
in the calculation. First ,  in Eq. (4), we used only a 
single relaxation time r, which is clearly insufficient 
for the description, for example, of depolarized light 
scattering in a liquid.c71 However, this is valid in the 
APRL problem. Actually, in the model of continuous 
rotational diffusionc14] for APRL, solutions exist cor- 
responding only to a single quantum number 2 = 2 and, 
because of this, to only a single relaxation time. 
Moreover, in the important practical case w r << 1, the 
orientation of the molecules follows that of the spins; 
therefore, the matrix element of the transition (but 
not the width of the APRL line) does not generally de- 
pend on T and on any details of the relaxation process. 
Finally, at wr 2 1, the latter can also affect the matrix 
element of the APRL. 

Second, the mechanisms of APRL considered above 
in liquids consisting of rigid, undeformed molecules, in 
which the form of the spin Hamiltonian (2) is determined 
by the orientation of the molecules. These mechanisms 
naturally do not take into account the excited electron 
states in the intra- and intermolecular electric fields, 
which is valid at least for many free radicals by virtue 
of the large excitation energy AE of such states.[ll] 
On the other hand, there a re  liquids in which the sur- 
rounding of the spin firms a sufficiently symmetric 
complex.c121 The quantity AE is then smaller and in the 
APRL problem it  is necessary to take into account the 
spin-orbit interaction, the deformability and the rota- 
tional motion of the complex. These features, and also 
other possible mechanisms of APRL (anisotropic hyper- 
fine, dipole-dipole, and other interactions) a re  easily 
taken into account by the method outlined above. As in 
APR in solids, this can lead to  a significant increase 
in the effect. 

Finally, relaxation processes not considered above 
can exist in liquids, with such small T that their 
contributian to T, would be negligibly small, but sig- 

nificant in the matrix element of the APRL. Such 
processes also lead to  an increase in A a / a .  

The authors express their sincere gratitude to S. A. 
Al'tshuler for valued discussions of the work and a 
number of useful suggestions. 
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Slow thermal wave in a helium flow 
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The motion of the He I-He I1 interphase boundary is considered in a narrow capillary tube for a 
specified flow rate. A temperature diference between the capillary and the thermostat (the temperature To 
of which is below T,) is maintained by the heat produced by the friction between the flow and the 
capillary walls. The flow regime with a constant velocity of the boundary and of the thermal wave due to 
the motion is investigated. The wave velocity, the temperature distribution T(x) along the capillary tube, 
and the distribution of the normal and superfluid velocities in the region T(x)< T, are found. In some 
respects the solution is similar to that for a combustion regime, that is, to ignition and extinction waves. 

PACS numbers: 67.40.Hf 

heat produced by friction against the walls is sufficient 
INTRODUCTION to maintain the temperature of the liquid in the capillary 

Steady flow of He I will take place along a capillary above Tc. The temperature difference between the cap- 
placed in a medium with a temperature below Tc if the illary and the thermostat, Ti - To, is proportional to the 

744 Sov. Phys. JETP 47(4), April 1978 0038-5646/78/040744-06$02.40 01979 American institute of Physics 744 



square of the flow velocity. For a plane channel of 
width h, for example, 

where a is the heat transfer coefficient from the channel 
to the medium and is the dynamic viscosity of He I. 

At this same temperature of the thermostat To < Tc, 
flow of He I1 along the capillary is of course possible. 
Thus two stationary flow regimes correspond to each 
pair of values of v and To (in a definite region of varia- 
tion of these quantities). Both these regimes a re  sta- 
ble relative to small perturbations. At the same time, 
there should exist conditions under which the heating of 
a finite mass of He I1 (or cooling of He I) produces a 
phase transition wave and, in the final analysis, a 
change in the flow regime. 

For the elucidation of these conditions, we must con- 
sider the interphase boundary in a moving liquid. At 
large distances from the boundary, the temperature in 
He I approaches a constant value TI. Lowering of the 
temperature on the portion adjoining the boundary, 
from T, to T,, indicates the presence of a flow of heat 
across the boundary, toward the He 11. At large dis- 
tances from the boundary, the normal component in the 
He I1 can be assumed to be immobile. The temperature 
of the liquid here tends to To and the pressure also 
reaches some constant value. There is a flow of the 
normal component on the portion adjoining the boun- 
dary, and i s  due to the temperature difference Tc- To 
on this portion. The transfer of heat across the in- 
terphase boundary generally leads to boundary motion 
relative to the liquid. The entire structure of the temp- 
erature and velocity fields moves along with the boun- 
dary, forming a temperature wave of this type. 

