
These estimates a r e  made under the assumption that &, 
k,, k,, k4 a re  of the same order of magnitude. We note 
that in the expression (5.4), the chief contribution is 
made by the region of integration kt- L", and in (5.5), 
by the region kt- k, . 

The turbulence spectrum is determined from Eq. 
(2.14) for l,,,. The increment to the vertex 6T!:l3,= 
M2T1,,,, has the same index of homogeneity a s  the ver- 
tex fo r  the incompressible liquid. Therefore, i t  
does not lead to a change in the Kolmogorov exponent. 
The increment 

leads to the appearance in the equation for  l,, of addi- 
tional terms with the parameter of smallness W ( k ~ ) , b .  
They should be cancelled by the terms which arise be- 
cause of the correction (5.1) to the spectrum J,. Thus 
f (k)= (kL)"I3, . 

This result has a simple meaning; in correspondence 
with the Kolmogorov hypothesis that the spectrum inter- 
action is local, the value of Jk in the inertial interval of 
the scales (kL > 1) cannot depend on the velocity of mo- 
tion v, in the scale L, i.e., on M2=vZT/c:. Only the fluc- 
tuations of density due to motions of the liquid v(k) of 
the same scale 1/k a r e  important. Taking it into ac- 
count that in the inertial interval v(k)= vT(k~)"I2,  we- 
obtain 

It can be shown that the relative correction to the spec- 
trum (6Jk/Jk) is of the order of the square of the Mach 
number calculated from the circular ve;ocity of motion 
of vortices of scale l/k. 
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Auxiliary boundary conditions in the theory of additional 
light waves and excitons in bounded crystals 

S. I .  Pekar 
Institute of Semiconductors, Academy of Sciences of the Ukrainian SSR, Kiev 
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Frenkel excitons [Phys. Rev. 37, 17, 1276 (1931)l and corresponding optical excitons (optical waves, 
polaritons) are considered for a semiintinite crystal of any symmetry but possessing an inversion center. It 
is shown that the solutions for a semiinfinite crystal can be constructed as linear combinations of solutions 
for an infinite crystal only in the case of normal incidence or for selected wave polarizations, and if the 
interactions of close ( A )  or distant ( B )  cells in a crystal predominate. The coefficients of such linear 
combinations are found from auxiliary boundary conditions whose justification is the main task of the 
present paper. It is shown that these auxiliary boundary conditions, proved by the present author for the 
case of degenerate excitons and restricted crystal symmetries [S. I. Pekar, Sov. Phys. JETP 6, 785, 
(195811, are always valid in case A ,  but in case B they apply only for normal incidence and certain 
polarizations of light. Auxiliary boundary conditions of a new type are obtained for all other cases and for 
dipole-forbidden radiative transitions. The results obtained agree, in the appropriate special cases, with 
microcalculations based on the simplest model of a crystal. 

PACS numbers: 71.35.+z, 71.36.+c, 61.50.Em 

1. INTRODUCTION stal. Their amplitudes can be described uniquely in 
terms of the amplitude of a wave incident on a crystal 

According to  the conventional theory of birefringence, from vacuum, using the well-known conditions of con- 
two orthogonal waves of the same frequency and with tinuity of the tangential projections of an electron and 
the same direction of propagation may travel in a cry- magnetic fields. However, in the vicinity of the ex- 
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citon absorption band, there may exist additional op- 
tical waves in a crystal, i.e., there may be more than 
two linearly independent solutions of the Maxwell equa- 
tions. In this case, the above continuity conditions a re  
insufficient and one has to impose auxiliary boundary 
conditions. Clearly, this does not imply any new as- 
sumptions because the reaction of a crystal to  an optical 
perturbation is described completely by the Schrijdinger 
equation.'' Allthat is necessary is to use the Schrtidinger 
wave function for a bounded crystal. However, such a 
crystal ig a spatially inhomogeneous system: it does 
not have the translational and point symmetries of an 
infinite crystal, and its wave functions a re  not charac- 
terized by three-dimensional quasimomentum, so that 
we are  not allowed to introduce a coordinate-independent 
permittivity, assume that the exciton quasimomentum 
is equal to the wave vector of light, etc. Therefore, 
it is technically simpler to use the solutions for an 
infinite crystal as a basis and then, at the end of the 
calculations, obtain with the aid of auxiliary boundary 
conditions those linear combinations of solutions which 
correspond to a bounded crystal. 

It has been possible to develop a theory of additional 
light waves in an infinite crystal without specifying ex- 
citons but defining them as "excitations in an ideal in- 
sulator characterized by single continuous quantum 
number, which is the quasimomentum k (all the other 
quantumnumbers a re  discrete)."[ll However, a s  pointed 
out in that theory, [I1 the auxiliary boundary conditions 
may vary with the exciton model. The conditions ob- 
tained in the author's theoryc1] for Frenkel excitons 
were subject to the following restrictions: a) the ex- 
citation in a unit cell of a crystal was assumed to be 
nondegenerate; b) an exciton radiative transition was 
assumed to be allowed in the dopole approximation; 
c) the surface of a crystal coincided with one of i ts  
mirror symmetry planes; d) the exciton theory allowed 
only for the interaction between neighboring unit cells 
in a crystal because the importance of the interaction 
between the more distant cells became apparent later.[" 

In this theory, the author also calculated the reflection 
coefficient of light of the surface of a crystal and the 
transparency coefficient of a crystal boundary. 

In the present paper, we shall impose auxiliary boun- 
dary conditions also in the case of Frenkel excitons but 
without all the above restrictions. We shall assume 
that the crystal has an inversion center. It must be 
stressed that the auxiliary boundary conditions follow 
uniquely from the type of Schradinger wave function 
of an exciton in a bounded crystal (see below). Like 
this function, the conditions a re  approximate. The 
following reasoning shows that is it impossible to by - 
pass this purely mechanical problem: away from an 
exciton resonance in the direction of red or  violet 
frequencies or in the limit c -w  (Ref. 3), some of the 
optical waves (optical excitons) a re  known to trans- 
form into SchrSdinger excitons and the theory of their 
reflection from the surface of a crystal simply reduces 
to the theory of exciton reflection. Thus, the purely 
mechanical problem mentioned above has to be con- 
sidered even in asymptotically limiting cases, and this 

applies even more to the general case. 

