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Comelators d the fluctuations of the lattice-deformation field and the defecton distribution functions are 
obtained for a quantum crystal of the Fenni type. It is shown that in the case of Rayleigh scattering of 
light in solid ~ e ' ,  observation of collective excitations, which are coupled oscillations of the lattice sites 
and of the defecton density, may turn out to be realistic. 

PACS numbers: 67.80.Mg, 78.35.+c 

1. INTRODUCTION 
light, the differential scattering coefficient, and the 
neutron reflection coefficient are  expressed with the 

It is known that quantum crystals are  characterized aid of known relations (see, e. g. ,C4*51 ) *  
by a large overlap of the wave functions of the neigh- 
boring atoms, Therefore a description of such crystals 2. FLUCTUATIONS OF STABILITY IN A QUANTUM 
in the language of small deviations of the atoms from CRYSTAL 
the equilibrium positions in the crystal-lattice si tes is To calculate the fluctuation correlators we use for a insufficient. The delocalization of the atoms in cry- quantum crystal of the Fermi type the phenomenological 
stals of helium isotopes (and their solutions) leads to model proposed inc4]. In this model the state of the 
a number of pure quantum effects, the most pronounced crystal is characterized by a lattice deformation field of which is quantum diffusion. This effect, f i rs t  pre- u(r, t )  and by the quasiparticle distribution function 
dicted by Andreev and Lifshitz, has by now been well 

n(p, r, 1 ) .  The change produced in the thermodynamic investigated experimentally (see the reviewt2]). potential of the crystal by long-wave distortions u,(r,  t) 
Andreev and ~ i f s h i t z ~ l l  have called attention also to 

the fact that if the atoms are  not localized in definite 
sites, the requirement that the number of si tes be equal 
to the number of atoms is not obligatory. As a result, 
gapless excitations of a new type-zero-point defec- 
tons-can exist in quantum crystals. A crystal con- 
taining such excitations should reveal simultaneously 
properties characteristic of a solid and of a liquid. In 
particular, as  noted in ''I, in a Fermi-type crystal with 
zero-point defectons there can exist, besides the usual 
acoustic oscillations, also collective excitations of the 
zero-sound type, accompanied by oscillations of the 
crystal density when the lattice si tes a re  immobile. A 
theory that d e ~ c r i b e s  such excitations was developed by 
Dzy aloshinskii, Kondratenko, and ~ e v c h e n k o v . ~ ~ ]  

The most convenient and direct method of investiga- 
ting the high-frequency spectrum of the excitations of 
condensed bodies i s  the scattering in them of light o r  

of the crystal lattice and by the perturbation ~ n ( ~ , r ,  t) 
of the single-particle density matrix i s  given according 
toc3] bv the formula 

where 

cO(p) and f(p,p') are  the unperturbed energy and the Lan- 
dau correlation function, 1 is the chemical potential, 
and 5,(p) and g,,(p) are  parameters that describe the 
connection between the perturbations of the lattice and 
of the quasiparticle distribution function. 

slow neutrons. If the body temperature and the fre- 
The corresponding change in the single-particle en- quency of the natural oscillations are  such that the weak- ergy isC3] damping condition is satisfied, then sharp peaks a re  

produced in the spectrum of the particles inelastically 6~ ( P ,  r, t )  =cp ( P ,  r, t )  
scattered at a given angle, and a re  due to emission and d'p' 
absorption of collective excitations. + S p a  J-ii-Tf n) ( P . P ' ) ~ ~ ( P ' .  r, f ) .  (3) 

A theory of Rayleigh scattering of light in a quantum 
liquid of the Fermi type (liquid ~ e ~ )  was developed by To calculate the correlators of the fluctuations i t  i s  

