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A quantum analysis is made of the motion of atoms in the resonant field of a standing light wave. The 
wave functions and the eigenstate spectrum of an atom in this field are found allowing only for stimulated 
atomic transitions in the field. The spectrum represents two infinite systems of allowed energy bands 
corresponding to two generally different stationary states of an atom in the field. The edges of all the 
allowed energy bands are found as a function of the field intensity and detuning of the field frequency 
from the resonant transition frequency. The wave functions are special functions of a new type and they 
are identical, for zero detuning, with the eigenvalues of the Mathieu equation. For some values of the 
field and detuning the spectra of an atom in a standing light wave are calculated numerically. A general 
analysis of the spectra of quantum motion and of the wave functions of stationary states is used in 
considering the influence of resonant spontaneous decay on the motion of an atom in the field. In the case 
of positive detuning such resonant spontaneous decay increases the energy of motion of an atom, whereas 
in the case of negative detuning such decay reduces the energy. In the latter case a steady-state 
distribution of field-cooled atoms between several of the first energy bands is established. It is shown that 
under the influence of a test field such cold atoms may undergo resonant transitions within and between 
allowed energy bands. 

PACS numbers: 42.50. +q, 32.80. - t 

1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

The  interaction of a f ree  atom with a resonant  light 
field is known to be  always accompanied by a change in 
the internal  state of the atom and also by a change in 
the motion of a n  atom as a whole. Thus ,  the emission 
(absorption) of one photon by a n  atom alters the atomic 
momentum by a n  amount equal to the momentum of a 
resonant photon and the energy of t ranslat ional  motion 
is reduced by the recoil energy. It is also known that 
such  recoil usually h a s  no significant influence on the 
spat ial  motion of a toms  interacting with a resonant light 
field. Firs t ly ,  the absorption (emission)  of one reso- 
nant photon alters the momentum of a n  a tom by an a- 

mount W = E k  (k is the wave vec tor  of the field) which 
is between four  and five o r d e r s  of magnitude less than 
the average  thermal  momentum of a n  atom P 
= ( 2 M n ~ ) ' ' ~  (W is the Boltzmann constant).  Secondly, 
collisions and spontaneous decay of a toms  f rom the 
states involved i n  a resonant t ransi t ion usually resu l t  
in  a very  rapid loss of resonance between such  a toms  
and the field so that the a t o m s  c a n  r e e m i t  only a s m a l l  
proportion of the resonant  photons. 

Nevertheless ,  i n  s o m e  cases the number  of reemit ted 
resonant photons may be so high that the  total  change 
i n  the energy and momentum of a n  a t o m  due to its in te r -  
action with the field is comparable with the average 
t h e r m a l  values of these  quantities. For example,  th i s  
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situation occurs in the case of atoms in a low-pressure 
gas when the lower level of a resonant transition is the 
ground (or metastable) state and the upper level decays 
with a very high probability to the lower level. 

A prolonged interaction of atoms with a resonant 
light field, accompanied by the reemision of a large 
number of resonant photons, is responsible -from the 
classical point of view-for the forces of resonant rad- 
iation pressure exerted on moving atoms. For exam- 
ple, in a resonant field of a traveling light wave an 
atom experiences the force of spontaneous radiation 
p r e ~ s u r e . ~ ' ~  In a resonant field of a standing light wave 
an atom experiences two forces: the force of a spon- 
taneous radiation pressure and a force of an induced 
radiation p r e s s ~ r e . [ ~ * ~ ]  

It has been suggested ear lie^-[^*^] to  use the resonant 
pressure of a standing light wave to cool an atomic low- 
pressure gas and to confine (trap) cold atoms in the 
zone of action of the light field.'' Such a use of the rad- 
iation pressure may, in our opinion, be of great im- 
portance in the optical spectroscopy of atoms since in 
many cases it can radically increase the sensitivity and 
resolving power of spectroscopic studies. A classical 
analysisc2131 shows that tuning of the frequency of a 
standing light wave may cool a low -pressure atomic gas 
right down to temperatures of T - 104 - lom3 "K and, for 
a constant (negative) detuning, such cold atoms may 
oscillate near field antinodes. The existence of finite 
oscillations of cold atoms near minima of the periodic 
potential of a standing light wave suggests that cold 
atoms may be trapped for a long time in the regions 
of size of the same order a s  the wavelength of the wave 
in question. 