2. PRINCIPAL DEFINI'TIONS 

Let a,, 4, and a, denote the lattice periods, where 
integral vectors n = nlal + %+ + n3a, give the positions 
of the centers of unit cells; Il, is the ground state of 
a cell and cp, represents excited states of the cell; v 
labels the degenerate states f v  = 1,2, .  . . , s ) ;  

is the state of the main periodic part of a crystal which 
contains an excited cell m; S is the operation of anti- 
symmetrization of a function with respect to the electron 
coordinate. 

The wave function of an exciton is 

The coefficients a,, a re  found from the system of 
equations 

where H,, ,,, rH,,,, -, represents the familiar matrix 
elements;[41 & is the exciton energy. For  an unbounded 
crystal, the quantities nz,, m,, m,, n,, %, and n, can 
have any integral values from -.o to w. 

The translational symmetry of the system (1) suggests 
the type of solution: 

where k is the exciton quasimomentum. Substituting 
Eq. (3) in Eq. (2), we obtain 

From this system of equations and the normalization 
condition of the function (I), we find the quantities 
&,(k) and a:,!'&) (1 is the number of the solution, I = 1, 
2,. . . ,s). We also find that 

1 
a,',"' (k) a!:'' (1;) = - 6,:,, 

v= 1 
G 

where G3 is the number of cells in the main part of the 
crystal considered. 

Allowing for the overlap of the wave functions and 
the exchange interaction between the nearest neigh- 
bors alone, i.e., assuming n - m = i a i  ( i= l ,2 ,3 ) ,  we 
can regard the potential energy of the interaction be- 
tween the more distant cells a s  of the dipole-dipole 
type, given by 

' p , '  I '  (I).'. 11-11lJ (P"'. 11-1'1) 
F (p,', y.', t i - m )  = ------ - 

111-111/3 111-n11" 
. (6) 

where p; is the dipole moment of a cell n, expressed in 
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terms of the coordinates of the particles in the cell. 
Introducing p, = ($, 1 p: I qd, we can showc2 that 

where X,,,+#O only for the neighboring cells (for n' 
=*a,) and, in these cases, this last quantity supple- 
ments the right-hand side of Eq. (7) so  that the correct 
value is obtained." More rigorously, we have to  en- 
sure that the terms (48) supplement the expression in 
the braces in Eq. (47) until the correct value is obtained. 

The substitution of Eq. (7) into Eq. (4) makes it pos- 
sible to interpret formally the sum 

as the potential energy of the interaction of a dipole p:, 
located at the origin of the coordinate system with the 
dipoles p,e""' located at all other lattice si tes n'. We 
are  interested in small values of k for which &,ai) 
- lom2 << 1 and we can then replace the sum over n' by 
an integral and regard the system of dipoles as con- 
t i n u o ~ ~ . [ ~ '  In this way, we obtain 

where v is the volume of a unit cell, and 

For example, in the absence of degeneracy, intro- 
ducing for a fixed direction s the effective exciton mass 
~l/l(s) and, assuming that s = 1 and CL = v = 1 in Eqs. (4) 
and (9), we obtain 

In Eqs. (9) and (lo), an estimate of the ratio of the 
third to the second term (for s not perpendicular to p,) 
gives 

This ratio plays an important role in the subsequent 
treatment. 

3. FRENKEL EXCITONS IN  A SEMIINFINITE CRYSTAL 
AND RELEVANT BOUNDARY CONDITIONS 

Let us assume that the surface of a crystal is the 
plane xy parallel to the vectors a, and %. The crystal 
is in the half-space z > 0 and the half space z < 0 is a 
vacuum. 

There a re  now no molecules at the lattice sites n 
characterized by n, s 0. Consequently, in the system 
of equations (2), the quantities n, and rn, assume only 
the positive values 1,2,3,. . . . We shall call these the 
truncated equations. We shall seek their solution in the 

form of a linear combination of solutions of the problem 
of an infinite crystal, all corresponding to the same 
energy &. Since, along the x and y directions, there is 
still translational symmetry, we shall include in our 
linear combination only those solutions which have the 
same given tangential projection of the quasimomentum 
equal to &. 

If the constant-energy surface of an exciton I is el- 
lipsoidal in the k space and if i t  is also true of other 
cases (see below), then, for given values of & and &, 
the quasimomentum may assume two values which we 
shall denote by k(') and E"). In the first  of these states, 
the z projection of the group velocity of the excitons is 
directed toward the surface of the crystal and we shall 
call it the incident wave. In the second state, the z 
projection is directed into the crystal and we shall call 
i t  the reflected wave. 

This linear combination is of the form 

This combination is definitely a solution of the complete 
system of equations (2). Therefore, after substituting 
it in the truncated equation, the remaining residue is 

It is necessary to select the coefficients C, and C, in 
such a way that this residue vanishes for all values of 
p and m with m, 1. 

A. Case of large I I Ill I ratios 

We shall consider the case when the ratio (11) i s  
much greater than unity, i.e., when the small number 
of matrix elements of the interaction of close (adjacent) 
cells makes a much greater contribution to the sum (2) 
than the infinitely large number of all the other terms 
representing the interaction of the more distant cells. 
We can then confine the sum (13) to just a few initial 
values of the index n3 and replace e~p{in~(k(~ 'aJ}  in 
Eq. (12) with unity. The substitution of Eq. (12) into 
Eq. (13) and the requirement R,, = 0 gives the following 
system of equations: 

and hence we obtain the required relationship between 
the exciton amplitudes C, and C,: 

Thus, on condition that Eq. (15) is satisfied, the linear 
combination (12) is the solution of the problem of a 
semiinfinite crystal. The corresponding wave function 
(1) becomes 
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where *,, are  the solutions for an infinite crystal taken 
in the main periodic part of the crystal, one of whose 
faces is the plane xy. In Eqs. (12) and (16), the ampli- 
tudes of all the incident waves C, can be specified in an 
arbitrary manner but the amplitudes of all the reflected 
waves e, a r e  expressed uniquely in terms of C, on the 
basis of the conditions in Eq. (15). 

