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It is shown that in a liquid, there should exist electron and nuclear acoustic paramagnetic resonance 
(APRL) lines due to anisotropic spin-lattice interactions. The dispersion equations for sound excitations 
under APRL conditions are derived. Their dependence on the poIarization and direction of propagation of 
the sound and on the spin-lattice interactions mechanisms is analyzed. The APRL selection rules are 
considered. 

PACS numbers: 43.35.Rw, 76.90. +d 

1. INTRODUCTION 

Acoustic paramagnetic resonance (APR) in a solid, 
which was predicted by A l ' t ~ h u l e r ~ ~ ~  and Kastler, has 
been successfully studied at the present time in a num- 
ber of laboratories. The situation of acoustic paramag- 
netic resonance in a liquid (APRL) is quite different. 
For a long time, attempts at observation of APRL ended 
unsuccessfully, which was apparently in agreement 
with the theoretical representations, c31 according to 
which the APRL lines should have a huge width: -fl 
( f l  - 1010-1012 sec-' i s  the rotational relaxation ra te  of 
the molecules of the liquid). However, it has since 
been shown theoreticallyc4] that the APRL lines exist and 
have widths of the same order as  the corresponding 
EPR lines or NMR lines in liquids. 

In a previous work, we reported the first  observa- 
tion of APRL, the lines of which are  evidently due to 
the anisotropic spin-lattice interactions. The reasoning 
underlying the theoretical approach to the phenomenon 
was also given there. The gist of the reasoning is the 
following: in a liquid, the orient ation of the molecules 
interacts with the shear deformations (in particular, 
this i s  the reason for the Maxwell In a mag- 
netic field H, the fluctuation spectrum of the orienta- 
tion of the molecules is deformed as a result of the 
anistropic spin-lattice interactions; against a con- 
tinuous background with width -F1, there is a small 6 -  
shaped component at the precession frequency of the 
spins w,. Therefore, in the given case, the liquid ex- 
hibits "solid-like" properties when sound of frequency 
w z: w, propagates in it, whereas under ordinary condi- 
tions generation of frequencies w 2 r i s  necessary for 
this purpose. The intensity of the APRL lines turns 
out to be several orders higher than predicted pre- 
v i o ~ s l y . ~ ~ '  A theory of APRL based on these considera- 
tions is given below. 

2. THE MODEL 

Let us consider a liquid consisting of anistropic, 
undeformed molecules, the orientation of which relaxes 
at a rate T1 to the local-equilibrium distribution. Such 
a model has been studied by ~ e o n t o v i c h ~ ~ '  and ~ y t o v ~ ~ ]  
in researches on the depolarized scattering of light. In 
these papers, a very general description of a liquid in 
terms of a se t  of relaxing tensors of different rank is 

used. However, i t  is somewhat unsuitable for applica- 
tion to the problem of APRL because of the difficulty 
of explicitly accounting for the symmetry of the spin 
Hamiltonian, which can be different for different spins 
in the same molecule. We therefore use here a s  the 
relaxing variable the small  f ( a ,  P, y,x) departure of the 
distribution function of the molecular orientation from 
the spherically symmetric distribution at the given 
point x of the liquid. The Eulerian angles a, 4 and y 
give the orientation of a se t  of coordinates, (MSC) 
attached to the molecule but moving relative to the 
laboratory system (LSC). The lattice contribution to the 
free energy density has the form 

Here p is the density of the liquid, d is the displace- 
ment vector, K and pa,,,,,, a r e  the hydrostatic com- 
pression modulus and the shear modulus tensor, mea- 
sured at frequencies w 2 T", a - ( V , , / ~ T ~ T ) ' ~  is a nor- 
malization constant, Vo is the volume per molecule, and 
T is the temperature. A symmetrical tensor of second 
rank P(Sp P =0) describes the interaction (in the MSC) 
of the orientation of the molecule with the instantaneous 
shear. The transformation of the tensors in the transi-- 
tion from the MSC to the LSC is carried out with the 
help of the Wigner finite rotation matrices D:: (a!, 0, y ).['I 

The last t e rm in (1) is connected with the change in the 
f ree  energy upon departure of the state of the liquid from 
the equilibrium isotropic state. 

