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Canonical variables in which the potential and vortex motions are separated to a maximum degree are 
found for the Euler equations with small Mach numbers M = v, /c ,  ( v ,  is the characteristic turbulent- 
pulsation velocity). The sound absorption decrement in a homogeneous isotropic turbulent medium 
calculated by the Wilde canonical diagram technique is r,, -- M 2 ~ T / L  ( L  is the external scale of the 
turbulence pulsations). The spectral composition of sound emitted per unit tuburlence volume, 
~ ( o ) - o - ' / ~ ,  is studied. The spectral energy density E, (a) of sound in equilibrium with the turbulence is 
calcula2ed. It is shown that the total energy density of the "equilibrium" sound is smaller by a factor M 3  
than the energy density of the turbulent pulsations E,=. povT '. The effect of compressibility on the 
Kolmogorov spectrum of hydrodynamic turbulence is considered. This spectrum is of the form Jk 
= J ,  O + ~ J , ,  where J f - k  -"" is the Kolmogorov spectrum of an incompressible liquid and 6Jk  -- J, OM 2(kL)-2'3 is the compressibility correction. 

PACS numbers: 47.25.-c, 47.40.D~ 

In a compressible liquid, hydrodynamic turbulence is lyr6] for the spectrum J ,  in a compressible liquid, 
accompanied by a number of processes that ar ise  in the which does not contain the parameter M and does not 
interaction of vortical and potential motions. The pro- therefore transform into J: a s  M - 0 .  
cess of sound scattering, which has been studied in a 

All the enumerated questions were studied by us 
number of researches,cl'41 is frequently the basic one. 

within the framework of a single formal scheme-the 
In there is great interest in the processes of diagram technique of Wilde--for the canonical equations 
absorption and emission of sound by the turbulence, and of motion[ 71 (set. 2). this purpose, the ~~l~~ equa- 
also in the effect of the compressibility of the medium tions for barotropic flow of a compressible liquid in Set. 
on the spectrum of the turbulent pulsations. 

1 a r e  represented in Hamiltonian form (1.2), (1.3) with 
In Sec. 3 below we obtain an expression for  the sound the aid of the Clebsch variables (1.5).r8] Then, assum- 

damping decrement in a homogeneous and isotropic tur- ing the Mach number to be small, we constructed the 
bulent medium: nonlinear canonical transformation (1.11)-(1.18) to the 

new variables in which the vortical motion of the liquid 
rd,.=v,MZIL. (q , a,*) and the potential motion (b, , b:) a r e  separated 

in maximum fashion. In these variables, the Hamil- 
Here v, is the velocity of the pulsation motion, L i s  the tonian of the problem takes the form 
external (integrated) scale of the turbulence, M = v,/c, 
is the Mach number. We note that this effect is absent z=a,i a,+%.,. 
in the approximation of a specified turbulence. In Sec. 

(5) 

3, we study the spectral composition of the sound I , (w)  Here Xs i s  the Hamiltonian fo r  sound in a quiescent 
radiated by a unit turbulent volume: liquidr8] : 

The integrated intensity of the radiated sound ~ l , ( w ) d w  
was obtained earlier. [ ' *  In acoustically opaque turbu- 
lence, the sound spectral density E , ( w )  is determined by 
the equilibrium between the processes of emission (2) 
and absorption (1) of the sound: 

E, ( o )  =p ,c . ,L~l l~uvJoL)"~.  (3) 

Here the total energy density of "equilibrium" sound E ,  
= j ~ , ( w ) d w  is smaller by a factor of M3 than the energy 
density of the turbulence pulsations p,v2,. In Sec. 5 we 
consider the effect of compressibility on the Kolmogorov 
spectrum of hydrodynamic turbulence J,. It is shown 
that J, = J l +  W,, where Jl- k'"I3 is the spectrum fo r  an 
incompressible liquid and 

X, is the Hamiltonian for turbulent pulsations of the in- 
compressible liquid['] : 

1 
%, - 7 Tk,k,lk,k,ak,'ak:ak,Qk, 

~5 (k,+k,-k3-k,)d'li, d3k2 d'k, d k ,  

X,, is the Hamiltonian of interaction of sound with tur-  
bulence calculated by us : 

%., = SS ,,,,, ak,'ak,bt,'bk,6(k,-kZ+k,-k,)dJk, d"k? d%d3kk; 
1 

Wk,,~,,,(bk+b-:')~r,'~k).~k,~k,6 

x(k-k,-k,+k,+ k;)d3k d3k, d3kz d3k, (8) 