The perturbation of a semiinfinite crystal by any time- 
dependent infinitesimally weak electromagnetic field, 
deformation, etc. with smooth variation in space creates 
a state 

where the coefficients C,, of the reflected waves a re  
expressed in terms of the coefficients of the incident 
waves, 

is  the ground state of the crystal, and *' is a small  
sum of all the other states orthogonal to  Q0 and to all 
\kskl. In the state (17), a specific smooth macroscopic 
electric polarization appears in the crystal: 

where r is the coordinate of a macroscopic point in the 
crystal. The exciton contribution to the polarization i s  

We can easily show['*51 that 

where the braces contain the first  and second t e rms  of 
the expansion in (k, a,), A, is an asymmetric second- 
rank tensor, and p, = pv/v. If P, + 0, i.e., if the exciton 
transition is allowed in the dipole approximation, we 
can simplify the expression in braces by dropping the 
term linear in k. We then find from Eqs. (19) and (15) 
that 

[P.=(r, t )  12-o=0. (20) 

This is the auxiliary boundary condition obtained by the 
present author earlierc" for the more restricted case. 
If only some of the projections of P, differ from zero, 
the auxiliary boundary condition (20) only applies to  
these P,,(r, t) projections. 

For the projections such that P,= 0, the polarization 
of Eq. (19) is governed-for all values of v-by the term 
in braces which is linear in k. This "quadrupole" term 
of the polarization will be denoted by P:,(r, t). This 
term does not obey the boundary condition (20) but can 
be represented as  the divergence of a second-rank ten- 
sor Q(r, t): 

Since, in this case, the coefficients C,, a re  related by 
the conditions (15), it follows that 

This is the auxiliary boundary condition for dipole- 
forbidden excitons (or for those polarizations of light 
for which an exciton transition is forbidden in the 
dipole approximation). 

There is an infinite se t  of tensors Q which have the 
same divergence and which give the same term P:,(r, t). 
However, the condition (22) should only be applied to Q 
given by Eq. (21). This requires knowledge of the 
characteristic tensor of a crystal  

The same tensor is required in the determination of 
the refractive indices of additional light waves of po- 
larization in which a dipole exciton transition is for- 
bidden. In this sense, the formulation of the auxiliary 
boundary condition given by Eq. (22) does not require 
determination of any new parameters of a crystal. 

The number of conditions given by Eq. (15) is s. The 
number of auxiliary boundary conditions of Eqs. (20) and 
(22) can be much greater than s ,  but not all a re  inde- 
pendent. We can easily show that they are  a l l  equivalent 
to Eq. (15). 

B. Case of small IIIIII ratios 

We shall now discuss the case when the ratio (11) is 
much smaller than unity, i.e., when a small number 
of matrix elements of the interaction between close 
cells makes a much smaller contribution to the sum 
(2) than the infinitely large number of other t e rms  re -  
presenting the interaction of the more distant cells. 
Jn this case, we can simplify the right-hand side of 
Eq. (7) by dropping the second term and then substituting 
Eqs. (7) and (12) into Eq. (13); in this way, we obtain 
the residue of the truncated equation 

R.,, (k) e - I; (p;;p, n-m) e"". 

,,,<C 

Here, the sum over n is again interpreted a s  the energy 
of the electrostatic interaction of a dipole of moment p*,, 
located at a point m, with a system of dipoles of mo- 
ments pvei", located at lattice s i tes  n in the half-space 
n, s 0. If we regard this system of dipoles as  a con- 
tinuous medium with a specific polarization 

1 for E>O 
P ( r )  = 8 ( - ~ ) P , e ' ~ ' .  ( o for E<o 
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we can find its potential p(r )  from the Poisson equation, 
in which the space charge density is p = -VP(r). Con- 
sequently, the potential in the region z > 0  is 

Next, we find that 

Since the linear combination (12) only includes waves 
with a given value of &, the substitution of Eq. (27) 
into Eq. (23) gives 

Now, in contrast to case A considered in the preceding 
subsection, the condition R,, = 0 reduces to just one 
equation 

which i s  insufficient in the s > 1 case to express the 
amplitudes of all the reflected waves C,  in terms of 
the amplitudes of the incident waves C,. A way out of 
this difficulty can be found in many special cases, 
as shown below. 

1. Nornzal incidence (I & ( -0). In this case, L(P$) 
and L(P,) a re  infinitely ~ m a l i ~ u a n t i t i e s  of the order of 

I k, 1. Therefore, the residue of the truncated equations 
(28) vanishes for any value of C, and el. Consequently, 
the distant dipole-dipole interaction gives accidentally 
zero contribution to the residue R,, (although i t  makes 
a large contribution to  the exciton energy). Then, R,, 
is governed by the contribution of the close interac- 
tions, considered in case A above, and C, and e, a re  
related by Eq. (15), i.e., by Eq. (20). - 

2. Exciton polarization PI ,  = PI,  perpendicular to the 
plane of incidence. This may occur for symmetry rea- 
sons (for example, if the plane of incidence coincides 
with the plane of the reflection symmetry of a crystal) 
or in the case whens =1, etc. We then have again L(Pf) 
= L(@,.) = 0, i.e., the exciton amplitudes I' (C,, and el.) 
do not occur in Eqs. (28) and (30). If we assume the 
amplitudes of all the other excitons to vanish, we can 
see that the contribution (28) of the distant interactions 
to R,, again vanishes and R,, is governed by the con- 
tribution of the close interactions, which gives the con- 
ditions of Eq. (20) or the relationships of Eq. (15). It 
follows from P, = PI. that aA,!"(k) =ii$'&). Therefore, 
the relationships (1 5) become 

Hence, C,. can be expressed uniquely in terms of C,. An 

1' exciton reflects without transformation into other 
types of exciton. 

In cases 1 and 2 discussed above, the ratio III/D[ 
can have any value. However, we shall now consider 
only case B and oblique incidence. 