Abrikosov and ~ha la tn ikov .~~ '  For scattering and re- convenient to change over from the variables 6n and u 
to new variables for which 651 is a quadratic form. To 

flection of slow neutrons from the surface of a Fermi this end, we represent the perturbation of the single- liquid, an analogous problem was solved by A. Akhiezer, particle density matrix in the form 
I. Akhiezer, and ~ o m e r a n c h u k . ~ ~ '  

an i a2n 
The purpose of the present paper i s  the study of par- ~ ~ C = ~ A + - + A ~ + . . . ,  ac, 2 a&, (4) 

ticle scattering in a quantum crystal of the Fermi type 
(solid ~ e ~ ) .  The main content of the paper is the cal- where no is the Fermi distribution function, 
culation of the density-fluctuation correlator, in terms 
of which the differential extinction coefficient of the A ( P ,  r, t )  * ( P ,  r, t )  + O ( P ,  r, $1, (5) 
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and @(p, r, t) satisfies the integral equation the equations of motion of the perturbations. The solu- 
tions of the equations must next be expressed in terms 
of the random forces, and the correlators of the fluc- 
tuations of the physical quantities in terms of the cor- 
relators of the fluctuations of the random forces. These 
correlators are  determined in accordance with the gen- 
era l  theory of fluctuations. 

(the prime pertains here and below to the argument p). 

Substituting (4) and (5) in (1) and using (6), we obtain 

I au, a h  6a-- J d t  {p,. sd". +A,,.-- 
2 dt d t  dr, dr, 

d'p dn, 
+SP* J ~ G  (aa-v2j  

8pd3p' an, an.' - SP-, J wx-~,(@O'-wl) . 1 

The equations of motion of the perturbations of the 
quasiparticle distribution in a crystal lattice, in the 
presence of random forces, take according tot3' the 
form (we confine ourselves hereafter to the case 5,=0) 

Taking into account (2) and the symmetry properties 
of the coefficients 5,(p) and b,k(p),C31 we have 

I au, a ~ ,  an- - Jd3r  {P,. ~ ~ + A ~ ~ ~ ~  -- 
2 at a t  dr, a ~ . ~  

d'p an. 
j m x v z  

dapd'p' ano an.' 
+spa'* j m x a e ; f P i f . . . ~ ~ } .  

where Z,ano/a€o and pikZk a re  the collision integrals for 
the kinetic equation and the Hamilton equation for the 
lattice; yo and y ,  are  random forces (all the perturba- 
tions a re  considered near the Fermi surface). where 

d'p an. 
P~,=V~~+SP. J-- 

(231)' ae. =, ( P )  =A ( P )  Substituting (4) in (13) and (14) and taking (5), (6), 
(lo), and (12) into account we obtain for the variables 
v(p, r, t) and u(r, t) the equations d'pd'p' an, an,' 

-Spa.. J T - - f p p e = i ( ~ ) = b ( ~ n ) ,  (231) a ~ ,  a e l  

d'p an  
A,wm=Lwm+Sps j r L Z i h ( ~ ) z l m ( ~ )  

n)' de, 
d3pdap' an, an,' 

f p p e z i A ( ~ ) z ~ m ( ~ ' ) .  

ac, a2u, 
vi~--Aiktrn- 

ata ar,ar, The functions Zi(p) and Z,,(p) are  solutions of the inte- 
gral equations 

d'p' an; 
3, ( P )  -Sp.. j y - f p p . %  (P') -E, ( P I ,  

(231) aeo 
(11) 

d'p' an; 
ZiA(p)  -Sp.+ j m z f p p ~ Z , h ( ~ ' )  = L A ( P ) .  (12) 

Following the general method of fluctuation theory, 
we must now determine the time derivative of the ther- 
modynamic potential and represent i t  in the form 

The variable v introduced by us characterizes the 
non-equilibrium character of the quasiparticle distribu- 
tion function. At v=O the change of the distribution 
function n is due entirely to the change of the quasipar- 
ticle energy @(p, r, t) in the lattice-deformation field, 
which is partially screened because of the interaction 
between the particles. 

where k'j' are  the generalized thermodynamic veloci- 
ties and ~ ' j '  are  the generalized thermodynamic forces 
corresponding to them. 