The so-called heterogeneous (taking place on a solid 
surface) exothermal reaction creates a picture with 
a similar distribution of thermal flows. A given temp- 
erature of a reacting gas mixture To corresponds to 
two possible stationary reaction regimes. In one re- 
gime, the surface temperature is close to To, the reac- 
tion on a cold surface takes place with small intensity 
and almost does not heat the surface. A surface temp- 
erature, which greatly exceeds To, corresponds to the 
other (combustion) regime. The high surface tempera- 
ture is maintained by the heat release of the reaction, 
which takes place very intensively at such a tempera- 
ture. It was shown in Ref. 1 that, in the case of a non- 
uniformly heated surface, the boundary separating the 
regions of high-temperature and low-temperature re- 
gimes of the reaction moves as a function of To and the 
other parameters either towards the cold region (igni- 
tion wave) or  towards the hot region (extinction wave). 

In contrast with temperature disturbances in a super- 
fluid liquid, which propagate with a large velocity (se- 
cond sound), the thermal wave under conside ration, 
which is connected with the phase transition and the 
slow process of heat transfer in He I, has a small, es- 
sentially subsonic velocity (similar to slow-combustion 
waves). In He 11, the heat is effectively transported by 
the normal component over large distance from the 
boundary. In this portion of the flow, which can be 

called the convective zone, the longitudinal temperature 
gradient turns out, in view of the smallness of the corl- 
sidered velocities, to be a quantity proportional to the 
pressure gradient. The latter in turn is proportional' 
to the average (over the cross section) velocity of the 
normal motion, so  that any two of these quantities can 
be expressed in terms of the third. 

At the same time, the longitudinal profiles of the 
temperature and the normal velocity found from these 
considerations cannot be directly "joined" to the solu- 
tion in the region T >Tc. It suffices to note that the 
velocity of the normal motion, which is responsible for 
the heat transfer, is directed opposite to the tempera- 
ture gradient while along the other side of the inter- 
phase gradient, in the He I, the velocity of the liquid 
has the reverse direction if the region of He I is lo- 
cated downstream. Therefore, a narrow (in the temp- 
erature interval and, consequently, spatially) boundary 
layer should exist between the convective zone and the 
He I region (the heat release zone), in which the flow is 
rearranged. For calculation of the velocity of the ther- 
mal wave, i t  i s  not possible to investigate the structure 
of the boundary zone: in view of the narrowness of this 
zone, the momentum transfer and leakage of heat to the 
walls of the capillary can be neglected within it; the 
jumps in the temperature and velocity are  then deter- 
mined by application of the conservation laws to the 
quantities on both sides of the boundary zone. 

The relations thus obtained yield a single value of 
the wave velocity for each choice of values of the spe- 
cified parameters (flow rate of the liquid, temperature 
of the thermostat, etc). As will be shown in Sec. 4, 
the wave velocity and the direction of i ts  propagation 
relative to the liquid depends on the flow direction. 
The phase located upstream grows. " In this respect, 
the phenomenon under study differs strongly from the 
thermal wave of the "~uperconductor-normal metal" 
phase transition in a linear ciruit with current.t21 The 
propagation of such a wave is connected with the trans- 
fer of the Joule heat released in the normal phase to 
the superconducting phase. Since this transfer is ef- 
fected by ordinary thermal conduction, the velocity 
and other characteristics should depend only on the 
quantity and not on the direction of the flow. 

It should also be noted that a thermal instability of 
the flow of a viscous liquid was observed in Refs. 3 
and 4. This instability is due to the strong temperature 
dependence of the viscosity, and the corresponding crit- 
ical phenomena have been investigated-jumpwise change 
in the flow regime under a smooth change in the pres- 
sure drop and in other parameters. 