However, there a re  two points which demonstrate the 
unsatisfactory nature of the classical analysis of the 
characteristics of the motion of cold atoms in a stand- 
ing light wave. Firstly, cold atoms may not only os- 
cillate within the periodic system of the potential field 
wells but also tunnel from one potential well to another. 
Such tunneling of atoms is a purely quantum effect and 
cannot be understood by classical analysis. Secondly, 
the cooling method proposed ear lie^-[^*^] makes it pos- 
sible, in principle, to produce a large number of atoms 
whose energy of motion is less than, or  comparable 
with, the recoil energy R = @k2/2M .') In the case of 
ultracold atoms the de Broglie wavelength i s  greater 
than, or of the order of, the wavelength of the reso- 
nant light field and this also makes it necessary to 
carry out a quantum analysis of the motion of atoms in 
a standing light wave. 

We shall give a detailed q~antum-mechanical treat- 
ment of the motion of atoms in the resonant field of a 
standing light wave. The solution of this problem is of 
considerable interest, particularly a s  a rigorous jus- 
tification of the p r o p o ~ e d [ ~ * ~ ]  method for cooling of 
atoms in a resonant light field. Moreover, the prob- 
lem is of more general physical significance because 
it represents the first  case in which the motion of free 
atoms in a light field is described by the propagation 
of "atom + field" quasiparticles. The quantum motion 

of atoms in a traveling light wave has been investigat- 
ed in detail earlier[8-'01 and some features of the quan- 
tum motion in a standing wave have been pointed out 
e l se~here . [ l ' *~]  

We shall consider primarily the motion of atoms 
due to recoil in stimulated transitions and then the mo- 
tion because of recoil in the case of simultaneous stim- 
ulated and spontaneous transitions. This formulation 
of the problem is dictated by the fact that stimulated 
transitions a re  themselves capable of setting atoms in 
motion (because of the recoil effect), whereas spon- 
taneous transitions can have the same effect only in 
conjunction with stimulated transitions. Moreover, in 
some cases it is of interest to consider the motion of 
atoms only under the action of recoil resulting from 
stimulated transitions. This is true, for  example, in 
laser  optical fields saturating a resonant transition, 
when the probability of stimulated transitions i s  con- 
siderably greater than the probability of spontaneous 
decay of the levels involved in a resonant transtion. 

We shall conclude by considering the absorption spec- 
t r a  of atoms in a standing light wave and compare the 
results with an earlier classical analysis of the motion 
of atoms. 

2. GENERAL EQUATIONS 

We shall allow only for stimulated transitions of an 
atom in the field of a standing light wave and we shall 
assume that the resonant light field 

8 (z, t )  =Zo cos at cos liz (1) 

causes atomic transitions between two infinitesimally 
narrow levels: the lower g and the upper e .  The SchrS- 
dinger equation for the wave function of an atom in the 
field is 

where the wave function \k(r, z, t) depends on the inter- 
nal coordinates of the atom r and on the coordinate of 
the center of mass of the atoms z; Ho(r) is the Hamil- 
tonian governing the eigenstates of a free atom with 
energies E, and E,; V(r, z,  t) = -d(r, t)&(z, t) is the Ham- 
iltonian of the interaction between the dipole moment 
of an atom d(r,  t) and the field. Applying the standard 
expansion of the complete wave function of an atom in 
terms of the eigenfunctions $,(r), Jle(r) of the states of 
a free atom, 

we obtain-in the r e  sonant approximation-a system of 
levels for the functions \k,(z, t), \ke(z, t), describing the 
motion of the center of mass of an atom in the field of 
a standing light wave: 

a - 4Voe"oLcos o t  cos kz Y,(z, t), .i-=-- 
dt 2M dzz 

aY ( z  t ,  A d2yg (z *  t ,  - 4 ~ , e - " ~  cos at cos kz Y.(z, t ) ,  tA=-- 
(4) 

at 2M dz2 

69 1 Sov. Phys. JETP 47(4), April 1978 V. S. Letokhov and V. G. Minogin 69 1 



where w, = (c, - &,)/ti is  the frequency of the resonant 
atomic transition, Vo = ds0/2E, and d = d,, = d,, i s  the 
matrix element of the projection of the dipole moment 
of an atom onto the direction of  the field. 