Differentiating (8) with respect to time, using the 
equations of motion (15) and (l6), and recognizing that, 
since the system is closed, there is no energy flux 
through i ts  boundary, we obtain 

The stability of the quantum crystal calls for the inte- 
gral quadratic form (8) to be positive-definite at arbi- 
trary values of the variables v(p, r, t), Bu,(r, t)/8t and 
Bu,(r, t)/Br,. Besides the stability conditions obtained by 
~ o m e r a n c h u k [ ~ ~ f o r  a Fermi liquid, the stability of aquan- 
tum crystal requires also that the tensors PikandAik,, be 
positive definite. This imposes additional limitations on 
the functions 5, (p), g,,(p) and&, p') . Whereas the Pom- 
eranchuk conditions imposed on the function&, p') corres- 
pond to the requirement that the Fermi surface be stable, 
the conditions that the tensors Pi, and A,,,, be posi- 
tive-definite correspond to the requirement that the 
crystal lattice be stable. 

du, d ' p  d n  d= Jd3r { S i - p . h ( b + ~ h )  -spa j w c ~ ( I o + ~ * )  

d'pdp'  on, an,' 

We note that the equations of motion for the spin-de- 
pendent part  of the perturbation of the distribution func- 
tion can be regarded, within the framework of the 
theory considered here, as unrelated to the lattice de- 
formation. We shall henceforth confine ourselves to 
spin-independent perturbations. In addition, we shall 
assume for simplicity that the Fermi surface is spher- 
ical'' and choose the collision integrals in the simplest 

To obtain the fluctuation correlators we use the known 
method used in Fermi-liquid t h e ~ r ~ . ~ ~ ' ~ '  This method 
implies the introduction of sources (random forces) into 

V .  G .  Syshchenko and E. M. ~ h u d n o v s k i  784 784 Sov. Phys. JETP 47(4), April 1978 



form that satisfies the conservation laws: stantial. In the case of a cubic crystal, the tensor 
structure of pi,, C,,, via, A,,,,,, can be substantially sim- 
plif ied 

P*-P~,, CU-C~Y, tlp==t16*, 

hab= (At-Wt) 8y6lm+At (6im6~1+81rsbl)). 
(26) I au, 

zi(u}- --- 
T, at ' (20) 

where Py  are  associated Legendre polynomials, 6 and 
cp the azimuthal and polar angles in momentum space, 
and 7, and 7,  are  the relaxation times of the distribu- 
tion function and of the lattice deformations. 

We now express with the aid of (15) and (16) the quan- 
tities d(r, t )  and u(r, t )  in terms of the random forces. 
Since this is a rather complicated matter in the general 
case, we confine ourselves to the zeroth harmonics 
in the expansions of f(p,pl) and c(p) in spherical func- 
tions on the Fermi surface. Leaving out the sequence 
of cumbersome manipulations, we obtain for the Four- 
i e r  component d(q, w) 

Expanding v(p,r,t),f(p,pt) and y,(p,r,t) in spherical 
harmonics near the Fermi surface and comparing (17) 
with (la),  we see that the generalized thermodynamic 
velocities and forces can be chosen in the form 

where 
A-Ar+CoQuqcq~, 

where Fi =pF2f,/n2v,, and p, and vF a r e  the limiting 
Fermi momentum and Fermi velocity. 

In accordance with fluctuation theory, the coeffi- 
cients of the linear relation between the thermodynamic 
forces and velocities determines the random-force cor- 
relators averaged over the fluctuations. Establishing 
this relation in accord with (21)-(24), we obtain for the 
Fourier components of the random-force correlators 

, , 
(y,"yo ),.==O for l=O,  I. 

1%"' F 
( ~ o f m ~ e  )rP2@ ( N ~ c I ) ~  ll~b,-m~~tVI(2~+I)/TnPFa( I + l), 21+ 1 132:  

(~,yl>,,==2o(.V~+ l)p,,-IT,-', (23) 

y =  PF2/$vF is the defection state density at the Fermi 
level. 

The Fourier component of the lattice-deformation 
field produced by the random forces is given by 

where N ,  i s  the Planck distribution function. 

where fiij is obtained from Dtj by the substitution A, 
-&: 3. CORRELATORS OF THE FLUCTUATIONS OF THE 

PHYSICAL QUANTITIES 
0 76,' A,-gA, X1=h,- --- 

qv, A, l+Fo ' 
According to ~ z ~ a l o s h i n s k i r  et al.c31 the change of 

the particle-number density in a quantum crystal is 
due to the change in the quasiparticle-number density 
with changing lattice density: 

The singularities of d(q, w) and u(q, w) yield the spectra 
of the natural oscillations of the quantum crystal. 