61,-lko.*f2/ (kL)  ' / a  , (4) The first  term describes the scattering of sound by tur- 
bulence, the second the processes of radiation and ab- 

We note that another expression was obtained previous- sorption of sound by the turbulence. 
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1. CANONICAL VARIABLES I N  HYDRODYNAMICS. 
THE HAMI LTONlAN 

The equations of ideal hydrodynamics, which describe 
the barotropic flow of a compressible liquid: 

ir+ (vV)  v+V6~/6p=O, p+div (pv) =0, (1.1) 

permit locally the introduction of canonical variables- 
the Clebsch variables p ,  @: A ,  p,[ the Hamilton equa- 
tions for which a r e  of the form 

(1.3) 

Here 

while 

The case A =  0 c r  p= const correspsnds to potential 
motions of the liquid, which nre describer! by the pair 
of variables p and @ is corrcspoac!ence with Eqs. (1.3). 
In the case of an incompressible liquid, = O  and Eqs. 
(1.3) reduce to the relation div v =  0, which allows us  to 
express @ in terms of A and b: 

Then, from (1.51, 

i 
v - - - r o t [ V h ~ V p ]  

A 

and Eqs. (1.3) for A and @describe the nonpotential mo- 
tions of the incompressible liquid. 

In the general case, we cannot state that the pai r  p 
and @ describe the potential motions and the pair A and 
p the vortical motion. Actually, by dividing v into two 
parts 

v-v,+v,, rot v,=0, div v,=O, (1.8) 

i t  is easy to see that 

v,=Vm, (a=@ +-div (1.9) 

Therefore, the initial Clebsch variables a r e  unsuitable 
for a description of the turbulence of the compressible 
liquid: the fields (p,  9) and (A, b) turn out to be strong- 
ly coupled even in the case in which the velocity of the 
pulsations i s  not large, i.e., at 

Formally, this is  manifest by the fact that some matrix 
elements of the interaction Hamiltonian of these fields 

increase with increase in the sound velocity, - c ' / ~ .  

Assuming the Mach number M to  be small, we con- 
struct a canonical transformation that separates the 
potential and vortical motions of the liquid in the princi- 
pal order in the new variables q, p; Q, P. We specify 
the transformation with the aid of the generating func- 
tional F(q, Q; a, M), which depends on the new coordi- 
nates and the old momenta[93: 

p (r, t )  =6F/60 (r, t )  , p ( r ,  t )  =6Fl6q (r, t )  , 

h (r, t )  =GF/Gp (r, t )  , P (r, t )  =6F/6Q (r, t )  . (1.11) 

Denoting by F, the identity-transformation functional 

we represent F in the form F =F,+F,,  where F, 
=F, (q ,  Q; p) i s  s o  chosen that q = p  and p=6 .  The func- 
tional F, does not depend on 6 ,  is bilinear in p and Q ,  
and i s  a ser ies  in powers of the variable part of the den- 
sity p,, = p - p,: 

As an expansion parameter, we use 

where k, and k ,  a r e  the characteristic wave vectors of 
sound and turbulence, E, is the energy of the acoustic 
motions. Substituting (1.12) and (1.13) in (1.11), and 
solving the resultant relation by the iteration method 
(in terms of the paramenter 5 <<I), we get 

In the new variables 

Thus, the potential motions a r e  described only by the 
pair q and p; the principal contribution to the vortex 
motion is made by the "turbulence" variables Q and P. 
The last term in the expression for  v, describes the 
effect of compressibility on the vortex motion. 

We transform in the k representation in standard 
fashion[7s81 from the variables %, pk ;  Q,*Pk to the 
complex conjugate variables b,, b i ;  a,,  a:: 
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In these variables, the equations of hydrodynamics (1.1) 
take the form 

with the Hamiltonian X, obtained from the substitution 
of (1.18) and (1.19) in (1.4): 

The acoustic Hamiltonian X, has the usual form (6), in 
which 

n= k/k, y is the adiabatic exponent: y = c, / c  . The 
Hamiltonian X, is identical with the ~ami l t6n ian  (7) 
for  the turbulence of an incompressible liquid, with 

In the incompressible liquid, 

In the interaction Hamiltonian X, , (8), the matrix ele- 
ments a r e  of the form 

In Eq. (8), terms of the form 

a r e  not written down since they a r e  unimportant for 
what follows. These terms differ from Aa a *be* and 
Wa*'a2b by the small factor 5" [(k, /p ,~ , ) ' /~b]  ". 