2. BOUNDARY CONDITIONS AND EQUATIONS 

In a se t  of coordinates attached to the interphase 
boundary, the flow i s  stationary. For definiteness, we 
consider a plane channel of width h. The location of the 
He I and He I1 regions is shown in Fig. 1. The walls of 
the channel move with velocity - u, where u is the 
velocity of the thermal wave in the laboratory system of 
coordinates. The interphase boundary is determined by 
the condition 
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FIG. 1. 

In the region T <To, we shall describe the flow by means 
of two-fluid  hydrodynamic^.^^*^^ On the surface of the 
waves, at T >Tc, we have the condition 

At T < Tc we have 

where p8,=p, (Po,To). Finally, the equation for heat 
transfer 

together with (2.6) and (2. l l ) ,  form a se t  of four equa- 
tions for the four quantities v,,, v,,,P, T. In (2.12), 
heating due to friction of the normal component of He I1 
was not taken into account. As will be shown, the velo- 
city v, is small and the heat liberated, which is quad- 
ratic in the components of this velocity, is insignificant. 

The conditions on the interphase boundary a re  of the 
form 

[k sin cp+IISu cos cpl=O, [Ti., sin ~+n, ,  cos c p ]  =O, (2.13) 

where s is the entropy of a unit mass of liquid, n i s  the 
coefficient of thermal conductivity. For the considered 
flow, the equation (2.4) obviously holds not only on the 
walls, but throughout the entire volume of the He 11. 
Moreover, 

s o  that any two of the four components v,,v, can be ex- 
pressed in terms of the other two. 

For convenience in subsequent references, we write 
down the relations 

a n .  an, an,, an,, -+--0, -+-so. 
at. ay at.  ay 

(Z 1 a v. E,-P+ - , n.,=?- n., = P, 
a# ' 

P" If.. - - ~..(PV.=- I)+ l ( a (2.9) 
P. 

where P is the pressure in the liquid. In these (and 
subsequent) expressions the terms containing the se- 
cond viscosity are  omitted for reasons that we shall 
give below. 

The equation 

where 1 is the chemical potential of the quiescent li- 
quid, enables us to express the pressure in terms of 
the components of the velocity and the temperature. 
Taking i t  into account that as x-- the velocities take 
the form v,,=- u, v,, =0, we find 

[Q, sin cp+Q, cos cpl=O, (2.14) 

where the square brackets indicate the differences be- 
tween the corresponding quantities on the two sides of 
the boundary, Q, and Q, are  the components of the en- 
ergy flux, and rp is the angle between the plane touching 
the boundary a t  the given point and the wall (Fig. 1). 

We take the density of the liquid p to be constant, ne- 
glecting the thermal expansion and the effect of the 
change in the pressure along the channel (the pressure 
deviation from Po is large only in the He I at large 
distances from the interphase boundary; this region has 
no significant effect on the characteristics of the ther- 
mal wave). Correspondingly, we shall assume p, and 
p, to be functions of the temperature only. If 

the dependence of T on y can be neglected, a fact also 
taken into account in (2.7). Then the distribution of 
the temperature in the He I i s  determined by the equa- 
tion 

and the conditions 

where v is the mean velocity of the helium in the labora- 
tory system of coordinates, c ,  is the specific heat of 
He I. As x-- -, the temperature reaches a maximum 
value Ti, determined from (1. I), while the heat flux at 
the interphase boundary is 

where 
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3. CONVECTIVE ZONE 

We now consider the flow of He I1 at a large distance 
from the interphase boundary. 

At a =0, the velocity v,, vanishes and the transverse 
profile v,, follows a Poiseuille pattern. Keeping in 
mind the smallness of a, we assume that v,,=- u 
+6w(x)(y/h) [1- (y/h)], where w is a slowly changing 
function of x (at a =O we would have w =const). Aver- 
aging (2.6) and (2.12) over y with account of (2.3) and 
(2. l l ) ,  discarding the heat conductivity x and taking 
into consideration the smallness of the velocity, we ob- 
tain approximately 

as x-a,. we have T=T, and w=O. 

Transforming to the independent variable T, we write 

The separatrix, which emerges from the saddle point 
(3.4) in the region T >To, UJ >0, takes a t  small T - To 
the form 

where T=(T,/T,) - 1, a=s(To)/c(To), and c is the speci- 
fic heat of He 11. 