We can easily see that the system (4) has the station- 
a r y  solutions 

where E, and E, are related b y  

(a= o - w, is  the detuning of the frequency of the field 
relative to the frequency of the resonant transition) and 
should be determined together with the corresponding 
spatial wave functions u,(z)(i= e or g) from the system 
of equations for the eigenvalues 

6u .  2M(E,+hP) 4MVo 
t u. + c o s  kz US-0, 

dz' h IV \  

d f ,  2ME; 4bfVO -+_;--u1+-co~kzu,-O. 
dz' h h 

This system of two second-order differential equa- 
tions with periodic coefficients obeys the Floquet-Ly- 
apunov theorem for systems of linear differential equa- 
tions with periodic coe f f i~ i en t s~ '~ '  [a simple substitu- 
tion du,/dz = v, and du,/dz = v, reduces the system (7) 
to one such system of four equations] and for any real 
value of E, it has four fundamental solutions of the type 

t i c A  ( z )  -eAZw:~(z), usA ( z )  -eAawIA (z), (8) 

where A=Aj(F,), j=l,  2 ,3 ,4  are the four generally d i f -  
ferent characteristic exponents of the system (7),  each 
of which i s  known only to within the term ik, and the 
functions w:(z) are periodic with a period 2n/k= X 
(where X is  the wavelength of the light field): 

According to Eqs. (7) and (8), these functions satisfy 

We shall now consider the general properties of the 
fundamental solutions (8). 

First of all, it follows from Eq. ( 8 )  that any funda- 
mental solution corresponding to the characteristic ex- 
ponent Aj(Eg) is  limited on the real axis z only for pure- 
ly imaginary values of Aj(E,): hj(E,) = iK,(E,), where 
Kj(E,) is real, and diverges for any other values of 

We shall call the values of E, (and also of E,) for 
which the system (7) has bounded solutions, the eigen- 
values of the system (7). According to the general 
theorems of the stability of solutions of systems of 
linear differential equations with periodic coeffic- 

ients, ["I these eigenvalues E, and E, form, for fixed 
V, and 52, a denumerable set of coupled bands and at the 
edges of the bands E, = E," and E, = Ey the system (7) has 
periodic solutions. 

Moreover, it follows from Eq. (10) that each purely 
imagninary characteristic exponent Aj = iKj corres- 
ponds, for Q+O, to two eigenvalues E; and E;', but for 
a= 0 there i s  only one eigenvalue E,. In fact, if the 
eigenvalue E;(V,, 52) corresponds to a characteristic 
exponent Aj=iKj,  where Kj is  real, it then follows from 
Eq. (10) that such a characteristic exponent corresponds 
also to the eigenvalue 

and we can see that E r  = Ei only for 51 = 0. 

Finally, because the system (7) together with the so- 
lution (8 ) ,  where A = Aj i s  any characteristic exponent, 
always has a solution which di f fers  in respect of the 
sign of the characteristic exponent, 

all four solutions of the system (7) exist in pairs. For 
any real value of E, one pair of solutions corresponds 
to the characteristic exponents iA,(E,) and the other to 
the indices i&(E,), where A, and A, are generally un- 
equal. 

3. EIGENSTATES OF AN "ATOM + FIELD" SYSTEM 

The above analysis of the fundamental solutions of 
the system (7) allows us to draw the following conclu- 
sions on the eigenstates and eigenfunctions of an atom 
in a standing light wave. 