2. STATISTICAL DESCRIPTION OF NONLINEAR 
TURBULENT AND ACOUSTIC FIELDS 

1. Diagram Technique. For the statistical description 
of nonlinear fields a, and b , ,  we use the canonical dia- 
gram technique of Wilde, which is similar to that ana- 
lyzed in Ref. 7. This technique is analogous to the 
Keldysh diagram technique and is adapted for the de- 
scription of classical (nonquantum) systems fa r  from 
thermodynamic equilibrium. In contrast with Ref. 7, 
we consider a system of two coupled fields. We intro- 
duce the graphic notation for the Green's function 
(which has the meaning of a linear response to the force 
F ,  f 1: 

and the pair correctors: 

6'(q-~' ) iV,=(b;b , ) ,  6'(q-qf)nq=(a,'aq.) ,  (2.2) 
q= ( k ,  w ) ,  6 ' ( q )  = S ( o ) 6 ' ( k ) ;  

These quantities satisfy the Dyson equations 

where C, , a, ; a,, @, a r e  the sums of the correspond- 
ing irreducible diagrams. 

We write down the Dyson equation for N , ,  in the 
form 

In the case in which the interaction is weak, only dia- 
grams of second order in the vertices need be retained 
in the ser iesfor  z: and*,, and Eq. (2.5) canbe integrated 
with respect to w. Then the condition L,=ldwL,,=O 
will coincide with the stationary kinetic equations for 
the waves: 

where 

rk=z,': k, Qk=a)k,"k.  

It is seen from Eq. (2.6) that physically vertex r, -the 
 damping decrement"-has the meaning of the departure 
term and 6, the meaning of the approach term in the 
kinetic equation. The kinetic-equation approximation in 
a number of cases is insufficient and i t  is necessary to 
substitute the already partially summed quantities r, 
and 9, in Eq. (2.6). We shall use a similar equation 
for the hydrodynamic pulsations of the velocity: 

In the equations L,,= 0, lkw= 0, a cancellation of the 
longwave divergences responsible for transport takes 
place. The reason for this i s  that the transport of the 
elementary excitation (vortices, sound waves) by a 
homogeneous velocity field does not lead to a redistri-  
bution of the energy in k space. 

2 .  Procedure for the isolation of the dynamic inter- 
action. The diagrams for the turbulence of an incompres- 
sible liquid (containing only the vertices T) was analyzed in 
Ref. 10, where it was shown that at kL>1,  the odd se- 
quence of diagrams for  o, is s o  constructed that the ex- 
ternal momentum k, w is carried through a "backbone" 
of Green's functions g,, oriented from the input to the 
output. Integrals over the interior lines diverge in the 
range of small  k and the principal contribution to them 
is made a t  k'-L'l and w'-v,/L. The contribution of 
the region k' is of the order  of the external momentum 
k, and the contributions of the remaining diagrams to 
the Kolmogorov spectrum a r e  small  in the parameter 
(k~)"".  The integrals in the higher-order sequence 
of diagrams can be calculated approximately by assum- 
ing that the arguments in the Green's functions in the 
'backbone" a r e  equal to the external momentum k, w. 
This can be drawn graphically a s  follows: 
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% - l E p l h .  (2.1 3) 

The ser ies  for q q  contains the subtractions 

and differs from the usual vertex: 

The diagram ser ies  (2.8) is summed in Ref. 10, yielding 
for g,, an expression 

in which ( ), denotes averaging over the ensemble of 
the turbulent velocity field v at  the arbitrary point r ,  t . 
For example, for  a Gaussian velocity field, 

(2.8) In the following, we shall use ina  number of cases, in 
place of (2.5) and (2 -7) similar equations in a diagram 
technique that does not include transport: 

The following rel_ation exists between the quantities L,, 
and Z,,, I , ,  and Zk, [ lO] :  

In conclusion of this section, i t  must be remarked 
that the integrals in the higher-order diagrams of the 
series for 8 and unfortunately diverge. Starting from 
the hypothesis of Kolmogorov that the "dynamic" inter- 
action of the vortices is local, we shall assume that 
these divergences should cancel out and the functions 
8,, and Gk, can be estimated from the first  diagrams 
which do not contain divergences. It was shown in Ref. 
10 that in such a case the equation has a solution in the 
form of the Kolmogorov spectrum: 

<j (v)  ). =-A I f  ( " ) e x p ( - v 2 / 2 v ~ ) d ' r  
n u, 

(2.10) 3. DAMPING OF SOUND IN A TURBULENT MEDIUM 

The expression (2.9) and the diagram ser ies  (2.8) have 
a simple physical meaning-they describe the transport 
of vortices with characteristic dimension k;' a s  a whole 
by vortices with energy-content scale L >> k;'; the gradi- 
ents of the velocity of the energy-containing vortices 
a re  neglected and, consequently, the vortices of scale 
k; a re  not deformed. 

