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Indirect multispin exchange 
c. L. Nagaev 
(Submitted 16 March 1977) 
Zh. Eksp. Teor. Fiz. 74, 1375-1385 (April 1978) 

If the indirect exchange between f-spins is effected by s-electrons with nonzero total spin, then it is of 
essentially non-Heisenberg character. For the particular case of indirect exchange via a donor electron in 
a magnetic semiconductor it is possible to construct an equivalent magnetic Hamiltonian having the form 
of the square root of an expression bilinear in the f-spins. The Ruderman-Kittel term is a small correction 
to it. The constructed Hamiltonian accounts for the spectrum of the system accurately, but the average 
values of the spin operators can be expressed in terms of its eigenfunctions only in a manner that is, 
generally speaking, different from the manner accepted in quantum mechanics. The Harniltonian contains 
all the spin invariants possible for isotropic systems: multispin, biquadratic, etc. The spin-spin interaction 
is noncentral. With the aid of this Hamiltonian the localized magnons in a ferromagnetic semiconductor 
are investigated. 

PACS numbers: 75.10.Jm, 75.30.Et 

1. INTRODUCTION 

A s  is well known, the isotropic  exchange interaction 
is accurately described by the Heisenberg Hamiltonian 
only in the c a s e  of a sys tem consisting of two spin-$ 
magnetic atoms.  If the spin, S, of these a t o m s  exceeds 
$, the exchange between them is descr ibed  b y  a Hamil- 
tonian that i s  a polynomial of degree  2S i n  the scalar 
product, S,. q, of the spins.['' Even m o r e  complex is 
the situation in the case of a l a r g e  number of a toms,  
when into the exchange Hamiltonian en te r  multi-spin 
t e r m s  of the type S g .  Sf .  . . Sk . h . Although f o r  many 
physical sys tems  the Heisenberg t e r m  i n  the magnetic 
Hamiltonian i s  the dominant t e r m ,  in  ce r ta in  c a s e s  the 
non-Heisenberg t e r m s  are not small .  Of the non- 

Heisenberg Hamiltonians only those that are l inear  com- 
binations of quadrat ic  and biquadratic t e r m s  (i.e., 
Sg Sf and  (Sg . sf)[']; see, f o r  example, Refs. 2-4) 
have been investigated i n  detail .  Hamiltonians with 
four-spin t e r m s ,  (Sg . S f ) &  h ) ,  added t o  the Heisen- 
b e r g  t e r m s  have a l s o  been investigated.[=] 

In the p resen t  paper  w e  sha l l  show that in cer tain 
physical  s y s t e m s  the isotropic  exchange interaction i s  
descr ibed by  a Hamiltonian of a type ent i rely different 
f r o m  the type indicated above." These  are s y s t e m s  
in which the  indirect  exchange between the localized 

f-spins i s  effected by  mobile s -e lec t rons  that are com- 
pletely polar ized with respec t  to  spin. Such a situation 
differs  sharp ly  f r o m  the indirect  exchange i n  s y s t e m s  
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described by the Ruderman-Kittel-Kasuya-Yoshida 
(RKKY) theory, in which the s-electrons in the zeroth 
approximation in the s-f exchange a r e  not polarized. In 
the RKKY theory the S-f exchange contributes to the 
s-electron energy only in second-order perturbation 
theory. Since the s-f exchange Hamiltonian is linear 
in the f-spins, in the indicated order the correction to 
the s-electron energy should be quadratic in these 
spins. Therefore, the magnetic Hamiltonian, which by 
implication i s  a correction, expressed in terms of the 
f-spins, to the s-electron energy, has in the RKKY 
theory the structure of the Heisenberg Hamiltonian. 