I f  we allow only for the stimulated transitions, the 
eigenstates of an atom in a standing light wave are the 
states with definite quasivector K .  For a given quasi- 
vector K the eigenstate of the spatial motion of an atom 
is  described b y  two-component Bloch functions 

and the eigenstate of the internal and spatial motions 
i s  described by the functions 

where in both relationships the functions wf(z+ 2n/k) 
= w f ( z )  satisfy the equations 

411v \ l . ' J  
dlw,= dw,' - - + ~ i ~ - + [ ~ g s  dz2 dz - - I  P w I ~ + ~ c o . s k z w e ~ = ~ .  f i  

-. - 

I f  52 f 0,  the eigenfunction of the state with a given K 
i s  a superposition of two eigenfunctions (14), in one of 
which we have E, = EL and in the other E, = Eil, where 
Ei = E;(K) and EL' = E;'(K) are two different eigenvalues 
corresponding to a given quasivector K. For 52 = 0,  
each state with a given K has one eigenfunction (14) with 
one eigenvalue E,. 

It i s  clear from Eq. (14) that for an atom with a quasi- 
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vector K the sums c,+E,(K) and &,+ E,(K)+Aw = &, 

+E,(K) give the total energies of an atom in the states 
g and e .  The corresponding eigenfunctions E,(K) and 
E,(K) clearly give the energies of the spatial motion of 
the same atom in the states g and e .  

Thus, any state of an atom in a standing light wave 
is superpositional. An atom with a quasivector K can 
be, for 51 #0, in states with the total energies E,+  Ei(K) 
and c,+E;(K) o r  in the states whose total energies a re  
c,+ EiJ(K) and E,+ E:'(K), whereas for 51 = 0 it can be in 
states with total energies c,+ E,(K) and E,+ E,(K). 

The dependences of the energies on the quasivector 
K, i.e., E,  = E,(K) (where i = e or  g), cannot be given in 
their general form. Nevertheless, the above properties 
of the solutions of the system (7) allow us to draw the 
following conclusions. 

When the quasivector K is increased from 0 to *a, 

the energies s I +  E i  have values inside a denumerable 
number of allowed energy bands, whose set  governs 
the spectrum of the quantum motion of an atom in a 
standing light wave. For  ft + O ,  this spectrum consists 
of two double systems (&,+ E i  and &,+E:, and also E, 

+ Ei' and E,+ EAT), whereas for 51 = 0, it consists of one 
double system (&,+E, and ce+Ee) of allowed energy 
bands (Fig. 1). Each double system consists of similar 
allowed energy bands, shifted relative to one another 
by an amount equal to the field quantum: 

So far, in analyzing the stationary solutions of Eqs. 
(2) and (4) we have considered the motion of atoms in 
a standing light wave, However, the above results show 
that the motion of an atom in such a wave i s  essentially 
the motion of excitation waves o r  "atom+ field" quasi- 
particles. Each such quasiparticle is characterized by 
a specific quasimomentum EK and, in general, by two 
dispersion laws: Ez= Ei(K) and E L =  E:(K).~' The quasi- 
momentumEK is always defined only towithin the field mo- 
mentum Ek. Therefore, the motion of "atom + field" quasi- 
particles can always be regarded only within the limits of 
the first Brillouin zone: 

We shall not use the quasiparticle formalism, re-  

of a standing light wave. 

taining it for those problems for which the quasiparti- 
cle description is most suitable. Moreover, we shall 
not use the reduced representation because, from the 
formal point of view, it will be more convenient to use 
the extended representation of the Brillouin zone in 
which the quasivector runs to the values from -a to 
+ a. 

We shall conclude by discussing the normalization of 
the eigenfunctions of an atom in a standing light wave. 
In view of the periodicity of the spatial probability den- 
sity of an atom with a quasivector K, 

the natural condition for the normalization of the func- 
tions (13) and (14) is the normalization to one atom 
whose quasivector is  K and whose energies a re  Eg(K) 
and E,(K) and E,(K) in a "volume" Az = A: 

For  such normalization in a "volume" of the order of 
the light wave we find, for a 2 0 ,  that there a r e  always 
two atoms in a volume of this kind and they are char- 
acterized by double degeneracy of each state with a 
given K, for 51=0, there is only one atom in such a 
volume. 