In order to isolate the much weaker dynamic inter- 
action of vortices of a single scale from the background 
of the kinematic diagrams (2.8), it was suggested in 
Ref. 10 to seek the Green's function in the form 

The diagram series fo r  Bk, contains diagrams of the 
series for a, ,, from which diagrams of (2.8), which 
describe the transport, a r e  calculated. We give the 
first  diagrams for 0, ,[lOJ : 

-."- ??( , -mi; 
P 

The following equation for Tiq was obtained in Ref. 10: 

In a turbulent medium, the contribution to the damp- 
ing decrement.r, arises both a s  a result of the direct 
absorption of the sound energy by the turbulent pulsa- 
tions and from processes of sound scattering. We 
study the first  of these mechanisms. 

1. Sound absorption. We calculate the contribution to 
Z,,, made by sound absorption in processes described 
by the W vertices in (8). Here it suffices to take into' 
account diagrams of the order v; diagrams containing 
W4 and SnWZ are  small in comparison with M. Thus, 

In the calculation of ImZ,, a strong cancellation takes 
place in the diagrams that differ in the arrow directions. 
As a result, the sums of each of the two diagrams in 
the brackets in (3.1) turn out to be of the order of 
( k v , ) ( k ~ ) ~ ' ~ W / ~ .  Moreover, the sum of the entire 
diagram ser ies  (3.1) is still less than this quantity in 
terms of the parameter ( ~ L / M ) " / ~ .  Actually, the prin- 
cipal contribution to the integration over those internal 
lines n, which a r e  not joined to an input o r  output 
[nfi,.nqz in diagrams (3.1)] is made by the energy-con- 
taming region: k, , k, - L" , w, , w, , v, L" . In this re- 
gion, we can take in place of the diagram [ ], and [ h 
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They describe the transport of the absorbing volume by 
vortices of scale L. It can be summed by the method 
described in Sec. 2. Then the Green's function G takes 
the form (2.9) and we obtain for i, a diagram series 
which must be calculated with the Kolmogorov functions 
(2.16) that do not contain the transport: 

The analytic expression for  the first  pair of diagrams 
has the form 

2," - j  I ~~.t,t,~~,~,~~n~,.,n~,fit,.dL, 
X[$ (k+k,-k,+k,-k,) 8 (kc .+o , -or+op-o~)  

-8(-.k+k,-k,+k,-k,)8 (-kc.+o,-o,+os-@I) 1 
Xd3k, d o ,  d3k,do, d3k,do3 d3k, do‘. (3.3) 

The basic contribution to this expression is made by 
integration over the region of scales k, r k,, where the 
characteristic Kolmogorov frequency w,  = v/L(~,L) ' /~  
is of order kc,. We assume that k, falls in the inertial 
interval L"< kT<L"~e3 l4 ,  o r  

With account of this circumstance, i t  is easy to esti- 
mate (3.3): 

We obtain this result qualitatively by considering the 
change in energy of turbulent pulsations with a charac- 
teristic frequency of motion: 

In the field of a sound wave of intensity E,, the density 
of the liquid oscillates with amplitude bps =po(~,/poc~)112 
which produces changes in the velocity v by an amount 
671, m v ,6p, /po within the time of a single period wil. 
The corresponding change in the energy of the vortex 
motion has the form 

whence 

Then, substituting E,= p,v2,(k,~)'~/~ and expressing k, 
in terms of k,, we get, with the help of the relation 
~ ~ " k s c s ,  

which corresponds to the estimate (3.5). 

We compare the sound absorption by turbulence (3.5) 
with i ts  damping due to viscosity and heat conduction 
ro w ~ q . ~ ~ ~  At small k,, the damping (3.5) predominates 
and is comparable with r0 at  k,= ko, where 

v J 2  M2 v,L IF k,'=-.=--=- Re. 
V L  La v L2 

Thus, the damping due to turbulence predominates over 
the whole range (3.4). 