We restrict  ourselves to values of To that a re  not far  
removed from T,, so  that 7 would be less than a. Then 
(3.5) can be extrapolated to the region adjoining the in- 
terphase boundary. 

The width of the convective zone is, according to (3.1) 
and (3.5), a quantity of order 

The thermal conductivity can be neglected if the f i rs t  
term on the left side of (3.2) is large in comparison 
with x ( d 2 ~ / d g ) .  With account of (3.1) and (3.6), we 
have the condition 

The right side of (3.7) is a quantity of order lo-'' cmZ 
in the case of 4He. 

We have not considered the second viscosity along 
with the thermal conductivity in the region of He 
11. In an estimate of the corresponding t e rms  in 
the equation, we must of course compare the 
terms in the equations, we must of course compare the 
derivatives 8vn,/8x- w/l, 8vn,/8y - (a/hpTs)(T - T,) and 
Bv,,/8y - w/h. Such a comparison shows that the se- 
cond viscosity can be neglected i f  

lax (ps/AS) [ (qh/24) (T,-TJ I", (3.8) 

l'k (psATJb) [qh/6 (T,-To) I"', (3.9) 
where b=b2 - 2pb, +p2b3 +(4/3)rl, and 11, b2, and 5,  are  
the second-viscosity coefficients introduced in Ref. 6. 
The assumption of small a ,  used above, corresponds 
to the conditions (2.15), (3.8), and (3.9). 

4. VELOCITY OF THE WAVE 

The relation (3.1) between w and dT/dx cannot hold 
at the interphase boundary itself. On this boundary, 
because of the equation of continuity, the velocity of the 
normal component must coincide with the constant (x- 
independent) velocity of the He I. The latter, being a 
given quantity (proportional to the flow rate), can take 
on both positive and negative values. But w, so  long as 
(3.1) is valid, can only be positive, since dT/dx<O. 
Therefore, some boundary layer must exist between 
the region of He I and the convective zone in He II, and 
flow charges form in this layer. 

In a mathematical sense, the unsuitability of Eqs. 
(3.1) and (3.2) in the boundary layer is connected with 
the fact that terms containing p, in the denominator 
were discarded in their derivation. Near the intkr- 
phase boundary, such terms obviously cannot be small. 
Along with this, since p, is small only in the immediate 
vicinity of T,, the boundary layer should be relatively 
narrow. Thanks to this narrowness, the momentum and 
heat losses a t  the walls should be small within the boun-, 
dary layer, which enables us to assume the energy and 
momentum fluxes in i t  to be approximately constant, an 
assumption made without recourse to a study of the 
structure of this layer. 

At a temperature T that is independent of y, the inter- 
phase boundary is planar and in the angle cp =T/2 the 
conditions (2.13), (2.14). In correspondence with what 
was said above, the values of II, and Q, averaged over 
y must be taken in these equations not on the interphase 
boundary a t  T =T,, but on the boundary of the convective 
zone, i.e., at T=T,- 6T, where 6T is the temperature 
jump in the boundary layer. 

From (2.13), with account of (2. l l ) ,  we find 

In view of the smallness of 6T we can set  s =s(T,), p, 
=pR(6T/Tc), for 4 ~ e  we have R = 6.6. 

In He I, on the interphase boundary, the average 
value over the cross  section is 

where W ,  = W(T,) is the specific enthalpy . On the boun- 
dary of the convective zone, 

Q,=j[ W-Ts-(p,/Zp) (v,-v.)'+(u.'/~) ] 
+pTsu,.+u,,(v., j-pv,) --x(dT/dz). (4.3) 

Setting W- Wc=- c 6T, eliminating v, from (4.3) with 
the aid of (2.4), (2.5), then averaging over y and sub- 
stituting the resultant expression in (4.2) we find 

In (4.4), the derivative dT/dx on the boundary of the 
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convective zone is expressed in terms of w in accord 
with (3.1). 

Assuming T =T, - 6T in (4.1) and (4.4), substituting 
in them qc according to (2.18) and w according to (3.5) 
with T=Tc- 6T and eliminating 6T from these two equa- 
tions, we find the dependence of the velocity of the ther- 
mal wave u on the rate of flow v and on other para- 
meters. 