The correlators of the fluctuations of d(q, w) and 
u(q, w )  can now be expressed with the aid of relations 
(27) and (29) in terms of the random-force correlators 
(23). Omitting the cumbersome manipulations, we 
present the final expressions for (d2), (u, u,) and (du,): 

where q,, is a symmetric tensor of second rank (for 
more details on the properties of q,, seeL3]). Substi- 
tuting here the expression (4) and taking (5) and (6) 
into account, we obtain 

dap an, 
n.=n.+ SP* j wr Z i h ( ~ ) .  

The second term in (24), in accordance with the meaning 
of v (see above), i s  the change produced in the quasi- 
particle density by the nonequilibrium character of the 
distribution function. We introduce henceforth the 
symbol d(r, t )  for this term. 

here 

The particle-density fluctuation correlator is expres- 
sed, according to (24) in terms of the correlators (31)- 
(33): 

We shall consider hereafter only the bcc phase of 
He3, for which the quantum effects a re  the most sub- 
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where 

When (26) is taken into account, the dispersion equa- 
tion for the natural oscillations breaks up into equa- 
tions for the longitudinal and transverse waves: 

where A, is defined by 

We see that only the longitudinal lattice vibrations are  
coupled with the oscillations of the quasiparticle dis- 
tribution function. This coupling, which is general is 
not small, vanishes in the limit a t  b,=O. The relation 
(35) then breaks up into two equations, A, =O and A,=O, 
which coincide with the dispersion equations for longitu- 
dinal lattice sound in an ordinary crystal and for zero 
sound in a Fermi liquid. 

Under the assumptions made, the expression for the 
correlator of the transverse lattice fluctuations has, 
according to (32), the same form as in an ordinary cry- 
stal: 

The fluctuation correlators (dZ), (du), (u;')u:')) and 
( 6 ~ ' )  a re  proportional to 16 1 '2 and have poles only for lon- 
gitudinal coupled oscillations. We point out that in the gen- 
era l  case of strong coupling between to oscillation modes 
described by (351, the pole residues corresponding to the 
two modes a re  of the same order of magnitude for the 
lattice-deformation fluctuation correlator and for the 
quasiparticle-density fluctuation correlator. There- 
fore in the case of strong coupling the distinction be- 
tween defect-density waves and lattice sound is only 
arbitrary. 

According to (24), the particle-density fluctuation 
correlator can be represented in the form 

It is easily seen that at bo=O the density correlator 
breaks up into two terms. The f i rs t  is proportional to 
( ~ , l ' ~  and describes the fluctuations of the distribution 
function. The second is proportional to I A, 1 " and cor- 
responds to the lattice fluctuations. The expressions 
for these terms coincide with the known expression for 
the density-fluctuation correlator in a Fermi 
and in an ordinary crystal (see, e .  g. ,['I). 

Weakly damped natural oscillations exist at o >qv, 
when there is no Landau damping. In the limit Fo >> 1 
the dispersion equation yields two oscillation modes 
with linear dispersion law and with velocities given by 

The inequality s:,~>O is satisfied if the coupling of the 
quasiparticles with the lattice is not too strong, 

and is one of the conditions for the stability of a quan- 
tum crystal. 

The condition F,, >> 1 can obtain if  the defect density 
is large enough. In the opposite limiting case of low 
defecton concentration (at low values of the state den- 
sity y), the longitudinal oscillations of the lattice and 
of the defect density are  weakly coupled; the phonon 
phase velocity is close to its value s, = ( ~ , / p ) ' ' ~  in an 
ordinary crystal. 

The second oscillation mode in the case of low defec- 
ton concentration can propagate of the inequality (41) i s  
satisfied. Its velocity is close to the Fermi velocity 
and is equal to 

The density-fluctuation correlator, when damping is 
neglected, has 6-like maxima at the natural-oscillation 
frequencies and i s  determined in the case of low defec- 
ton concentration by the expression 

4. LIGHT SCATTERING IN  SOLID ~e~ 

The differential light-extinction coefficient is connec- 
ted with the density-fluctuation correlator by the rela- 
tion 

where D is the permittivity, N is the density of the cry- 
stal  atoms, o and q are  the changes of the frequency and 
momentum of the scattered light, 8 is the scattering 
angle, and o0 is the frequency of the scattered light. In 
the limit of weak coupling between the quasiparticle 
density and the lattice vibrations, the ratio of the ex- 
tinction coefficients at these vibrations (h, and h,, res- 
pectively) is of the order of 

where M is the helium-atom mass, M* is the quasipar- 
ticle effective mass, N, is the quasiparticle density, 
and N, is the lattice-site density. 