If, on the other hand, the s-electrons a r e  completely 
polarized with respect to spin, then the correction to 
the electron energy i s  nonzero even in first-order per- 
turbation theory in terms of the s-f exchange. This i s  
precisely the situation in the case of a singly -charged 
donor in a magnetic semiconductor (e.g., the Gd3' ion 
in EuO): its single s-electron effects the indirect ex- 
change between the f-spins in the vicinity of the defect. 
The spin of the s-electron i s  always parallel or anti- 
parallel to the resultant moment of the atoms in the 
neighborhood of the defect, irrespective of how the mo- 
ment i s  aligned in space. Therefore, the correction to 
the energy i s  proportional to the moment, 

of the region in which the s-electron is localized. Thus, 
the Hamiltonian should have a structure of the type 
[C s, x Sf] "'. 

There also exist other systems in which the indirect 
exchange i s  effected by s-electrons polarized with re-  
spect to spin. Examples of these systems a r e  degen- 
erate ferromagnetic semiconductors. In them, a s  a 
rule, the distance, AS, between the subbands of the 
conduction band, split by the s-f exchange, is, a t  T = 0, 
high compared to the Fermi energy of thes-electrons.r6J 
However, the polarization vanishes a t  sufficiently high 
temperatures. Thus, the situation here i s  much more 
complex than in the case of indirect exchange in the 
vicinity of donors: the properties of degenerate semi- 
conductors a re  described by a Hamiltonian of the root 
type only a t  low temperatures. The RKKY theory i s  
applicable to them at temperatures much higher than 
the Curie point.[61 It has not a s  yet been possible to 
construct for degenerate semiconductors a magnetic 
Hamiltonian that is  valid a t  all temperatures. 

In the present paper a root Hamiltonian constructed 
for a singly-charged donor i s  used to investigate the 
influence of such defects on the magnon spectrum of a 
ferromagnetic semiconductor. This problem i s  similar 
to the problem of the Heisenberg defect in a ferro- 
magnet[7g81: a non-Heisenberg defect also causes the 
appearance of localized or  quasi-localized levels in the 
magnon spectrum. But the situation here differs from 
the situation considered in Refs. 7 and 8 not only quan- 
titatively, but also qualitatively. First, the effective 
exchange here i s  essentially noncentral. Secondly, in 
contrast to the situation considered in Refs. 7 and 8, the 
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range of the magnetic disturbance introduced by the 
electron of the donor can significantly exceed the lattice 
constant. It will be shown that, other conditions being 
equal, the appearance of localized magnons becomes 
more difficult as the radius of the electron orbit in- 
creases. Finally, besides the localized excitations cor- 
responding to the small deviation from the ferromag- 
netic order, there also exist such high-energy localized 
excitations whose presence leads to the replacement of 
the ferromagnetic order in the vicinity of the defect by 
an antiferromagnetic order. 

2. THE MAGNETIC HAMlLTONlAN OF THE DONOR 

We consider a positively-charged defect in a ferro- 
magnetic semiconductor in the case when the defect 
retains a mobile electron near it. The Hamiltonian for 
the s-f model in this case has the form 

where a;, and a g o  a r e  the creation and annihilation 
operators for an s-electron with spin o on a magnetic 
atom with number g, Sg and s a r e  the spin operators 
of this atom and a conduction electron respectively, 
the quantity B ( h )  i s  the integral of transfer of an elec- 
tron from the atom g+ h to the atom g, and U(g) is the 
potential of the defect. Below the third term in the 
Hamiltonian (1)-the term describing the s-f exchange- 
will be treated a s  a perturbation. Therefore, a s  a pre- 
liminary, i t  i s  advisable to perform the canonical trans- 
formation that diagonalizes the s-electron part of the 
Hamiltonian (I), i.e., i ts  f i rs t  two terms: 

As a result of the transformation, the Hamiltonian (1) 
assumes the form: 