3. s = 3. As is known, in this case, cp, can be se -  
lected in such a way that the basis vectors P, (v= 1,2,3) 
a re  mutually orthogonal and have the same magnitude. 
Inthe case of an infinite crystal, an analysis of the func- 
tions (1) and (3) as an approximation for the wave func- 
tion with the parameters a,, in the direct variational 
method readily yields the energy functional in the form 

where the parameters a,, occur only in P,, in accordance 
with Eq. (29). We can determine them by extremizing 
the energy &&,. . .a,, . . .) subject to an additional 
orthonormalization condition (5), i.e., the condition 

I P ,  1 = const. Thus, i t  remains to  select the extremal 
directions of the vector P,. This procedure is much 
simpler and clearer than the solution of the system of 
equations (4) and (9). Extremization yields a nonde- 
generate longitudinal exciton (PI 1 1  s) ,  whose energy i s  
6 ,  = &,, 1 &,+ 4nv 1 P, l 2  and two transverse excitons 
(P , ,P l , , l s ;P , .~Pr , ) ,  whoseenergy is &,,=&,,,=&,. The 
nature of the ellipsoidal constant-energy surfaces of 
the excitons can be determined by calculating their 
energy more accurately, including t e rms  of the order 
of 1 k 1 '. The longitudinal-transverse splitting 4nv ( P I  1 
in case B is large and, therefore, a longitudinal exciton 
reflected from the surface of a crystal cannot transform 
into transverse excitons or vice versa. Consequently, 
linear combinations of Eq. (12) should include only 
terms representing longitudinal excitons or transverse 
excitons. 

In the case of a longitudinal exciton, Eq. (30) does 
not include a sum over 1 and this boundary condition 
then becomes 

Hence, C, can be expressed uniquely in t e rms  of C,. 

In the case of transverse excitons, the sum (30) 
has two terms: I' and I". We shall only consider the 
case when one of these excitons, for example, l', fits 
the above case 2, L(P,,) =L(P,) =0 ,  s o  that the t e rm 1' 
in Eq. (30) disappears and, therefore, in the case of the 
exciton In,  we obtain a condition of the type (30b), which 
defines uniquely c,, in t e rms  of C,, . 

4. s = 2. In this case, there a r e  two mutually ortho- 
gonal equal basis vectors P, (v = l ,2) ,  which define a 
plane in which the variation of the parameters a,, causes 
the vector P ,  to rotate without change in its magnitude. 
The energy functional 6 ( k , .  . .a,, . . .) is of the same 
form as in case 3. However, its extremum corresponds 
to a transverse exciton (P , , l s ) ,  whose energy is 
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6,, = &,. A second extremum occurs when PI is rotated 
in the same plane and it forms the smallest (or largest) 
angle with s. It corresponds to an inclined exciton 
(L Plz,  s =a), whose energy is 

If a! differs greatly from a/2, then &,2 differs consider- 
ably from d Therefore, on the right-hand side of 

'1' Eq. (12) and in Eq. (30), there is no sum but only one 
of these e ~ c i t o n s  occurs there and Eq. (30) reduces 
to Eq. (30b). The amplitude of a reflected wave is then 
expressed uniquely in terms of the amplitude of the 
incident wave. 

For a! = a/2, we have 6,1 = 6 lz. We shall consider 
only the case when one of these excitons fits case 2, 
discussed above, and i ts  reflection law has the form 
(30a). In Eq. (30), there is then only the second exciton 
and it reduces to Eq. (30b). 

5. s = 1. In this case, Eq. (30) changes directly into 
Eq. (30b) and there is no ambiguity in the reflection 
law. 

For the types of point symmetry encountered in cry- 
stals, the degree of degeneracy does not usually exceed 
3 (accidential degeneracy will be ignored). In all the 
special cases discussed above, the amplitude of r e -  
flected excitons is expressed uniquely in terms of the 
amplitude of the incident wave. The sum (30) then re-  
tains no more than one term, i.e., the condition (30) 
reduces to Eq. (30b) or it is replaced by the condition 
(30a). 

In general, the solution of the problem of a semi- 
infinite crystal cannot be represented a s  a linear com- 
bination of solutions for an infinite crystal. This is 
demonstrated in the next section for optical excitons 
but it can be shown in exactly the same way for 
excitons. 

4. OPTICAL WAVES (OPTICAL EXCITONS, 
POLARITONS) IN  A SEMIINFINITE CRYSTAL AND 
AUXILIARY BOUNDARY CONDITIONS 

The formulas (17) and (19), subject to  the additional 
conditions (15), and the expressions (20) and (22) de- 
duced from them, apply to a semiinfinite crystal per- 
turbed by any weak slowly varying in space electro- 
magnetic, acoustic, or other field. It i s  clear from 
Eqs. (19) and (15) that, for a semiinfinite crystal, we 
cannot expect at all a polarization proportional to 
exp[i(k . r - wt)], even if the perturbation is an electric 
field proportional to exp[i(k .r - wt)]. Hence, it follows 
that a linear polarization response of a semiinfinite 
crystal cannot be described by the permittivity ~ ( w , k )  
and the Maxwell equations do not have particular solution 
proportional to exp[i(k . r - wt)] even before the applica- 
tion of the Maxwell boundary conditions. 

An analysis shows that, in the presence of spatial dis- 
persion and external field sources, the solution of the 
Maxwell equations for a semiinfinite crystal becomes 
much more complex. However, in the absence of ex- 
ternal sources, this solution can frequently be ob- 

tained a s  a linear combination of solutions for an in- 
finite crystal, in the same way a s  has been done for 
excitons in the preceding section. We shall justify 
this method of solution and fine the conditions similar 
to Eqs. (15) and (30), which apply in the case of optical 
waves (optical excitons). 