We can now formulate the question a s  to the acoustic 
transparency of a turbulent layer of thickness A. If 
f, <L-', then the sound propagates along a straight line 
and the layer of thickness A, = L M 4  turns out to be 
opaque because of the direct absorption of the sound in 
the processes (3.2). At L" < k, < l i l ,  i t  is necessary to 
take into account processes of elastic sound scattering, 
which lead to random walk of the phonons in the turbu- 
lent medium.c41 

4. STUDY OF THE SOUND OF TURBULENCE 

1. Study of "transparent turbulence." We use the 
kinetic equations for sound (2.6), to which we add the 
phenomenological component i0,, which describes the 
losses due to radiation of sound from the turbulent 
volume: 

If the volume occupied by the turbulence is s o  small 
that it is acoustically transparent, then the losses due 
to damping r, can be neglected. Then we get for the 
energy flux density (in a unit interval of frequency per 
unit time per unit volume) 

The principal sequence of diagrams for is proportion- 
al to W2 and does not contain sound lines: 

It is not difficult to understand that this sequence is 
summed to the fourth correlator of the turbulent veloci- 
ty: 

@k,.k = ~~,~~.G(k+k,+k,)8(k+k~+k~)8(ot+o,+o~)~ 
(2n)  c. 

.6 ( o t + 0 2 + o J d 3 k ,  d o ,  d3k2 do2  d3k, d o ,  dsk, do'. (4.3) 

The z axis is oriented along k and 

Estimate of this expression on the Kolmogorov spectrum 
of isotropic turbulence gives 
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In correspondence with (4.2), this expression deter- 
mines the spectral content of the sound radiated acous- 
tically by the transparent turbulence: 

We note that the principal contribution to the emission 
of sound at a frequency w, is made by vortices of scale 
l/kT, for which the characteristic angular frequency is 
w,= v .&J;"(k&)213 is of the order of o,. The most inten- 
sively radiated is sound of vortices of the energy con- 
tent scale L a t  frequency vT/L. 

We obtain the estimate (4.6) qualitatively. In the de- 
cay of the vortex of scale k;' in time w;, density pul- 
sations 

develop which produce changes in the volume of the vor- 
tex V at a rate 

dV 6p u , M z  
VE-s3V-op=--  

d t  p, L k," 

The pulsating volume causes radiation of sound with in- 
tensity 

(see Ref. 11). Substituting there the estimate for ?, 
multiplying the result by the number of vortices per 
unit volume, l/k3,, and expressing k, in terms of 4 
according to the formula w,- k,c,, we obtain the formula 
(4.6) for dZ/dw = I / w  =Z(w). 

The total flow is determined by the integral of the ex- 
pression (5.6) with respect to a: 

The estimate (4.7) for  the integrated intensity was ob- 
tained previously by other methods: ' * 5 1  

2. The sound spectrum in a non-transparent medium. 
It is determined by Eq. (4.1), in which it is necessary 
to neglect losses due to radiation: 

This spectrum is determined by the equilibrium between 
the process of sound radiation (4.5) and the reverse pro- 
cess of its absorption (3.5). Scattering processes lead 
only to isotropization and, of course, do not affect the 
spectral composition of I,(w) (4.6). Thus, 

This expression is valid in the interval (3.4) for k, a t  
which k, falls in the inertial interval. The sound energy 
density per unit frequency interval is of the form 

The total "equilibrium" sound energy density 

is smaller by a factor of M3 than the energy density of 
the turbulent pulsations. 

5. EFFECT OF COMPRESSIBILITY ON THE 
KOLMOGOROV SPECTRUM OF HYDRODYNAMIC 
TURBULENCE 

It is known that the pressure fluctuations in a turbu- 
lent medium a r e  proportional to pv;. Consequently, 
the relative changes in the density of the medium is 

6 p , l p , ~ v , 2 / ~ . ~ = M ~ ,  

and the effect of compressibility on the hydrodynamic 
turbulence is small  in terms of this parameter. There- 
fore, in contrast with Ref. 6, in which the spectrum was 
found independent of the Mach number M for the hydro- 
dynamic turbulence in a compressible liquid J,, we 
shall seek J ,  in the form 

Ik=J>(l+'!Ff ( k )  ). (5.1) 

Here 4 --I1 is the Kolmogorov spectrum of the incom- 
pressible liquid. 