4. SPECTRUM OF ATOMIC ENERGIES IN A STANDING 
LIGHT WAVE 

We shall now determine the spectra of quantum mo- 
tion of an atom in the field of a standing light wave 
selecting specific values of the field intensity Vo and 
detuning 51 of the field frequency relative to exact reso- 
nance. Fi rs t  of all, it is necessary to determine the 
eigenenergies Ey, which correspond to the periodic 
solutions of the system (7). As pointed out above, only 
such values of E, give the edges of the energy bands. 
All the periodic solutions uT(z) of the system (7) and 
the corresponding eigenenergies E:, considered as  a 
function of the energy of the interaction of an atom with 
a field Vo whose detuning i's 51, a re  given in the Appen- 
dix I. The eigenfunctions uy(z) = uy(2 e l k )  and the eigen- 
values E," =Rh,"/4 a r e  special functions which determine 
eight different types of periodic solutions of the sys- 
tem (7): C;;', C;&, s~;~,, and Si;:, and they reduce, 
in the special case of a &  = 0, to the Mathieu functions and 
the corresponding eigenvalues of the Mathieu equation. 
The first  few eigenvalues E," =Rh,"/4 (and also Ey=  E," 
+A51=Rhr/4) a re  plotted in Figs. 2-4 a s  a function of 
the field EV,=R8/4 for three values of the detuning E51 
= ~ f / 4  = -0.43, 9, and 0.4R. The dashed curves denote 
the eigenvalues Er (Er )  of the C $ z ,  andS>:, types for the 51 
+ 0 case. All the dependences hF= h r a r e  the results of 
numerical solutions of transcedental equations in the 
Appendix I. 

Since the eigenvalues Ey and El: found in the Appen- 
dix I correspond to the periodic solutions of the sys- 
tem (7) and are  the only possible edges of the allowed 
energy bands, we can find these bands (and particularly 
their edges) by calculating the characteristic indices 
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FIG. 2. Dependences of the 
eigenvalues h? and h z  
= h r  +f on the parameter 0 
and the band of eigenvalues 
h,, he forf =-1.6. 

of the system (7). According to the above analysis, 
those values of E,(E,) which correspond to at least two 
imaginary characteristic indices Aj = *iKj define all the 
allowed energy bands E, and E,. These values E,(E,) 
govern the quasivectors K=K(E,) of an atom in the field 
of a standing light wave. 

In general, the determination of the characteristic 
indices of the system (7) for given V, and S2 is possible 
only by numerical methods. However, since the char- 
acteristic indices a re  continuous functions of the para- 
meter V, and the values of A,(.j= 1-4) corresponding to 
small V, (RV,<c R) can be found by the perturbation 
method for the matrix equations, C121 the knowledge of 
the characteristic indices for small values of V, is suf- 
ficient for the correct determination of the allowed en- 
ergy bands E, and E, irrespective of the value of V,. 
The results of calculations of the characteristic in- 
dices in the system (7) by the perturbation theory meth- 
od are  given in the Appendix II. 

Employing the explicit form of the characteristic in- 
dices in the case of small values of 8, we can easily 
show that for f # 0 the eigenvalues hm = a:, bi, a:, b:, 
a:, . . . are  the edges of the same system of allowed 
energy bands, whereas the eigenvalues hm = a:, b:, a;, 
b:, a:, . . . a re  the edges of a different system of allowed 
energy bands, whereas the eigenvalues d:, dt, dl, . . . 

hg, he 

FIG. 3. Dependences hF(0) and hZ(0) and the band of eigen- 
values h, , he for f = O .  

@ FIG. 4. Dependences of 

@# forf ~1.6. 

and the eigenvalues d2,,d2,, 4,. . . always lie within the 
first  and second systems of the allowed bands. Iff = 0, 
all the eigenvalues a,, b,, a,, b,, a,, b,, a,, b,, a,, . . . a r e  the 
edges of the energy bands and the allowed bands them- 
selves coincide with the regions of stability of the 
Mathieu e q ~ a t i o n . ~ ' ~ ' ' ~ ~  In Figs. 2 and 4 these systems 
of the allowed energy bands a r e  identified by different 
types of shading, and in Fig. 3 the allowed energy 
bands are  identified by double shading (corresponding 
to the double coincidence of all the eigenvalues in the 
S2 = 0 case). 