We shall consider that an exciton radiative transition 
is allowed in the dipole approximation. The energy 
of the interaction of a crystal with an external 
electromagnetic field i s  

where A(r, t) is  the vector potential describing only the 
rotational part of the field (div A =0)  and the sum over 
n is taken over the main part  of the crystal. The state 
of a field-perturbed crystal (17) can be described in the 
form 

It is assumed that the incident light is of frequency w 
=&,(k)/A and that the states included in *' have energies 
sufficiently far  from & , (k) so that \k' can be regarded 
a s  small compared with the second term on the right- 
hand side of Eq. (31) and the contribution of the states 
\kt to the polarization of the crystal can be calculated 
ignoring spatial dispersion but introducing some "back- 
ground" polarizability &(w), which varies slowly with 
w (Ref. 5). 

If only the terms of the first  order of smallness in 
respect of the perturbation W a r e  retained in the se- 
cular SchrlJdinger equation, this equation becomes 

The Maxwell equations can be written in the form 

1 .. 4% . 1 .  A A - - A = - -  P,, El=--A,  El,=-4nP,, 
c2 C C 

where P ( r ,  t) is the specific polarization of a crystal 
given by 

Here, the t e rm with the tensor &(ia/at) represents the 
contribution to the polarization which does not require 
allowance for the spatial dispersion and the subscripts 
"l" and " 1 1 "  represent rotational and irrotational parts 
of a vector. 

The system (32)-(34) describes a light wave in the 
exciton resonance region, i.e., an optical exciton (po- 
lariton). From this equation, we can determine b,,(t), 
A(r, t) and P(r,t). 

In the case of an infinite crystal, we seek the solu- 
tion of Eqs. (32)-(34) in the form 
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and expand an s-dimensional vector b,, ( p  = 1,2, .  . . , s) 
in terms of a complete system of orthogonal s-dimen- 
sional vectors a,':' [see Eqs. (4) and (5)) 

Substituting Eqs. (35) and (36) in Eq. (32), we find that 
allowance for Eq. (4) gives 

iot ~ ( P I ' ,  Ao) 
B, =- 

c & , ( k ) -  ha' 

where w ,= & ,(k)/li and V is the volume of the main per- 
iodic part of the crystal. The substitution of Eqs. (36) 
and (37) into Eq. (34) gives 

Here, T"' is the dyad tensor: TI:'= ( P , ) , ( P T ) ~ .  Equa- 
tion (38) i s  identical with that obtained in the earlier 
p a p e r ~ ~ l * ~ ~  for the general case without specifying the 
exciton model. 

Finally, the substitution of Eq. (38) into the first  ex- 
pression in Eq. (33) gives the following equation for A,: 

Here, n is the refractive index of the light wave and q 
is a tensor projecting a vector on a plane perpendicular 
to s. The condition of solubility of the homogeneous 
equation system (39) is the dispersion equation. Its 
various forms and solution have already been considered 
by the present a u t h ~ r ~ ' * ~ - ~ ]  and by others. Each root 
of the dispersion equation nj(w ) [or k ,(w)], where j is 
the root number, and the corresponding solution of the 
system (39) given by Aoj represent a light wave. The 
number of such roots N exceeds two and it  implies the 
existence of additional light waves. For example, N 
= 5 in one of the earlier treatments by the present 
author.c71 

In the case of a semiinfinite crystal, Eqs. (33) and 
(34) retain their form and only Eq. (32) changes: this 
equation becomes truncated, i.e., in the sum over n, 
v ,  there a re  no terms with n, s 0, and m ,  assumes only 
the positive values 1,2,3, .  . . . Therefore, any solu- 
tion of the problem of an infinite crystal b,,, A(r, t ) ,  
substituted into the equations for a semiinfinite crystal, 
satisfies Eqs. (33) and (34) and Eq. (32) then has a resi- 
due 

This is analogous to the residue (13) in the exciton 
problem. 

In view of the linearity and homogeneity of Eqs. (32)- 
(34), their solutions a re  any linear combinations of par- 

ticular solutions. We shall seek a solution of the prob- 
lem for a semiinfinite crystal in the form of a linear 
combination of the solutions of Eqs. (35)-(39) for an 
infinite crystal. The coefficients of the linear com- 
bination have to  be selected so that the residue (40) 
disappears for all values of C( and m with m, 2 1. This 
method of solution of the truncated equations has been 
used already by the present author, ['I by Mahan and 
Obermair, and by others. 

Since the coefficients in the equations (32)-(34) a re  
independent of t and invariant in the  case of translation 
along a, and &, we can seek the solution of the problem 
for  a semiinfinite crystal in the form Am exp{i(k,r 
-wt)), b,, m exp(i(&m - wt)}, i.e., a linear combination 
can only include solutions with identicalvalues of w and&. 
Therefore, in a dispersion equation, it is necessary to  fix 
wandk, andthen findthe rootsk,,(j= 1,2,. . . , N )  andthe 
corresponding values of A,,, B ,,, and b,,,. An arbitrary 
coefficient in this solution is the absolute value of the 
vector A,, (amplitude of a light wave). 

A. Case of large I I I/I I ratios 

In exactly the same way a s  in the derivation of Eqs. 
(14) and (15), we can show that, in the case of the j-th 
solution, the residue (40) is 

H:,, = - 2 H,,,.,b,, esp ( i (k .n , -o t ) } .  (41) 
nv 

" , G O  

Hence, it follows that the required superposition of so- 
lutions corresponding to R,,,= 0 i s  given by the con- 
ditions 

The above equation represents the auxiliary boundary 
conditions for light waves. They a re  completely 
analogous to the conditions of Eq. (15) because the lat- 
t e r  can also be written in the form a,,= 0 using Eq. (12). 
The number of these conditions in Eq. (42) is  s, i.e., 
it is identical with the number of additional light waves 
in case A. Therefore, these conditions together with 
the Maxwell boundary conditions a r e  sufficient for the 
amplitudes of all the waves appearing in a semiinfinite 
crystal and for the amplitude of wave reflected from 
this crystal to be expressed uniquely in terms of the 
amplitude of a wave incident on the crystal. 