Bearing in mind the fact that we want to construct the 
magnetic Hamiltonian up to the terms -A2 inclusively, 
let us carry out that canonical transformation of the 
Hamiltonian (la) which eliminates the terms -A, which 
a r e  nondiagonal in the index, n,  of the orbital state of 
the electron of the donor (the actual parameter of small- 
ness will be indicated below). Using the well-known 
rules for the permutation of the spin operators in the 
terms -A2, we obtain the following expression for the 
transformed Hamiltonian (the off-diagonal terms -AZ 
have been omitted): 



The eigenfunction of the Hamiltonian (3) i s  sought in 
the form 

where lo), i s  the electron vacuum function, ( p , ~ )  i s  the 
two-component wave function of the f-spins. The use of 
the formulas (3) and (4) allows the representation of the 
Schrodinger equation in the following form: 

Let us first  consider the case of equivalent atoms, 
when the electron can be found with equal probability 
on any one of the R atoms in the neighborhood of the 
defect, i.e., Wg = I/%. Using the relation S'F(SZ) 
= F(SZ + 1)s-, which follows from the definition of the 
operator S-, and taking into account the fact that the 
Hamiltonian X, conserves the total spin, !Dl, of the 
system of % atoms, to which the operator K i s  pro- 
portional in the present case, we obtain from (5): 

With allowance for the equality 

it follows from the formula (6) that 

Thus, we can introduce the magnetic Hamiltonian 

whose eigenvalues furnish the energy spectrum of the 
system in question. 

If we do not assume that the atoms a r e  equivalent, 
then the construction of the magnetic Hamiltonian i s  
possible only when the terms -Wg, i.e., 1/R, a r e  
negligible compared to 2S, where S i s  the spin of the 
magnetic atom (they ar ise  upon the commutation of K- 
and (E  - K)-' after the elimination of x from the second 
equation of the system (5)). The magnetic Hamiltonian 
is then given by the expression 

a particular case of which is, with the specified degree 
of accuracy in 1/2S%, the Hamiltonian (7). 

Evidently, the leading term, X,, in the Hamiltonian 
(7a) is an essentially non-Heisenberg Hamiltonian. The 
Heisenberg term, 3(;,, which corresponds to the Ruder- 
man-Kittel approximation, i s  a correction of the next 
order in A. Let us  list the properties of the Hamiltonian 
3%. 

1) The eigenfunction, p ,  of the Hamiltonian K, i s  only 
one component of the two-component wave function, 
( q , ~ ) ,  of the magnetic sub-system (4). Therefore, in 
the subspace defined by the eigenfunctions, cp, of the A 

Hamiltonian XI, the mean value of any spin operator L 
should be computed with allowance for (5) from the 
formula 

where the deformation operator 6 converts the operator 
2 into 

(account has been taken of the fact that x and, conse- 
quently, Pcp satisfy the same wave equation with the 
Hamiltonian (7a) a s  p).  

In a state with a fixed energy, the squares of the 
moduli of the eigenfunctions, cp and X,  of the Hamil- 
tonian X,, (7a), do not individually have the meaning 
of the probability density of a definite spin configura- 
tion; this density i s  given by the sum lpI2 + (xI2, where 
cp and x should be connected with each other by the re-  
lation (5). Therefore, in the general case the Hamil- 
tonian X, should be treated not as the true, but as an 
equivalent, Hamiltonian. But in certain cases (as for 
example, in the spin-wave approximation (see below)) 
it is sufficient to consider only one of the components 
of the magnetic wave function ( p , ~ ) ,  and then the 
Hamiltonian X, can be regarded as the true Hamil- 
tonian. 

2) The double sign of the HamiltonianX, i s  a conse- 
quence of the fact that the Hamiltonian, by i ts  physical 
meaning, i s  the energy of the coupling of the s-electron 
spin and the total spin, m ,  of the magnetic f-atoms into 
a single spin equal either to +$ o r  ID2 - $. Thus, to 
the two signs in the HamiltonianXl correspond two pos- 
sibilities: parallel or antiparallel orientation of the 
spin of the electron relative to the angular momentum 
m. 