Application of the results from the Appendix 11 read- 
ily establishes a correspondence between the values of 
E: and E," and the quasivector K. Considering, for con- 
venience, again the normalized eigenvalues h = 4E,/R, 
we find that when h varies from a; to bi, and also from 
at to bi, the modulus of the quasivector K ranges from 
0 to k, and for h= d: and df this modulus is I K I = k/2. 
When h varies from a: to b:, and also from a: to bi, 
the value of I K  I varies from k to 2k and for h= d i  and 
4 we have I K  I = 3k/2. Continuing this process (see 
Table I), we can easily establish that when E,(E,) in any 
of the systems of the allowed energy bands, the mod- 
ulus of the quasivector ranges from 0 t o  + and the 
variation of E,(E,) within the n-th band in the 52* 0 case 
corresonds to the variation of I K (  f rom (n - 1)k to nk, 
and fo r  S2 = 0 the corresponding variation is from (n 
- 1)k/2 to nk/2. 

The above analysis is used to plot in Figs. 5-7 not 
only the bands of the eigenvalues of E, and E, for  4W,/ 
R = 6.5 and 4tiS1/~ = -1.6, 0, and 1.6, but also schemat- 
ic dependences of the energies E, and E, on the quasi- 
vector K in the extended Brillouin zone representation. 
The dashed curves in these figures represent the de- 
pendences of the energies E, and E, on the quasivectors 
K for a f ree  atom: E,= @p/2M, Ee = v p / 2 ~  + i i S 2  for 

TABLE I. Correspondence between eigen- 
values hm and modulus of quasivector K . 
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FIG. 5. Dependences of 
the eigenvalues hg and he 
=h, +f on the quasivec- 
tor K and the band of eigen- 
values h, , he for 0 =6.5 
and f =-1.6. 

one system of allowed energy bands and E , = @ @ / U l  
-En, Ee= PK2/2M for another system (see the Appendix 
11). For  convenience in comparison of Figs. 2-4 and 
5-7, which apply to  the same detuning, the values of 
O =  6.5 a re  denoted by arrows in Figs. 2-4. 

These results allow us to calculate the spectra of the 
quantum motion of atoms in a standing light wave for 
any value of the wave field and detuning. For  example, 
Fig. 8 shows the spectra of an atom a s  the dependences 
E, = E,(K) and E ,  = Ee(K) for the values EVo = 1.25R, AS2 
=0.5R in the extended Brillouin zone remesentation. 

5. SPONTANEOUS TRANSITIONS. COOLING OF 
ATOMS 

We shall use the analysis of the motion of atoms un- 
der the action of recoil in induced transitions (Secs. 2 
and 3) and consider the influence of resonant spontan- 
eous decay on the spatial motion of atoms in a standing 
light wave. Our aim will be primarily to give a quan- 
titative description of the role of spontaneous transi- 
tions and we shall assume that the probability of spon- 
taneous decay 2r of the upper level e to the lower level 
g is much less than the probability of induced transi- 
tions V,. Subject to this condition, resonant spontan- 
eous decay firstly mixes the degenerate states of an 
atom with a given value of K and secondly, gives rise to 
atomic transitions between states with different quasi- 
vectors, i.e., it results in an accelerated motion of 
atoms. We can easily determine the sign of this ac- 
celeration. In fact, in view of the isotropy of spontan- 

FIG. 6. Same as Fig. 5, 
but for f = 0. 
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FIG. 7. Same as Fig. 5, 
but for f =1.6. 

eous radiation, on the average each resonant decay of 
an atom results in a transition from a state with ener- 
gies E, = E  -An, Ee = E  to a state with energies E,  = E, 
Ee = E+An. Since the dependence of E,  on the modulus 
of the quasivector is also a monotonically rising func- 
tion, it follows that for 0 the atoms a re  on the av- 
erage accelerated but for  n < 0  they a re  retarded by 
resonant spontaneous decay, going over, respectively, 
to higher and lower allowed energy bands. 