Compressibility leads to the appearance of additional 
vertices of interaction for  the canonical variables a, 
that describe the vortex motion. The simplest of such 
vertices ar ises  in second order perturbation theory in 
the interaction W [see  the Hamiltonian (8)] : 

~ , : : l ~ , ~ ~ ~  - I [Wr,~slsaWt.rilq,6(-k+ki+kz-lit-k,) f . ..I (~k , ,+~fr . . ,  )d3k. 

(5.2) 
Terms not written down in (5.2) were obtained by per- 
mutations within the groups of indices $, &, &, k, and 
k,, $, 4,  $. We represent (5.2) graphically: 

In hydrodynamic diagrams, the interaction T(') leads to 
the appearance of a correction to the fourth-order ver- 
tex: 

Using (5.2) and substituting the explicit expression (1.23) 
for  W, we obtain after partial summation in order of 
magnitude, 

k 
6T, , l~L~T,21 , i  I, Ik~,~Gk.6(k,--k,+k'-k) 

X6 (Q,-Q2+Q'-o) d% d3k' dQ' do.  , 

(5.3) 

We divide 6Tl,13, into two parts in the following manner: 

6 ~ , , ~ 3 ~ - - 6 ~ ~ ~ : ~ +  6~:2::4; (5.4) 
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These estimates a r e  made under the assumption that &, 
k,, k,, k4 a re  of the same order of magnitude. We note 
that in the expression (5.4), the chief contribution is 
made by the region of integration kt- L", and in (5.5), 
by the region kt- k, . 

The turbulence spectrum is determined from Eq. 
(2.14) for l,,,. The increment to the vertex 6T!:l3,= 
M2T1,,,, has the same index of homogeneity a s  the ver- 
tex fo r  the incompressible liquid. Therefore, i t  
does not lead to a change in the Kolmogorov exponent. 
The increment 

leads to the appearance in the equation for  l,, of addi- 
tional terms with the parameter of smallness W ( k ~ ) , b .  
They should be cancelled by the terms which arise be- 
cause of the correction (5.1) to the spectrum J,. Thus 
f (k)= (kL)"I3, . 

This result has a simple meaning; in correspondence 
with the Kolmogorov hypothesis that the spectrum inter- 
action is local, the value of Jk in the inertial interval of 
the scales (kL > 1) cannot depend on the velocity of mo- 
tion v, in the scale L, i.e., on M2=vZT/c:. Only the fluc- 
tuations of density due to motions of the liquid v(k) of 
the same scale 1/k a r e  important. Taking it into ac- 
count that in the inertial interval v(k)= vT(k~)"I2,  we- 
obtain 

It can be shown that the relative correction to the spec- 
trum (6Jk/Jk) is of the order of the square of the Mach 
number calculated from the circular ve;ocity of motion 
of vortices of scale l/k. 
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Frenkel excitons [Phys. Rev. 37, 17, 1276 (1931)l and corresponding optical excitons (optical waves, 
polaritons) are considered for a semiintinite crystal of any symmetry but possessing an inversion center. It 
is shown that the solutions for a semiinfinite crystal can be constructed as linear combinations of solutions 
for an infinite crystal only in the case of normal incidence or for selected wave polarizations, and if the 
interactions of close ( A )  or distant ( B )  cells in a crystal predominate. The coefficients of such linear 
combinations are found from auxiliary boundary conditions whose justification is the main task of the 
present paper. It is shown that these auxiliary boundary conditions, proved by the present author for the 
case of degenerate excitons and restricted crystal symmetries [S. I. Pekar, Sov. Phys. JETP 6, 785, 
(195811, are always valid in case A ,  but in case B they apply only for normal incidence and certain 
polarizations of light. Auxiliary boundary conditions of a new type are obtained for all other cases and for 
dipole-forbidden radiative transitions. The results obtained agree, in the appropriate special cases, with 
microcalculations based on the simplest model of a crystal. 

PACS numbers: 71.35.+z, 71.36.+c, 61.50.Em 

1. INTRODUCTION stal. Their amplitudes can be described uniquely in 
terms of the amplitude of a wave incident on a crystal 

According to  the conventional theory of birefringence, from vacuum, using the well-known conditions of con- 
two orthogonal waves of the same frequency and with tinuity of the tangential projections of an electron and 
the same direction of propagation may travel in a cry- magnetic fields. However, in the vicinity of the ex- 
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