Substituting Eq. (37) into Eq. (42), we can rewrite 
the auxiliary boundary conditions in the form of equa- 
tions for the wave amplitudes A,,: 

The contribution of the excitons in question to the speci- 
fic polarization of a crystal  induced optically, P,,(r, t), 
i s  equal to the second term on the right-hand side of 
Eq. (34). Hence, i t  is clear that Eq. (20) always follows 
from the auxiliary boundary conditions of Eq. (42) and 
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that Eq. (42) follows from Eq. (20). liary boundary conditions for light waves become 

We shall now consider the case of dipole-forbidden 
excitons. In this case, we have P,  = 0 and, therefore, 
the matrix elements of the dipole moment have to be 
considered more rigorously, allowing for the overlap 
of the wave functions of neighboring cells in a crystal. 
Consequently, Eqs. (32)-(34) a r e  modified a s  follows: 
instead of P,, we have now to substitute an operator 
(v,A,), where A, i s  the same second-rank tensor which 
occurs in Eq. (19) and V represents differentiation with 
respect to r o r  m if the function of r o r  m is found on 
the right-hand side. The residue of Eq. (32) st i l l  has 
the form given by Eq. (40). Therefore, the auxiliary 
boundary conditions retain the form of Eq. (42) o r  (43). 
In the formulas (29), (37), (38), and (43), we have to 
replace P, with i(k,A,). 

The exciton contribution to the polarization P:,(r, t )  
is  equal to the second term on the right-hand side of 
Eq. (34), which now becomes 

Hence, we can see that the auxiliary boundary con- 
ditions of Eq. (42) follow from the corresponding con- 
ditions of Eq. (22). 

B. Case of small llI/Il ratios 

If Eq. (40) i s  modified by substituting 

where b,,, a re  given by Eqs. (35), (36), and (39), we 
find-in full analogy with the derivation of Eq. (28)-that 

Hence, we obtain the auxiliary boundary conditions for 
light waves in the form of a single equation 

Substituting here B, ,  in the form of Eq. (37), we find the 
required relationship between the values of A,,. 

The number of additional waves may be greater than 
one. In this case, a single auxiliary boundary condition 
(46) is insufficient. The way out of this difficulty will 
be demonstrated below for specific cases, exactly a s  a t  
the end of Sec. 3 after the derivation of Eq. (30). It 
involves supplementing the auxiliary boundary conditions 
of Eq. (46) with some conditions from Eq. (43). How- 
ever, it is  convenient to consider f irst  the case of a r -  
bitrary values of the ratio I I I ~ I  so  a s  to prove this 
rigorously. 

C. Case of arbitrary I I I/I I ratios 

In this case, it is necessary to retain both terms on 
the right-hand side of Eq. (7). Consequently, the auxi- 

n. 

R - i  exp{- i ( k m  - m t ) } =  z B ~ ~ { ~  hnm,a~:' ( k )  
- 1  r-1 

where m3=1,2,3 , .  . . , 

In Eq. (47), the first and second terms in braces on 
the right represent the contributions of the terms X,,,,, 
and F(pljT,p,,nf) on the right-hand side of Eq. (7). Since 
hpvms decreases rapidly on increase in m,, we find that, 
in the limit m, -03, we have RA,-0 identically, i.e., 
for any value of A,,. This means that, inside a crystal  
a t  a distance of many wavelengths from the surface (!), 
the solution of the truncated system (32)-(34) is an ar- 
bitrary linear combination of the solutions for an in- 
finite crystal  and, in particular, it can be a simple 
exponential wave (35). This means that inside the cry- 
stal we can use the permittivity e(w,k). Moreover, it 
justifies the formulation of the problem of reflection 
from the surface and partial escape into vacuum of 
waves which inside the crystal  tend asymptotically to 
the exponential form given by Eq. (35). 

In determining the reflection coefficient of such waves, 
it i s  necessary to know the sdution of the truncated 
equations (32)-(34) and in the surface layer of a crystal. 
There i s  no doubt about the existence of this solution in 
the general case C discussed above although it has not 
as yet been found. Therefore, it is important to con- 
sider a t  least those cases when this solution, valid right 
up to the surface, can be represented a s  some specific 
linear combination of solutions for an infinite crystal. 
This can be done if we can ensure that the residue (47) 
vanishes. 

If in Eq. (47) it is necessary to retain both terms in 
braces,  then-because m ,  assumes all  positive integral 
values-the number of such equations is infinite and 
they cannot be satisfied by a finite number N of the am- 
plitudes A,,. In those cases, the solution of the problem 
for  a semiinfinite crystal cannot be represented a s  a 
linear combination of solutions for an infinite crystal. 

The only way of satisfying Eq. (47) is to neglect in 
some of the equations the second t e rm in braces so  that 
these equations reduce to the auxiliary boundary con- 
ditions (42) for case A and, in the remaining equations, 
to drop the first  term from the braces, which reduces 
them to the auxiliary boundary conditions (46) for case 
B. In both ways, the main aim is achieved: the equa- 
tions cease to depend on m,. The total number of 
auxiliary boundary conditions then becomes equal to s, 
i.e., to the number of additional light waves. These 
limiting forms of the auxiliary boundary conditions will 
be obtained below for certain specific cases. Case A 
has already been discussed above. 

1 .  Normal incidence of light ( (k, 1 - 0). In this case, 
as shown in Sec. 3, the second term in the braces in 
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Eq. (47) is of the order of 1% I i.e., it vanishes. These 
equations reduce to Eq. (42), i.e., to Eq. (43) and, there- 
fore, to Eq. (20). 