A simple analysis showed also that the force which 
accelerates (decelerates) atoms is resonant if I K I  >> k. 
In fact, once again allowing for  the fact that-onthe av- 
erage-there is no change in the atomic momentum as a 
result of resonant spontaneous decay, we can easily 
show that the highest (in theabsolute sense) acceleration 
is experienced by those atoms for which the change in 
the quasivector in the subsequent stimulated transition 
is 

Let us assume that the quasivector K, corresponds to 
the atomic energies E,= E - AG and E,= E, whereas the 
quasivector K,, a s  pointed out above, corresponds to 
the energies E, = E and E, = E + B!2. Taking any pair of 
the values of K ,  and K, 

bands and dependences of 
-10 t energies on the quasivector 
4EdR 4Eg/f K for V, = 1.25 R/K and 
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we find from Eq. (19) that the highest acceleration is 
experienced by the atoms for which 

where V=fi fZ/M is the average velocity of the atoms 
(x= K~ =Kz >> k), i.e., the atoms in resonance with the 
field a re  accelerated most. 

These features of the quantum motion of atoms in the 
case of simultaneous stimulated and resonant contin- 
uous transitions in the field of a light wave a re  entirely 
due to the isotropic nature of the spontaneous radiation. 
Allowance for the fluctuations of the direction and the 
number of spontaneously emitted photons gives rise to 
new features involving the spreading of atoms over the 
allowed energy bands. Clearly, i f  52> 0 this accelera- 
tion and spreading of atoms occur simultaneously and 
the motion of atoms is far from quasisteady. If 52> 0, 
fluctuations of the spontaneous radiation prevent cool- 
ing of atoms. Therefore, for a negative detuning a 
steady-state distribution of cold atoms is always estab- 
lished. 

The earlier classical analysisc3] yielded the distribu- 
tion of the velocities of cold atoms ( I v 1 = RI K I /M << 
I 52 1 /k). The analysis given therec3' remains valid in 
the quantum-mechanical approach and it shows that the 
energy distribution of cold atoms is described by the 
exponential distribution 

where = i lX'(  I 52 1 /r + r/l 1 ) is the average energy of 
the field-cooled atoms when the detuning is 52 = - ( 52 1 , 
and E and Em'' a re  the values of the energies E,(K), 
E,(O), E,(K), E,(O) in the two systems of allowed ener- 
gy bands. Thus, cooled atoms a re  always distributed 
over the first  few allowed energy bands right up to en- 
ergies -E(o)+ E, where the mimimum width of the dis - 
tribution E= lX' is reached for a detuning 52 = -r. 

6. ABSORPTION SPECTRUM OF COLD ATOMS 

The existence of a band structure of atomic levels 
in a standing light wave can be deduced from atomic 
transitions within and between the allowed energy bands, 
and also from transitions of atoms from allowed energy 
bands to states which a re  not involved in resonant tran- 
s i t ion~ .~"  

Let us assume that atoms in a standing light wave 
a re  subject to a t,est field, whose wave vector is para- 
llel to the wave vector of the standing light wave: 

If the initial and final states of an atom belong to some 
allowed energy bands, the probability of a transition 
of an atom from a state "K" to a state "K"' (band-band 
transition) will be governed by matrix elements of the 
type 

where = d & i / t i .  It is clear from Eq. (23) that the 

recoil of a test field results most probably in transi- 
tions between states whose quasivectors differ by an 
amount equal to the wave vector of the test field. 

Therefore, for k, < k(w, < w) these transitions occur 
mainly within the same band o r  between neighboring en- 
ergy bands, whereas for k, > k(w, > w) they occur mainly 
between neighboring energy bands. 

When the detuning of the field frequency from the fre- 
quency of an atomic transition is negative, the energy 
spectrum of atoms in a field cannot be deduced from the 
absorption of test radiation by cold atoms distributed 
over the lower energy bands. A characteristic feature 
of this absorption spectrum is the existence of finite 
absorption at any frequency w, of the test field because 
for any wave vector k, = w,/c we can have transitions 
of cold atoms either inside or  between allowed energy 
bands . 