Figclre 2 shows the approximate form of the depen- 
dence on v of the velocity v, =v- u of the wave relative 
to the liquid. The values v2 <vL a re  not considered, 
since at  such small  velocities TI in (1.1) is less  than Tc 
and the stationary flow of He I is small. At v=- v,, 
we have v , - ( ~ s ~ ~ v , ) ' / ~ u ' ~ ~ ;  as the absolute value of v 
increases (at v<O), v, falls off, reaching negative val- 
ues if 

and in the case of the opposite inequality, v, falls off, 
remaining a positive quantity, as shown in Fig. 2. For 
4 ~ e ,  the quantity on the right side of (4.5) i s  of the or- 
der of cm2. 

In the region v >urn, the velocity i s  vo <O. At v=v, 
we have vo/v,= (u/r) - 1; then the absolute value of the 
velocity v, falls off somewhat and, passing through a 
minimum, increases again. The asymptotic expression 
at large v is 

The obtained solution shows that the velocity of the nor- 
mal component w is always smaller  in absolute value 
than the velocity of He I.  This enables us, bearing in 
mind only a qualitative description of the thermal wave, 
to neglect the viscous heat release in He 11, which is 
proportional to w2. 

Over almost the entire range of v (with the exception 
of negative values that a re  large in absolute value, 
under the condition (4.5)) the sign of v, is opposite that 
of v. The thermal wave is propagated in such a fashion 
that the downstream phase located is transformed into 
the. upstream phase. 

We now make some numerical estimates. At a 
w/cm2-deg, T0=2 K, h=10-~ cm, we obtain v, 

a 3 cm/sec; vo = 1.5 m/sec at  v =- v, and v, = - 4 cm/sec 
at  v=v,. A layer of porous material with helium f i l -  
tering through i t  can apparently serve as a system suit- 
able for the excitation of the considered thermal waves. 

We now consider a portion of He I of finite but suffi- 

y m  FIG. 3. 

ciently great  length, bounded on the left and right by 
He I1 (see Fig. 3). A sufficiently large [in comparison 
with the quantity I, from (2.19)] length of the segment of 
the channel filled with He I enables us  to consider the 
motion of the left and right boundaries independently. 
Let the flow velocity v>O (i.e., the flow is from left 
to right). Relative to the right boundary, the region of 
He I is upstream; therefore, transformation of He I1 
into He I occurs a t  the right boundary. On the left 
boundary, He I is converted into He 11. At small  flow 
velocities u, as is seen from Fig. 2, the rate of trans- 
formation v, a t  the left boundary is greater (in absolute 
value) than a t  the right. The region of He I will de- 
crease and, finally, disappear. At larger v, the rate 
of conversion at the right boundary is larger and the 
mass  of He I increases. Consequently, there exists  a 
critical velocity v,,, beginning with which the flow of 
He I1 in the capillary is unstable relative to local heat- 
ing of sufficient intensity. At small  a, the velocity v,, 
becomes smaller  than the critical velocity, corres- 
ponding to destruction of the superconductivity as a 
consequence of the formation of vortex rings. 

In the derivation of (4.1) and (4.4), we used the nar- 
rowness of the boundary layer in which, in contrast 
with the convective zone the inertial t e rms  a re  impor- 
tant in the momentum flux. Their contribution i s  of the 
order of (p2/p,)v: and, since v, i s  much smaller  than 
the sound velocity, i t  should be taken into account only 
at  small values of pdp ,  i. e., in a narrow temperature 
range near T, which forms the boundary layer. Actu- 
ally, according to (4.1) and (4.4), the width of this 
interval 6T turns out to be a quantity of the order of 
Tc [V/(R~T,) ' /~] and does not exceed - 1 0 m 2 ~  at  reason- 
able values of the velocity u s 1 0  cm/sec. So f a r  a s  the 
spatial width of the boundary layer i s  concerned, i t  is a 
quantity of the order of 

where 1, is determined from (2.19): 1, S x/pcv. 