2. The direction of one of the principal axes e of 
the tensors &(w) and T"' [see Eq. (38)] i s  governed b y  
the crystal symmetry ( i s  independent of w) and i s  per- 
pendicular to the plane of incidence, and P, I le. The 
other vectors a r e  P , l e  for I# 1'. It then follows from 
Eqs. (38) and (39) that, after quadratic expansion of 
&&k) in respect of (k I ,  there are,  for given values of 
k, and w, two incident and two reflected waves (j 
= 1,2,3,4) with the same polarization AOj I le. For  these 
waves, it follows from Eq. (37) that B,,#O but, for the 
rest, we have Bt j=  0 when 1 # 1'. Therefore, only the 
terms with I = 1' remain in Eq. (47). However, there i s  
now no second term in the braces because L(P,,)=O 
(P,,l&, 02). Thus, the contribution of the dipole-dipole 
interactions to R,,, for the four ways in question is 
accidentally zero; R,,. is governed by the short-range 
interactions. In this case, retaining only the first  
terms in braces in Eq. (47), we obtain the auxiliary 
boundary conditions (42) for case A, i.e., Eq. (20). For  
the four waves inquestion, we have P,. and, consequently, 
a,,(,!'(k,) a r e  independent of j. Therefore, the conditions 
(42) become 

The above expression is analogous to Eq. (30a). How- 
ever, the auxiliary boundary condition of Eq. (49) is suf- 
ficient for  the determination of the reflection laws of 
a l l  the four waves mentioned above. These waves may 
transform into one another as a result of reflection 
but not into any other waves. 

In cases 1 and 2, the ratio III/II can have any value. 
However, we shall now consider only case B and oblique 
incidence. 

3. s = 3. Bearing in mind the points made about ex- 
citons in the corresponding subsection (B3) above and 
retaining the same notation, we shall denote a longi- 
tudinal exciton by I and transverse excitons by I' and 
1". In the case of an infinite crystal, the system (32)- 
(34) has a solution in the form of a longitudinal light 
wave: 

The system (32) for  b,, is then identical with the sys- 
tem (2) for a,,, i.e., 

Hence, it is  clear that such a light wave is identical with 
a longitudinal SchrlJdinger exciton (see also one of the 
author's papersf7]). According to Eq. (37), we have 
B,= O/O, i.e., this quantity can be an arbitrary constant 
which we can identify with C,. 

For a semiinfinite crystal in case B, the reflection 
law for a longitudinal exciton has the form (30b): 

Here, j =  1 and j =  2 are,  respectively, the indices of 
the incident and reflected waves. The auxiliary boun- 
dary conditions of Eq. (52) allow us to express uniquely 
the amplitude of an incident wave, and there is no 
transformation of longitudinal into transverse waves. 

In the case of an infinite crystal, for a given direction 
s, Eqs. (32)-(34) o r  (38) and (39) also have solutions in 
the form of transverse waves. For  these waves, the 
spatial dispersion is considerable in the spectral range 
w = & , / I f .  We shall only consider case 2, when four 
transverse waves have the polarization A,, I I P , ,  IJe and, 
therefore, they make no contribution to the residue (45). 
The auxiliary boundary conditions for these waves have 
the form (49). The other four transverse waves (j = 5,6, 
7,8) a r e  polarized in the plane of incidence: A,, I I P ~  
l P Z ,  s. According to Eq. (37), the following relation- 
ships apply to these waves: Bpj#O, B,,= Brj=O. 
Therefore, the auxiliary boundary conditions (46) for  
such waves become 

These, together with the Maxwell boundary conditions, 
a re  sufficient to obtain a single-valued solution of the 
problem of wave reflection. 

4 .  s = 2. Bearing in mind the conclusions reached 
about excitons in the corresponding subsection (B4) 
above and retaining the same notation a s  before, we 
shall denote a transverse exciton by 1, and an inclined 
exciton by I,. If &,, differs considerably from then, 
in the spectral range when one of these excitons makes 
a considerable contribution to the spatial dispersion 
[i.e., when the denominator of the relevant term in Eq. 
(38) is close to zero], the second exciton makes prac- 
tically no contribution to the spatial dispersion and the 
corresponding t e rm in Eq. (38) can be removed from 
the sum and included in &, (w). Consequently, the sum 
in Eq. (38) consists of just one t e r m  and, for a given 
s, there i s  only one additional wave and the auxiliary 
boundary conditions (46) assume the form given by 
Eq. (52). 

If & ,, =& ,,, we need only consider case 2, when some 
of the waves a r e  reflected in accordance with the 
auxiliary boundary conditions (49) and other waves in 
accordance with the conditions of type (53). 

5. s = 1. In this case, Eq. (46) transforms directly 
to the auxiliary boundary conditions (53) and there is 
no ambiguity in the reflection law. 

The above analysis can be summarized a s  follows, 
The solution of Eqs. (32)-(34) for optical excitons in a 
semiinfinite crystal can be obtained a s  a linear com- 
bination of solutions of these equations for any infinite 
crystal only in those special cases when the dependence 
on m ,  disappears from Eq. (47). Consequently, some of 
the equations of this type transform to the auxiliary 
boundary conditions (42), i.e., to Eq. (20) o r  (22), 
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whereas others transform to the auxiliary boundary 
conditions (46). These conditions determine the re- 
lationship between the coefficients of linear combinations. 
The solution of the Maxwell equations in vacuum should 
be related to the solution for a semiinfinite crystal  by 
the Maxwell boundary conditions. 

The solution of equations for an infinite crystal men- 
tioned above can be obtained, in particular, using the 
theoretically calculated o r  experimentally determined 
permittivity e(w,k). Only in this sense can we use 
e(w,k) in solving the optical exciton problem for a 
semiinfinite crystal. 

5. COMPARISON OF RESULTS. DISCUSSION 

In the last 20 years, very many contradictory papers 
have been published on the question of the auxiliary 
boundary conditions. In particular, there have been 
statements to the effect that these conditions a re  quite 
unnecessary. In answer to this objection, we point out 
that, if optical exciton solutions a r e  deduced as linear 
combinations of solutions for an infinite crystal, then 
the auxiliary boundary conditions a r e  necessary. If 
the polarization response of a semiinfinite crystal, for 
example, 

i s  known, then no auxiliary boundary conditions a re  
necessary in the subsequent solution of Eqs. (33) and 
(54); in the above expression, x is found from the equa- 
tions of mechanics for a semiinfinite crystal, for 
example, using the functions (16), where C,  now satis- 
fies the auxiliary boundary conditions for a Schrodinger 
exciton. In the case of Frenkel excitons, the results 
a re  identical with those obtained in Sec. 4. 

It is interesting to compare the results of Sec. 4 
with those obtained by other authors. However, we 
must make a preliminary selection among the numerous 
contradictory results. 