For concreteness, we assume that each molecule con- 
tains one spin S> 1/2 with quadrupole moment Q > O ,  and 
we shall take into account the isotropic and anisotropic 
Zeeman interactions and the interaction of Q with the 
graident VaB of the intramolecular electric field. The 
total density of the free energy is of the form 

Here 0 is the electronic o r  nuclear magneton, g is the 
isotropic part  of the g tensor, gO is the anisotropic part 
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of the g tensor, s and q are  the densities of the spin 
and quadrupole moments : 

POP = 2S(2S-I)  c ( s ~ , ~ ~ ~ o + s ~ P ~ . ~ - ' I s ~ ( s + I )  b ) 6  (x-xi )  ; 

S, is the spin operator of the i-th particle located at the 
point xi. 

From (1) and (2) we obtain the linear equations of mo- 
tion for displacements in the liquid: 

and, limiting ourselves for simplicity to the approxi- 
mation of a single relaxation time 7 ,  we obtain for the 
distribution function: 

The motion of the spin operators s,,{s,, s,} and sf, 
which relax with different ra tes  Ti:, Ti: and T;: in the 
general case, is described by the Bloch-Bloembergen 
equations (see, for example, Ref. 9). For high tem- 
peratures (T >> w,) and at H,= H,=O and H,=Ef, they 
have the form 

(D"'$) (Dl"$) .x*i(D'2'g') rr, 

( D o ) V )  == (D("V) .x*i(D(2'V) ,,, 

Equations (3)-(7) give a closed se t  of equations des- 
cribing the dynamics of the coupled spin-lattice exci- 
tations. By requiring in accord with Ref. 6, that shear 
strains be absent from the liquid at w =0, we get from(3) 

Using (4) and the symmetry properties of the problem 
(H f 01 ), with the help of which the number (equal to  
three) of independent components of the tensor p 
can be established, we can verify that the conditions 
(8) are  consistent. This fact is a consequence of the 
correct description of the relaxation ofthe spinvariables 

as w --0 in the Bloch-Bloembergen approximation. We 
can then represent (3) in the form 

a ad, a 
p o 2 d a - K -  - + ~ - - ( R . E ( O ) - R ~ O ( O ) ) ,  

d r .  f d r ,  ) 8 4  

dZ ( s ,  t )  =dm ( x )  e-'*'. 
(9) 

which is suitable for calculations of excitations with 
frequency w z 0. 

The components of the tensor R, a r e  determined from 
(3)-(7), if we expand f (cr , 8 ,  y ,  x) in generalized spherical 
harmonics and use the properties of orthogonality of the 
latter. This calculation is carried out exactly but the 
answer obtained in such a way is too complicated to 
write out here. Since the spin-lattice interactions have 
a weak effect on the sound propagation in the liquid, i t  
suffices t o  limit ourselves to the linear terms in the 
expansion of R,, in t e rms  of the small parameters 
a:, @: and *,P defined below. After complicated cal- 
culations, we obtain 

where 

8n2a 
R.@O = 

5  ( 1  - i o r )  ( P . 0  no,, 

2n2a 
1 2 { [  ( P . ~ ) z Y - ~ +  ( P . v ) ' Y - ~ I  ( E . ~ ~  - iZ,-7) 

'XZ' a [ , ( I  - i o r )  
+ [ ( P . g " ) ' Y + s  + ( P . V ) ' Y + d ]  (CX2 + i i i y Z ) } ,  

R,,.= i [ 2n'a 1' {[ ( P . ~ ~ ) ~ Y - ~ + ( P . I ~ ) ? Y - ~ I  ( z . ~ ~  - i n r z )  
5 ( 1 -  i o r )  

- [ ( P . ~ ) Y + ~ + ( P . V ) ~ Y + ~ ]  ( E , , +  i n , , ) } ;  

- ( E x ,  - n,, + zie,,) Y+ql;  

here 

a t  39 ' T g jH - iTzd-* ~ * d = -  ( 
TV, 2S(2S - 1 )  o g$H + iT,,-' 

R:,, Rb, and R L  describe the effective shear elasticity 
of the liquid, which is due respectively to the displace- 
ment -orientation, anisotropic Zeeman and quadrupole 
inter actions. 