3) The energy of the s-f coupling depends on the mag- 
nitude of the angular momentum !Dl, but does not depend 
on i ts  direction in space. Therefore, the Hamiltonian 
XI i s  invariant under a simultaneous rotation of the spins 
of all  the magnetic atoms through one and the same 
angle (a property which must be possessed by any mag- 
netic Hamiltonian in isotropic space). 

4) The reality of the eigenvalues of the Hamiltonian 
XI- h?? i s  evident from the structure of the Hamiltonian. 

5) Into the HamiltonianX, enter all  the invariants, 
(S, S,)"l(S, S4)"3(S5- S6)"5. . . (0 s n, s 2S), that a r e  pos- 
sible in an isotropic system. This follows from the 
definition of the algebraic function of the operator a s  
the corresponding ser ies  
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6) The interaction between the various atoms is not 
central, but multiplicative (-U,(g)a,(f)). If the electron 
of the donor i s  in the ground orbital state, when q(g) 
has the point-group symmetry of the crystal, then the 
spin of the atom g interacts equally intensely with all 
the atoms located symmetrically about the positively 
charged defect, irrespective of the distance between 

.them and the atom g. 

7) Since the radicand in the Hamiltonian X, has its 
maximum value when all the spins a r e  directed in like 
manner, the indirect exchange described by the Hamil- 
tonianX, strives, in the case of the energetically ad- 
vantageous direction of the spin of the s-electron rela- 
tive to the angular momentum IDZ moment, to establish 
a ferromagnetic order. 

Let us now find out the conditions of applicability of 
the expression (?a). It i s  not difficult to verify that in 
the case of a complete ferromagnetic order (all Sg =S) 
the terms of first  order inA in (7a) differ from the 
exact result for the s-f exchange energy only by a quan- 
tity "1/2SR, while the terms -A2 with allowance for 
the orthonormality condition, (2), for the functions 
+,(g) vanish. When, however, the ferromagnetic order 
is completely destroyed, the terms -A predominate if 
the inequalities AS << 10% ' I2(<, - E u), will -'lz, where w 
i s  the conduction-band width, a re  fulfilled. Thus, the 
condition E, - E >>AS i s  sufficient, but not necessary 
for the applicability of the above-obtained results. 

3. THE MAGNON SPECTRUM IN  THE CASE OF 
RADICAL EXCHANGE 

In order to understand better the characteristics of 
the indirect exchange described by the HamiltonianX,, 
(7a), it i s  advisable to investigate, a s  a preliminary, 
the magnon spectrum of the model system inwhich there 
a r e  no other exchange-interaction mechanisms. Going 
over in (7a) from the f-spin operators to the magnon 
operators 

S1'=S-b,+bl. S,+=SL.+iSsY= ( Z S ) " ~ ~ ~ ,  

S,-=S;-iSIV- ( 2 s )  %bgC 
(10) 

and limiting ourselves to the first  approximation in 1/S, 
we obtain the magnon Hamiltonian in the form (we con- 
sider only the ground state of the electron) 

A am, = ;;-z W,Wf(b,+b, -b l+bf) .  (1 1) 
" 

1.f 

In ( l l ) ,  the s-f exchange integral is, for definiteness, 
assumed to be positive. Representing the wave function 
in the form 

where (0) i s  the vacuum magnon function, we obtain a 
system of equations for the determination of the co- 
efficients cg:  

The system of equations (13) can be solved easily. 
From it follows the equality 

The first  factor in (14) can vanish only when E = 0. The 
corresponding solution has the form c,, = const. For 
E > 0 the second factor should vanish, i.e., the magnon 
spectrum i s  given by the relation 

the coefficients ch in (12) being nonzero for those atoms 
with which the electrons remain with a probability equal 
to W g .  