In a large group of papers, C9-131 use i s  made of Eq. 
(54), but it i s  assumed arbitrarily that z and z' occur 
in ,y in the form of the difference z - z', in spite of 
the fact that there is no translational symmetry along 
the z axis in a semiinfinite crystal. This assumption 
is in conflict with the dependence of ,y on z and z', ob- 
tained from the equations of mechanics for specific ex- 
citon models. Justified criticisms of this group of 
papers can also be found e l ~ e w h e r e . ~ ' ~ - ~ ~ ]  We thus see 
that the results reported in this group of papers can 
hardly be correct. 

In a second group of papers, C8915-191 there a re  no ar-  
bitrary assumptions and the polarization response of 
a crystal is found from the equations of mechanics. 
Only the exciton model, simplifying the solution of 
these equations, is  specified. The model seriously 
limits the range of validity of the quantitative results 
but the results a re  still rigorous. This group of papers 
includes the author's own work.['] Preference should 
clearly be given to a comparison with the results re- 

ported in this group of papers. 

We shall f irst  compare the above results with the 
exact microcalculations carried out for a model con- 
sisting of point dipoles (one-dimensional harmonic 
oscillators) located a t  the si tes of a cubic lattice in the 
half-space z >0. The crystal planes a re  defined by z 
=am,, where m ,  = 1,2,3 , .  . . . In each plane, the dipoles 
oscillate in synchronism and with the same amplitudes. 
A light wave is incident normally. The potential energy 
of the interaction between the layers is proportional to 
the product of the dipole moments of the oscillators 
in these layers and i ts  dependence on the distance be- 
tween the layers is  in the form exp(-y Im, - mi I. This 
one-dimensional problem i s  solved by Sipe and Van 
~ r a n e n k o n k ~ ' ~ '  and Meadc1'' without any approximations. 
It is shown that, in an appropriate infinite medium, there 
a r e  two identical polarized waves with the wave vectors 
k,, where j = 1,2. In the case of a semiinfinite medium, 
the solution i s  a linear combination of these waves but 
their amplitudes B a re  related by auxiliary boundary 
conditions of the type 

It i s  shown by P h i l p ~ t t [ ' ~ ~ ' ~ ~  that, for these models 
and in the case of oblique incidence of light, the separa- 
tion of the dependences of the field and polarization on 
x and v in the form exp(&, ~ r )  gives the one-dimen- 
sional problem discussed above. 

In comparison with the auxiliary boundary conditions 
(55), our formulas have to be simplified by assuming 
that s = 1. We then find from Eqs. (4) and (5) that a,':' 
=a;;"=~"'~, and from Eq. (29) we find that P , = P l  is  
independent of k. In case A, we find that e7 << 1 and 
Eq. (55) becomes 

which is identical with Eq. (42), i.e., it gives Eq. (20). 
In case B, we have y<< 1 and Eq. (55) becomes 

This i s  identical with Eq. (46) if we bear in mind that, 
in our case, the interaction between the layers de- 
creases proportionally to exd-  (k, ( Jm, - mi (a}, " i.e., 
y =  1% la. The quantity y in the papers of MeadC''] and 
Sipe and Van ~ r a n e n d o n k ~ ' ~ ]  i s  an arbitrary specified 
parameter of the model, whereas ih the present paper 
the value of y is found by considering the Coulomb 
interaction of the particles and depends on the angle 
of incidence of light. However, this difference does 
not minimize the importance of the agreement of the 
results, which shows that, in case B, the "exponential 
model" i s  close to reality. 

In the case of other models postulating point di- 
p o l e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  it i s  usual to introduce a real  dipole-dipole 
interaction between the lattice si tes but the problem 

771 Sov. Phys. JETP 47(4), April 1978 S. I .  Pekar 771 



is solved approximately: the interaction between mono- 
molecular layers separated from one another by dis- 
tances exceeding Ra (R approximation) is ignored. All 
these treatments give an unacceptable result: even 
when an infinite crystal i s  considered, it is found that 
the number of waves is N = ill+ 1, i.e., the number of 
roots of the dispersion equation r ises  without limit on 
increase in the precision of the calculation when allo- 
wance is made for the interactions of more and more 
distant layers. This result is in conflict with the exact 
"exponential model" calculations and with the results of 
the present and other authors on the theory of additional 
light waves in an infinite crystal, according to which 
we have N = 2 for nondegenerate excitons. 

The paradoxical result just reported ar ises  because, 
when the dispersion (or other equation) contains a func- 
tion of an unknown, expansion of this function as a ser ies  
and retention of a finite number of terms give rise to 
real a s  well as fictitious roots which have nothing in 
common with the solutions of the original equation. 
These roots a r e  fictitious because, for the appropriate 
values of the unknown, the rejected residue of the 
series is large. For  example, for  the equation ex= 1.1, 
the exact root is K =  0.0953.. . . If the exponential i s  
expanded as a linear ser ies  in x ,  the root of this equa- 
tion is x, = 0.1, which i s  an approximation to f .  If the 
expression is quadratic, the roots a re  xi  = 0.0954.. , 
and x,'=2.0954.. . . The root x: i s  an even better ap- 
proximation to Z but x,' is fictitious. In a cubic expan- 
sion of the exponential function, we obtain three roots, 
two of which a re  fictitious, and so on. The greater the 
number of terms retained in the expansion, the greater 
is  the number of the fictitious roots. 

distortions of the crystal  lattice in the surface layer. 
In some cases, these distortions may give rise to sur- 
face excitonsCl1 and may greatly alter the auxiliary 
boundary ~ o n d i t i o n s . ~ ~ ~ ~ ~ ~ ~  

l).4ll the optical properties of a gas molecule a r e  known to be  
described completely by specifying the system of its sta- 
tionary wave functions. A bounded crystal  can be regarded 
a s  a large  molecule. 

2 )~ l lowance  for the t e rms  X,,,, in the nearest  coordination 
spheres presents no difficulty but does not alter the results 
basically. 

 his is proved in the same  way as  Eq. (26). 
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