3. DISPERSION EQUATIONS 

For the determination of the elastic properties of a 
liquid, with account of the effect of the spins, we have 
used the set  of coordinates 0 whose Z axis is directed 
along H. On the other hand, the process of sound 
propagation is more conveniently considered directly, 
by choosing the se t  of coordinates 0' such that one of i ts  
axes is directed along the wave vector k(d(x,t) =dexp 
x (ik ax - iot)). With such a choice, the longitudinal and 
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transverse sound modes a re  coupled only through the mined by the instantaneous orientation of the spins. As 
weak spin-lattice interaction. Without limitation of a result, singularities appear in the spectrum of the 
generality, we assume that the vector k l ies in the XZ fluctuation of the orientation of the molecules at fre- 
plane of the system 0 and t h e r e f o ~ e  transformation to quencies w =way w = 2w0. The fact that at w 2 7-' the 
the system 0' is made by rotation around the Y axis by liquid reveals solid properties, has long been known.CB3 
an angle 9 such that k,=k,= k. Choosing the com- 
ponents of the tensor R, in the se t  of coordinates 0' it 
is easy to get the dispersion equations from (9). When 
the frequency of the sound is close t o  one of the r e -  
sonances and, consequently, l 9 2 g s a  1 << 19dog*a1 << 1, they 
have the following form (interaction between the longi- 
tudinal and transverse modes can be neglected): 

a) The region w =go H; the longitudinal wave (d,. , ,. = 0): 

ior a & k K - 1 6 n 1 a ' ( ~ . ~ )  + - ~ s i n ' 6 ;  
kZ 15 1 - i o r  6 

transverse wave with the polarizations dycos28 -id,. 
x sin9 = 0: 

pox 4 ior a 
-a--nza'(P.P)-+-B(cos'26+sina6); (11) 

k' 5 1- io r  4 

transverse wave with polarization d,sin9+idZ.cos29 
= 0: 

4 ior --n'al(P.P) - 
k? 5 1 - i w t '  
8n'aZ ' 

8 = (T) [ ( P ~ ) ' Y I - ~ + ( P ~ I r ) 2 Y . d ] .  

b) The region w = 2gpH; the longitudinal wave (d,,, ,. 
=O): 

po' 16 ior a - = K--n3a'(P.P) -+-Ccos'$; p 15 1 - i o r  6 
(13) 

transverse wave with polarization d,.cos9 -id,, = 0: 

PO' - ior a ---- p 4 zZa'(P.P) ---Ccos2 1-ior 4 6(1 + s i n 2 6 ) ;  (14) 

transverse wave with polarization d , ,  + id,-sin9= 0: 

At w <<gPH and w >> ZgfiH, R i B  and RE, give small  
anisotropic contributions to the shear elasticity of the 
liquid. In the first  case, the contribution is propor- 
tional to w and in the second, it does not depend on w. 

4. DISCUSSION OF THE RESULTS 

It was shown abwe that at frequencies w = w, and w 
5 2w. APRL lines should exist whose width corresponds 
in order of magnitude with the EPR or NMR lines in the 
liquid (10)-(15). As in APR in a solid, the matrix ele- 
ment of the resonance transition is proportional to EaB. 
The physical explanation of this is contained in the char- 
acter of the relaxation of the distribution function of the 
orientations of the molecules: in a magnetic field, the 
function f (a!, 6 ,  y, x) relaxes at the rate 7' to a non- 

In our problem, the transition to the "solid" regime 
takes place at w,, 2w0, and W , T < < ~ .  Although the 
"shear elasticity" of the liquid, which is produced by 
the spin-lattice interactions, is numerically small, 
it i s  sufficient for the formation of the APRL lines. 
Some similarity with the APR in a solid appears also 
in that transitions AS, = *2 are  excited in APRL because 
of the quadrupole interaction, with a probability of tran- 
sitions a,= r t l .  It should be recalled that the tran- 
sitions eS, = i 2  a re  forbidden as  resonance transitions 
in EPR and NMR in liquids if w T << 1. 

The quantity which determines the probability of 
observation of APRL directly is the ratio Aa/a!  of the 
coefficients of resonant and viscous absorption of the 
sound. The quantity Aa!/a! depends on the angle 8 be- 
tween the wave vector and H (like sin229 for the tran- 
sitions AS,= 51 and like cos46 for the transitions AS 
= *2). We shall give some numerical estimates. 

The APRL lines have widths of the order of Ti' 
- max( (g00~)~r ,  (QV)'T} SO that Aa!/cu - 10-5-10-V0r 
T = 300 K,  H = lo3 Oe, T -lo-" sec. The effect observed 
in nuclear APR in a solid i s  of the same order,['O1 i.e., 
we can hope that the APRL can also be observed direc- 
tly. 