As an example, let us consider a defect in a simple 
cubic crystal, assuming that the electron wave function 
is nonzero only on the six nearest neighbors of the de- 
fect (for them Wg = 1/6). Then the system has a magnon 
level with E = 0 and a completely symmetric wave func- 
tion 

where 10) i s  the vacuum function and the index A runs 
through the values x =  (a, 0, 0), y= (0, a, O), and z 
= (0, 0, a). Besides the indicated level, there also ex- 
ists a fivefold degenerate level with E = 1/6; to it cor- 
responds the three @-type wave functions: rFp- (b;\ 
-b-,')lo), and the two d-type wave functions: V, 
- ( b i + b , ' ~  -b;\l-b_'Al)iO). Notice that in the case of 
an exponential law of decrease a t  infinity ($(g) 
- exp(- algl)), the magnon spectrum contains arbitrarily 
low frequencies, and the frequency E = 0 i s  the limiting 
point of a set of frequencies. 

The existence of a fully symmetric magnon with zero 
frequency i s  not connected with the specific character 
of the interaction between the magnetic atoms, but is, 
according to a theorem on brokensymmetry, auniversal 
property of isotropic systems. In the case under con- 
sideration this property can be substantiated in the fol- 
lowing manner. As i s  well known, the creation of a fully 
symmetric magnon implies that the total angular mo- 
mentum, m,  of the f-spins can be rotated without 
changing i ts  magnitude (this can be easily verified with 
the aid of the formulas (10) and (12)). On the other hand, 
in the situation under consideration the spin of the s -  
electron and the angular momentum a r e  always col- 
linear, and therefore the former, when it i s  rotated, 
should be rotated through the same angle. But this im- 
plies a rotation of the total moment of the "f-spins 
+ s-electron" system without a change in its magnitude 
mi+. It is clear that in isotropic space the energy of 
the system does not change in such a rotation. 

The spectrum of the not fully symmetric magnons, 
(15), formally coincides with the change, Wg, in the 
energy of an isolated magnetic atom in a magnetic field 
when the projection of i ts  spin decreases by unity. How- 
ever, it does not a t  all follow from this that the effect 
of the s-f exchange on the magnetic-atom state de- 
scribed by the HamiltonianX,, (7a), amounts to the 
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action of some effective magnetic field on the system 
of mutually noninteractingf-spins. In the f i rs t  place, 
such a field would make the space anisotropic, and in 
it the frequency of the fully symmetric magnon would 
turn out to be nonzero. Secondly, the energy (15) i s  
actually connected not with the declination of the spin 
localized on one atom, but with a collective declination 
that i s  passed on from atom to atom, i.e., the inter- 
action between the atoms plays a fundamental role. In- 
deed, if the magnon were localized on the atom g (i.e., 
if c g  = bgo), then according to (13) the energy t would 
be equal to W g  - W i .  The addition of -Wi to the energy 
Wg i s  due to the fact that the deflection of the spin Sg 
led to a change in the direction of the total spin of the 
atoms and, consequently, in the direction of the spin of 
the donor's electron, which spin i s  always directed 
along the total moment. Of course, such a localized 
state cannot be an eigenstate, since its wave function 
is  not orthogonal to the wave function of the magnon 
with E = 0 (when c g  = 6 g o  the equality 

which expresses the condition for their orthogonality, 
i s  not fulfilled). 

The complete description of the magnon state will be 
given if, besides cp, we also find the second component, 
X ,  of the magnetic wave function (4), which corresponds 
to the opposite orientation of the spin of the s-electron. 
Using the formulas (5), (lo), and (12), we obtain: 

According to (15a), for the fully symmetric magnon 
state cp, the component X, i s  nonzero, but it makes only 
a small contribution (- 1/2S%) to the operator averages 
(8). That X, is  nonzero follows from the fact that the 
spin of the s-electron rotates together with the total 
moment of the system, so  that i t s  component along the 
original direction should decrease. The smallness of 
xs i s  a consequence of the smallness of the angle through 
which the moment (-% S >> 1) should rotate in order for 
its projection to change by unity. 