The presence of a degenerate defecton liquid leads 
to the appearance of additional satellites in the scat- 
tered-light spectrum. Four satellites corresponding 
to the absorption and emission of two collective-excita- 
tion modes, a re  separated from the fundamental line 
by a distance 

786 Sov. Phys. JETP 47(4), April 1978 V. G. Syshchenko and E. M. ~ h u d n o v s k i  786 



S I  d 6 
o=*2-oo sin-. 

C 2 

To estimate the extinction coefficient and the fre- 
quency shift of the scattered light we note f i rs t  of all 
that all the formulas obtained by us a re  valid in a re- 
gion of temperatures that a re  much lower than the 
quasiparticle Fermi energies. At low temperatures 
the presence in the crystal of delocalized fermions 
should lead, besides the high- f requency effects con- 
sidered above, to a contribution linear in temperature 
to the heat capacity. On the basis of the experimental 
data for liquid He3 (see, e. g. ,['I), one can expect the 
heat capacity to become linear at a temperature lower 
by one order than the quasiparticle Fermi energy. At 
T >O. lc, - 0.1 K the Fermi excitations in liquid He3, 
in view of the strong interaction with one another, are  
not well-defined quasiparticles and the temperature de- 
pendence of the heat capacity is determined principally 
by the phonon contribution. 

For solid He3, the Fermi energy of the quasiparticles 
is apparently low in comparison with the Fermi energy 
in the liquid phase. Accordingly, the linear tempera- 
ture dependence shifts into the region of much lower 
temperatures. The presently available measurements 
of the heat capacity can therefore not yield data on the 
number of quasiparticles in solid ~ e ~ .  

An appreciable delocalization of the defects is possi- 
ble only in an ideal quantum crystal in which there i$ 
magnetic order besides the spatial ordering ofJhe 
atom. Recently Andreev, Marchenko, and Meiero- 
vichCB1 have advanced a hypothesis, based on magnetic 
 measurement^,'^' that zero-point vacancies a t  a con- 
centration 6x 10'~ exist in magnetic fields exceeding 
0.2 T. Assuming that the quasiparticle effective mass 
i s  of the order of the mass of the ~e~ atom, Andreev 
et a l .  obtained for the Fermi energy the value E ,  

The coefficient of light extinction on the zero-point 
oscillations of the vacancy density in solid ~ e ~ ,  at M * - M and N, - 6x 10'3~,, amounts according to (45) to 
0.1% of the coefficient of light extinction on ordinary 
sound waves. The relative change of the light fre- 
quency i s  here lower by one order of magnitude than 
the corresponding value for scattering by phonons, and 
i s  within the present experimental capabilities. 

The authors thank A. J. Akhiezer, I. A. Akhiezer, 
and I. E. Dzyaloshinskii for useful advice. 
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Measurement of internal friction in solid He4 
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The internal friction in crystalline He4 (molar volumes 19.2-20.95 cm3/mol) was investigated at -15 
kHz. The temperature dependence of the logarithmic damping decrement down to 0.55 K and the 
dependence of the damping on the oscillation amplitude were measured. It is concluded on the basis of the 
results that the principal internal-friction mechanism is due to dislocations. The temperature dependences 
of the damping were reduced by the theory of Granato and Lucke; a number of dislocation parameters are 
obtained. 

PACS numbers: 67.80. -s, 6 1.70.Le, 62.20.Pn 

Measurement of internal friction is an effective means ~ e r e r o v i c h ~ "  by the relation 
of studying defects in solids. As shown in crys- 

T/U 
talline helium the quantum character of the point defects AvZ-N(T)- , 
(vacancies) leads to a peculiar dependence of the intern- 
a l  friction on the temperature and frequency. The loga- where N(T) is the equilibrium vacancy concentration and 
rithmic damping decrement A,, when the crystal is in- varies exponentially with temperature, N(T)a exp(fO/T), 
homogeneously deformed is described according to r a  T-' is the relaxation time, and w is the cyclic fre- 
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