  small com- 
pared with cd2 ' )  to the extent that A/T i s  small. Thus, 
accurate to the principal terms in A/T, we have 

1 g",afo 'L'.'Z' J 
I.' - X. 6=@, 

z , ( e )  

where 

is the free-path time of the quasiparticles in the normal 
state. The kinetic equation for x"', accurate to the 
principal terms in kt, takes the form 

and the function x"' at <-A<< T is expressed in terms 
of KC'': 

A local relation between x'" and 81/8tcl2' exists only 
in the case of sufficiently slow spatial variation of 1, 
when the characteristic distance R >> 1, where I 
= V ~ T , ( E ) .  In this case we get 

Substituting (39) in (38) we obtain 

where the "cross-viscosity" c ~ e f f i c i e n t ~ ' ~ '  i s  

' d o  a1(0) A,,? (I;)? 1 A, I? = vr,, (0) ~ , ,~n?  
P = V \ *  5 d e z t 3 ( c ) T e ( E 2 - / A  r : 3 j 8  

P ) 64TC 
, (41) 

C>lOp l 

in agreement with the result of Pethick and ~mith .~ '" '  
The expression for the f ree  energy near T, i s  well 
known and will not be presented here. 

Thus, the system of hydrodynamic equations consists 
of the kinetic equations (16) and (17) with collision inte- 
grals (25) and (261, the equation (38), relation (3), and 
the conservation laws (27)-(34). We emphasize once 
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more that for the regular functions $'A', f R'A', f'R(A', 
that enter in these equations i t  i s  not always sufficient 
to use formulas (14), which a re  valid in the zeroth ap- 
proximation in the spatial gradients. Thus, fo r  substi- 
tution in (38) we must calculate f and f ac- 
curate to second order in k t ,  and for the momentum 
density-to f i rs t  order, etc. The corresponding expres- 
sion in each concrete case can be easily obtained from 
(12) and (13) or with the aid of the usual diagram tech- 
nique. 

With the aid of the obtained equations we can verify 
that  the relaxation of the vector 1 i s  determined only by 
one characteristic time-the f r ee  path time of the quasi- 
particle. This i s  in disagreement with the assumption 
of Leggett and ~ a k a ~ i [ ~ ]  that there i s  one other charac- 
teristic relaxation time (designated TK inc5]). 

The equation of motion (38) for 1 does not contain the 
so-called "spontaneous angular momentum" LsP. This 
indicates that L,, is small and agrees with Ishikawa's 
calculations of the spontaneous angular 
(see alsoEG1). 

5. MOTION OF NONSINGULAR VORTICES AND 
SOLITONS IN  ~ e - A  

We consider the motion of nonsingular vortices and 
solitons, which are  macroscopic objects whose charac- 
teristic dimension i s  R >>I. Their velocity will be as- 
sumed small, u << R/T. We put for simplicity v" = 0. 

The possible existence of nonsingular vortices in 
3He-A was discussed inc1*211. The structure of such a 
vortex can be described by introducing the Euler angles 
a, 6, y, that define the position of the triad of unit vec- 
to r s  A', A", 1. For  example, 1= (sin6 cosa,  sin@ sin@, 
cosp). The superfluid velocity, according toCz0', i s  giv- 
en by 9 = -(cos@Va+ vy)/2m. Let a = -y = cp, where 9 
i s  the azimuthal angle in a cylindrical coordinate frame, 
and P(p) ranges from zero at p = 0 to s at p >>R. The 
superfluid velocity 

vanishes at p = 0, and i ts  value at p >> R is v t  = l/mp. In the 
presence of a superfluid flow with velocity Vs averaged 
over the volume, the vortex is acted upon by the Magnus 
force. The velocity of the steady motion of the vortex 
i s  determined by the balance of the Magnus force and 
the friction force due to the cross  viscosity (this cir- 
cumstance was pointed out inc2"). To derive the balance 
equation for the forces we write (37) in the form2' 

The functional 5 is a quadratic form in the gradients of 
the components of the order parameter *: 

We now employ a precedure used ea r l i e f  to analyze 
the motion of vortices in superconductors, We put 

where *(O' corresponds to the immobile vortex and the 
correction I, i s  proportional to the vortex velocity IuI, 
after which we linearize (42) with respect to I,. The 
left-hand side of (42) becomes after linearization 