For the not fully symmetric magnons the component 
X ,  (15a), in accordance with the formula (14), vanishes 
exactly. This result follows from the fact that the cre- 
ation of a not fully symmetric magnon, in contrast to 
the creation of a fully symmetric one, implies the de- 
crease of the total moment of the f-atoms by unity. 
Since its projection decreases simultaneously by unity, 
its direction in space does not change. Therefore, the 
direction of the spin of the s-electron does not also 
change. 

The above-obtained results, according to which in the 
spin-wave approximation the component x of the wave 
function i s  either equal to zero, or small compared to 
cp, imply that in this approximation the equivalent 
Hamiltonian X,, (7a), can be regarded a s  the true 
Hamiltonian. 

4. THE MAGNON SPECTRUM OF A FERROMAGNET 
WITH SINGLY CHARGED DONORS 

In this section we shall investigate the effect of sing- 
ly -charged donors on the magnon spectrum of ferro- 
magnetic semiconductors. In the Hamiltonian (7a) we 
shall consider only the radical term X,, which is  linear 
inA.  We shall f irst  of all consider the simplest model 
of a donor with a small radius: the s-electron is, in 
the main, localized on z nearest neighbors of the de- 
fect, which replaces the normal atom with index zero. 
bes ides  the indirect exchange via the donor's electron, 
there also exists a direct ferromagnetic exchange be- 
tween the magnetic atoms. The introduction of the de- 
fect changes it too. The effect of this circumstance on 
the magnon spectrum i s  investigated in detail in Ref. 8, 
and will not be considered here. 

Performing a Fourier transformation of the f-magnon 
operators in the Hamiltonian (11): 

we can write the Hamiltonian of a ferromagnet with a 
defect in the form 

where A is  the vector joining an atom with its nearest 
neighbors. 

The first  term in (16) describes the f-magnons in a 
perfect crystal; the second, the effect of the defect. 
Its structure differs essentially from the structure of 
the Hamiltonian investigated in Refs. 7 and 8 by the non- 
central nature of the interaction of the spins of the 
various atoms. In the expression (16), as in (7a), both 
signs a r e  retained. We shall assume, for definiteness, 
that A > 0; then the upper sign corresponds to the en- 
ergetically disadvantageous orientation of the spin of 
the s-electron relative to the local moment. In this 
state the indirect exchange tends to destroy the ferro- 
magnetic order in the vicinity of the defect, but in the 
case of a sufficiently strong direct exchange the ferro- 
magnetic order can still turn out to be stable. A change 
in the direction of the s-spin constitutes the creation of 
a high-frequency localized s-magnon with energy AS, 
that does not modify the local ferromagnetic order. 
However, i ts  appearance softens the localized f-magnons 
(the distinctive s-f-magnon-magnon interaction). If, 
however, the direct exchange i s  weak, and some of the 
f-magnon frequencies become negative upon the excita- 
tion of the high-frequency s-magnon, then the local 
ferromagnetic order should be replaced by an anti- 
ferromagnetic order. 

To find the f-magnon spectrum, we construct the 
equal-time Green function 
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After the Fourier transformation of the equation of mo- 
tion for G k q ,  found with the aid of the Hamiltonian (16), 
we obtain the following integral equation for the deter- 
mination of the function (the magnetic-atom lattice i s  
assumed to be a simple-cubic lattice with constant a): 

I - - cos !i,a cos pfa] Gpq. 
3 

Since the nucleus of Eq. (17) i s  degenerate, it i s  not 
difficult to obtain its exact solution: 

1 I 
x [5zeos k,acos q,a-lkyq i ----x sin k.o sin q.a). (18) I ,,l..,P) , 

i 

where we have adopted the notation 

1 cos' k.n-cos k p  cos k,a R = ~ z  W-wk 

As can be seen from the formula (18), the Green func- 
tion has, besides the poles corresponding to a perfect 
crystal, poles a t  the points determined by the equalities 