A flux of acoustic energy 

i s  necessary for saturation of the APRL lines. At 
g",bH-QV- 271 lo7 sec-', 7- lo-"sec, ( K / ~ ) ' ' ~ -  1O5cm/ 
sec, K -  p ,  T =300 K, V o  - 10-22cm3,we obtaink- 1W/cm2 
- a rather large value, which is in qualitative agreement 
with the experimental result of Ref. 5. The estimate 
of W is applicable to solutions of free radicals, which 
have narrow EPR  line^.^"' In view of this, generation 
of sound of comparatively low frequency (-1OMHz) is 
necessary for detection of APRL,'~] which makes the 
f ree  radicals promising objects for experiment. 

For APR investigations of solids, low temperatures 
are  customarily used to increase ~cu/a.~'~ '  On the 
other hand, upon cooling the liquid, the viscosity and the 
width of the resonance lines increase, so  that A a / a  
decreases. Therefore, it is better to investigate low- 
viscosity liquids by the method of APRL. 

We note that in the search for the narrow lines of 
nuclear APRL it is necessary to take into account the 
specific mechanism of their broadening. Thus, diffusion 
or self-diffusion of molecules between nodes and anti- 
nodes of sound waves broadens the line by an amount 
Aw, - ~ k 2 ~ ~ ~  (D is the diffusion coefficient or the self- 
diffusion coefficient). A flow of liquid that is inhomo- 
geneous in space, with velocity v, shifts the line and 
broadens it by Aw - k XV.['~' 

isotropic quasi-equilibrium distribution, which is deter- In conclusion, we discuss the approximations allowed 
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in the calculation. First ,  in Eq. (4), we used only a 
single relaxation time r, which is clearly insufficient 
for the description, for example, of depolarized light 
scattering in a liquid.c71 However, this is valid in the 
APRL problem. Actually, in the model of continuous 
rotational diffusionc14] for APRL, solutions exist cor- 
responding only to a single quantum number 2 = 2 and, 
because of this, to only a single relaxation time. 
Moreover, in the important practical case w r << 1, the 
orientation of the molecules follows that of the spins; 
therefore, the matrix element of the transition (but 
not the width of the APRL line) does not generally de- 
pend on T and on any details of the relaxation process. 
Finally, at wr 2 1, the latter can also affect the matrix 
element of the APRL. 

Second, the mechanisms of APRL considered above 
in liquids consisting of rigid, undeformed molecules, in 
which the form of the spin Hamiltonian (2) is determined 
by the orientation of the molecules. These mechanisms 
naturally do not take into account the excited electron 
states in the intra- and intermolecular electric fields, 
which is valid at least for many free radicals by virtue 
of the large excitation energy AE of such states.[ll] 
On the other hand, there a re  liquids in which the sur- 
rounding of the spin firms a sufficiently symmetric 
complex.c121 The quantity AE is then smaller and in the 
APRL problem it  is necessary to take into account the 
spin-orbit interaction, the deformability and the rota- 
tional motion of the complex. These features, and also 
other possible mechanisms of APRL (anisotropic hyper- 
fine, dipole-dipole, and other interactions) a re  easily 
taken into account by the method outlined above. As in 
APR in solids, this can lead to  a significant increase 
in the effect. 

Finally, relaxation processes not considered above 
can exist in liquids, with such small T that their 
contributian to T, would be negligibly small, but sig- 

nificant in the matrix element of the APRL. Such 
processes also lead to  an increase in A a / a .  

The authors express their sincere gratitude to S. A. 
Al'tshuler for valued discussions of the work and a 
number of useful suggestions. 
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The motion of the He I-He I1 interphase boundary is considered in a narrow capillary tube for a 
specified flow rate. A temperature diference between the capillary and the thermostat (the temperature To 
of which is below T,) is maintained by the heat produced by the friction between the flow and the 
capillary walls. The flow regime with a constant velocity of the boundary and of the thermal wave due to 
the motion is investigated. The wave velocity, the temperature distribution T(x) along the capillary tube, 
and the distribution of the normal and superfluid velocities in the region T(x)< T, are found. In some 
respects the solution is similar to that for a combustion regime, that is, to ignition and extinction waves. 

PACS numbers: 67.40.Hf 

heat produced by friction against the walls is sufficient 
INTRODUCTION to maintain the temperature of the liquid in the capillary 

Steady flow of He I will take place along a capillary above Tc. The temperature difference between the cap- 
placed in a medium with a temperature below Tc if the illary and the thermostat, Ti - To, is proportional to the 
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