It i s  furthermore obvious that if the function Q(O'(r) sat- 
isfies the equation 65/6!P* = 0, then the function Q"O'(r 
+ a) + (av)@(O) satisfies the same equation, where 
a is an arbitrary constant vector. We have 

where (6~/6?!*~) ,  is obtained from (6~/6!!!*~), by re- 
placing *, with 9, = (av)*(O'. We make up the combin- 
ation 

where the integration i s  over a cylinder surrounding the 
vortex and having a radius much larger than R. It i s  
easy to verify that this combination i s  an integral of the 
divergence of some vector and reduces to an integral 
over a remote surface at large distances from the vor- 
tex we have l =  const. and Q, = i @ , * ( O ' ,  ?!, = ~@,\L'O', where 
4, = 2mV8r, which corresponds to the presence of a su- 
perfluid flow with velocity VS a t  infinity, and a, 
= (aV)4,, 4, = 2p. Using the definition of the superfluid 
current j,S = 2m65 / 6 ~ , 9 ,  we can show that expression 
(43) i s  equal to 

where pi  is the component of the superfluid-density 
tensor in a direction perpendicular to 1, and b is the 
length of the vortex. With the aid of (43) we get 

where H = (271/m)n, is the circulation of 9 over an in- 
finitely remote contour. 

In the generai case i t  i s  difficult to solve the kinetic 
equation, and we confine ourselves therefore to temper- 
atures close to T,. With the aid of (39) we get 

where we have replaced the derivative with respect to 
time by -(u V). Expressing 1 in terms of the Euler 
angles and integrating with respect to the azimuthal 
angle cp, we arrive a t  the balance equation f o r  the 
forces 
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where 

is a number of the order of unity. 

The nonsingular vortex in 3 H e - ~  moves perpendicular 
to the incident superfluid flow. This situation is analog- 
ous to the motion of vortices in dirty superconductors 
(see, e.g.,C221), but differs from ordinary superfluid 
helium, where the vortex mainly with a mass-averaged 
velocity u = (pa? + pnV")lp (seecm1). The difference i s  
due to the fact that the vortex in ordinary He-I1 i s  a 
quantum object whose motion i s  determined by scatter- 
ing of excitations by such an object. In our situation, 
on the other hand, the probability of scattering of the 
excitations by the vortex i s  small  compared with the 
probability of their collisions with one another. In this 
sense, the nonsingular vortex is a hydrodynamic object. 

By way of a soliton example, we consider a particle - 
like soliton, the possible existence of which was noted 
by Volovik and ~ i n e e v [ ' ~ ]  (soliton of the f i r s t  type). It 
has an energy 3 =ApSR/nz2 and a velocity [ul= B / ~ R  in 
the direction of the vector 1 at infinity (z axis), where 
A and B a re  constants on the order of unity. When the 
soliton moves, the friction with the normal excitation 
decreases its energy, and the soliton grows smaller. 
It i s  clear that one can speak of a soliton only in the 
case when the "collapse" rate i s  smaller than lu [ ,  and 
we assume therefore in first-order approximation that 
the soliton i s  displaced a s  a whole: q =*(')(r - ut). Let 
us calculate the free energy lost by the soliton 

Expressing 65/611r* with the aid of (42) in terms of the 
correction to the distribution function (39), we obtain 
near T, 

where 7)= ICR, and 5 i s  a constant of the order of unity: 

The expression for 17 recalls the Stokes formula for vis- 
cous friction in flow around a solid. 

It i s  easy to obtain the lifetime of the soliton 

The rate of soliton collapse i s  

Near T ,  we actually have 1 R 1 << 1 u [, but a t  !f" A it may 
turn out that I R  I - [ U  1. Under these conditions the sol- 
iton i s  either strongly distorted by the friction, or i ts  
existence becomes impossible. 

In conclusion, the author thanks G. E. Volovik and 
Yu. N. Ovchinnikov for useful discussions. 

"1t follows from (37) that the corrections to Y are  spa11 com- 
pared with e,, when wr << 1 (or wr <<A/T near T,) in accord 

- with the statement in the Introduction. 
"1n this section we use the usual gauge for the order parame- 

ter.  
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