From Eqs. (19), it i s  not difficult to find the condi- 
tions for the existence of localized f-magnon levels. 
Using the numerical values of the integrals P and K 
given in Ref. 8, we find that localized magnon levels 
a r e  possible if the Curie temperature of the crystal, 
T,= J ( S +  1)/3, i s  less  than 0.03A(S+ 1). For AS- 0.5 eV, 
this implies that localized magnons exist when T, < 150 
K. Naturally, if the spin of the s-electron i s  oriented 
along the moment of the crystal, then the localized lev- 
e l s  lie above the magnon band, i.e., they have fre- 
quencies higher than 27. In the case whenthes-electron 
spin i s  oriented along the opposite direction the fre- 
quencies of the localized f-magnons turn out to be nega- 

. tive. If, on the other hand; the conditions for the exis- 
tence of localized levels above the magnon band a r e  not 
fulfilled and the defect creates only virtual levels near 
the top of the band, then the inversion of the spin of the 
electron leads only to the appearance of virtual magnon 
levels near the bottom of the band. However, the fre- 
quencies of the f -magnons remain positive, i.e., the 
ferromagnetic order i s  maintained in the event of the 
creation of an s-magnon. In the J -  0 limit Eqs. (19) 
yield the results  of the preceding section. 

Let us now consider the other limiting case: a donor 
of large radius. Substituting the wave function (12) into 
the Hamiltonian (11) with the direct-exchange Hamil- 
tonian added to it, we obtain 

We shall be interested in the magnon levels near the 
top of the magnon band. The dominant contribution to 
their wave functions i s  made by the wave vectors close 
to ll = (n/a, r /u,  n/a), a t  which the frequency ok attains 
i ts  maximum value. Therefore, in analogy to the ef- 
fective-mass method in the theory of electron levels in 
semiconductors, the coefficients c can be represented 
in the form 

where cpg i s  a slowly varying function of the coordinate, 
g, of the magnetic atom. Expanding formally the quan- 
tity cpg+A in a power ser ies  in the vector A,  we obtain 
from (20) and (21) (in (20) we take only the lower sign) 
the equation 

The last  term on the left-hand side of (22) i s  small, 
since in the sum over f the slowly varying function of 
the coordinates, W fq  t ,  i s  multiplied by a rapidly 
oscillating factor. Therefore, this term will be ne- 
glected in the subsequent analysis. 

In the hydrogen-like donor model the quantity W g  i s  
given by the expression 

where R i s  the radius of the orbit. If in Eq. (22) we re -  
place the signs of all the terms by the oppositve signs, 
then the corresponding problem becomes identical with 
the problem of the capture of a particle with mass M 
= (WSa2)-I by the exponential potential well Voexp(-Y/ 
yo). I ts  solution i s  well known (see Calogero's book).[g1 
In particular, the first  level in the well appears when 
2Mr,2V0> 1.44. Interpreting this condition to fit the 
case (22), (23) under consideration here, we obtain the 
condition for the existence of localized magnons above 
the top of the magnon band: 

Thus, for a given AS value and a given Curie tem- 
perature T,, the larger the radius of the orbit of the 
donor is, the more difficult it i s  to satisfy the condition 
for the existence of localized magnon levels in the vi- 
cinity of the donor defect. Physically, this is  due to 
the fact that, a s  R increases, the height of the potential 
hump for the magnon in the vicinity of the defect de- 
creases like R-3, and the effect due to the decrease of 
the height of the hump exceeds the effect due to the in- 
crease in its radius. For AS- 0.5 eV and R -  4u, lo- 
calized magnons a r e  possible only in semiconductors 
with T ,  lower than 70 K. This condition i s  satisfied by 
almost a l l  the rare-earth semiconductors. 