The jump in the temperature at  the temperature at  
the boundary He I -  He I1 in a chamber of centimeter di- 
mensions, where a region of He I developed a rwnd  the 
heater, was observed by Peahkov."] Convective tur- 
bulence was generated in the He I and equalized the 
temperature. Undoubtedly, significant interest  would 
attach to a study of the He I -  He I1 boundary in a narrow 
capillary, where the turbulence and formation of vor- 
tices a re  impossible and the flow is quasi-one-dimen- 
sional. In the one-dimensional case with convective 
transfer of heat into the He I1 from the interphase boun- 
dary, the formation of a boundary layer, in which the 
finite interval of temperatures occurs over a length not 
exceeding x/pcv, - lom4 c m  a t  v,- 1 cm/sec, is appa- 
rently inevitable, just a s  in the case considered here. 

The author sincerely thanks A. G. Merzhanov for  
his idea of the phase-transition wave fed by the heat 
of friction in the helium flow, and a$o A. A. Soybyanin, 
I. A. Fomin and D. E. Khmel'nitskii for  useful dis- 
cussions. 
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"one has in mind, of course, the growth a s  a result  of the 
phase transition, and not of the motion of the interphase 
boundary along with the liquid in the laboratory system of the 
coordinates. 
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Investigation of the nature of homotropic orientation of 
nematic liquid crystal molecules, and the possibility of 
applying it in modulation spectroscopy 
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The electroreflection method has been used to investigate the spontaneous polarization of nematic liquid 
crystals (NLC) as a function of the orientation of the molecules. It is found that electroreflection in a 
NLC-semiconductor system is observed only with homotropic orientation of the molecules. The existence 
of the phenomenon of electroreflection is considered in its dependence on various conditions; the fixed 
bias, the frequency and amplitude of the modulating field, the temperature of the specimen, and the form 
of the modulating signal. An explanation of the observed phenomena is given from the point of view of the 
polar structure of the NLC. A theoretical analysis of electroreflection is made on the basis of a bipolar 
model of the NCL. Good verification is obtained of the experimental results and of the observed 
electrooptical effects of the first to sixth orders. A new technique of modulation spectroscopy, using 
nematic liquid crystals, is proposed. 

PACS numbers: 61.30.Gd, 78.20.Jq 

It is  known that under certain boundary conditions it is 
possible, in thin layers of nematic liquid crystals (NLC), 
to attain homotropic orientation of the molecules. [" 
Homotropic layers have been obtained and investigat- 
ed' that originated spontaneously in specimens of a 
thickness less than a certain critical value during the 
phase transition from the isotropic phase to the nemat- 
ic; their nature was associated with the polar structure 
of the NLC. But s o  far there is no direct experimental 
confirmation of such a structure. In the present paper, 
therefore, a direct test is made of the presence of po- 
larity, and a comprehensive investigation of it is made 
in a homotropically orientated NLC by the method of el- 
ectroreflection from a semiconductor-nematic liquid 
crystal boundary; also, the possibility of application of 
NLC for investigation of electroreflection (the Franz- 
Keldysh effect) is clarified. The essence of this method 
in the present case was as follows. 

It is known that the change of the reflection coefficient 
of a semiconductor placed in an electric field is deter- 
mined by the change of the imaginary part E, and real 
part E, of the permittivity. In a field of intensity E ,  the 
changes of these quantities a re  respectively[31 

and the change of the reflection coefficient is 

where w is the frequency of the light, 9 = ~ ~ / 2 p * ;  p* is 
the effective mass, B = ~ I P , ~ I ~ ( ~ C ( * ) ~ ~ ~ ,  Pw(k) is the 
matrix element of the momentum P between the Bloch 
functions of the conduction band and of the valence band 
for the vector k,  n is the unit vector along the field, 
(Y(w) = a lnR/a~, , and d(w) = a lnR/ae,. The functions 
F[(w, - w)/B] and G[(w, - w)/B] a r e  expressed in terms 
of the Airy functions Ai(x) and Bi(x) and the unit step 
function H(x): 

The value of the field E =a+/& at the surface of the 
semiconductor in the semiconductor-NLC system is 
determined by the volume distribution of dipole moment 
p(z); see Fig. 1 (following Ref. 2,  we shall siuppose that 
p(* 0 / 2 )  = po and p(0) = 0). The value of the potential 'in 
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