For a second bound state to appear in the exponential 
well, it i s  necessary that the inequality 2Mr;V0 > 6.1 be 
~ a t i s f i e d , ~ ~ '  i.e., the condition 
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Spin waves in amorphous and finely divided ferromagnets 
with allowance for dipole-dipole interaction 
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Complex dispersion relations are obtained, in the long-wave approximation, for spin waves in a 
ferromagnet with parameters that fluctuate randomly in space (for the corresponding results without 
allowance for dipole-dipole interaction, see V. A. Ignatchenko and R. S. Iskhakov, [Sov. Phys. JETP 
45, 526 (1977)l). When the exchange constant a fluctuates, allowance for dipole-dipole interaction shifts 
the break in the modified dispersion law toward longer waves and leads to a change in the damping law 
for long spin waves: when k is less than a certain critical value kc,  the damping ow - k '; for k > kc,  we 
get o" - k '. When the axis of magnetic anisotropy fluctuates, allowance for dipole-dipole interaction 
modifies both channels of interaction of the random inhomogeneity function p(r) with the spin wave m(r, 
t )  and leads to the appearance of a new channel of interaction of m with p via the stochastic 
magnetostatic fields produced by the stochastic magnetic structure. The dispersion law now contains a 
characteristic wave number for dipole-dipole interaction, k,  = (4a/a)"'. 

PACS numbers: 75.30.D~. 75.30.Et, 75.3O.G~ 

INTRODUCTION 

In a n  e a r l i e r  paper,c11 we calculated the modification 
of the dispersion relat ion and of the damping f o r  long 

1,  where a is the la t t ice  p a r a m e t e r )  spin waves 
in  a medium with e i ther  isotropic  or anisotropic  in- 
homogeneities, having an a r b i t r a r y  cor re la t ion  rad ius  

yo. The phenomenological theory of spin waves devel- 
oped in Ref. 1 is c o r r e c t  both f o r  finely divided and for  
amorphous ferromagnets .  Because t h e r e  is at presen t  
no systematic  theory of amorphous magnet ism, the 
correlat ion rad ius  yo of the  fluctuations of the c o r -  
responding parameter  (the exchange p a r a m e t e r  o r  the 
amount and direction of the anisotropy)  cannot so f a r  be 

tained in Ref. 1 f o r  the case of fluctuations of the ex- 
change constant a. 

When there  are spat ial  fluctuations of the axis of 
magnetic anisotropy (this phenomenon may be charac  - 
teristic of ce r ta in  classes of amorphous magnets),  
t h e r e  mus t  occur  in  the mate r ia l  a stochast ic  static 
magnetic s t ruc ture  whose cor re la t ion  proper t i es  are 
determined by a magnetic-field-dependent correlat ion 
rad ius  y,= (CYM/H)'/~. T h i s  l eads  to the r e s u l t  that the 
inhomogeneities in te rac t  with the spin waves by two 
paths: direct ly ,  and through the s tochast ic  magnetic 
s t ruc ture .  In the dispersion relat ion both charac te r i s -  
tic radi i ,  r, and y,, occur .  

- - 
calculated theoretically and o c c u r s  i n  the theory as a Both in  Ref. 1 and in a l l  works  known to u s  on th i s  

phenomenological constant. Therefore  par t i cu la r  in- topic, dipole-dipole interaction was  neglected. Allow- 
terest at taches t o  resu l t s  that  predict  f r o m  what experi-  ance f o r  t h i s  interact ion is the purpose of the p resen t  
mental observations yo can  be determined. In part icu-  paper.') Formal ly ,  the problem reduces  to supple- 

lar, a possible b a s i s  f o r  determinat ion of r, might be menting the effective magnetic field of Ref. 1 with a 
the experimental observation of the charac te r i s t i c  b reak  field H,(r, t )  determined by the equations of magneto- 

i n  the dispersion curve  w(h2) at k = $yo, which w a s  ob- statics (we neglect effects  of propagation of electro- 
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