In addition to the intraband and interband transitions 
in a standing light wave, there may be also transitions 
of atoms from allowed energy bands to discrete states 
which a re  not the g and e states of a resonant transi- 
tion. Such transitions occur also mainly subject to the 
condition (24), but in this case K' denotes the wave vec- 
tor of a free atom. If 52< 0, the absorption spectrum 
for a neighboring transition consists of a series of 
wide absorption lines, each of which represents one of 
the lowest filled energy bands. Such an absorption 
spectrum differs qualitatively from the usual spectrum 
of a neighboring transition when a traveling wave inter- 
acts with the g-e resonant transition. For example, 
i f  V,>> r,  the absorption spectrum of a neighboring 
transition may consist of lines whose separations and 
widths a re  governed by the field and not by the radiative 
decay of levels. 

7. CONCLUSIONS. COMPARISON WITH THE 
CLASSICAL ANALYSIS 

Having established the main features of the quantum 
motion of atoms under the influence of recoil in stim- 
ulated and resonant spontaneous transitions, we shall 
now consider the correspondence between the quantum 
and classical treatments. It is knownc2*31 that in the 
classical approach each atom in a standing light wave 
is subject to an induced radiation pressure force, 
which modulates the velocity of the atom, and to a spon- 
taneous radiation pressure force, which accelerates o r  
decelerates the atom. We can now see that the classi-  
cal modulation of the velocity of an atom by the induced 
radiation pressure force corresponds, in the quantum 
treatment, to the motion of atoms with specific quasi- 
vector and energies associated with specific allowed en- 
ergy bands of an atom in the light-wave field. The spon- 
taneous radiation pressure force retains i ts  meaning in 
the quantum-mechanical approach, namely, this force 
is responsible for the acceleration (or  deceleration, 
i.e., cooling) of atoms s o  that they a r e  transferred 
from certain allowed energy bands to other when the 
energy of motion is increased or  reduced. 
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Thus, the agreement between the main results of the 
quantum and classical analyses confirms completely 
the possibility of cooling of atoms in the field of a 
standing light wave with a negative detuning in the case 
of adiabatic scanning of the field frequency. As estab- 
lished earlier,[31 such cooling may occur in a time of 
-lo4 - 10" sec when the field frequency is varied from 
the initial value w,  = wo - Aw,  to the final value wf  = wo 
-r, and in this way an atomic gas can be cooled to 
temperatures of T = RI'/k- 10" - lo3 "K. 

However, our quantum-mechanical analysis shows 
also that when the detuning i s  9= - 1 &2 1 # 0, cold atoms 
cannot be trapped by antinodes of a standing light field. 
In fact, i f  # 0, the spatial density of the probability 
of finding an atom is periodic in space and the mini- 
mum period is & = X. Therefore, for 9# 0, a cold 
atom is generally equally likely to be a t  a node o r  anti- 
node of the field, and cannot be localized in a region 
whose dimensions a r e  less than the wavelength of the 
resonant light field. This follows also from the s t ruc-  
ture of the lower energy bands. Since the width of the 
allowed energy bands in the 9 Z  0 case is generally of 
the same order a s  the gaps between the bands, the 
probability of spreading of the wave packet of a cold 
atom is of the same order a s  the probability of the 
transition of an atom from an antinode to a node of the 
field. 

In the special case of = 0 the spatial density of the 
probability of finding an atom is periodic and the per - 
iod i s  Az = X/2. Therefore, i f  the field V o  is sufficient- 
ly high, in the = 0 case a cold atom may be localized 
either at an antinode or at a node of the field. The lat- 
ter  is  also self -evident from the spectrum of quantum 
motion in the 9= 0 case. 

In spite of the fact that atoms cannot be trapped in a 
region of the order of the wavelength of the light field, 
cold atoms may remain for a long time in a macro- 
scopic region of size governed by the transverse di- 
mensions of the light beam. It has been shown'151 that 
the gradient forces in a three-dimensional standing 
light wave may trap all the cold atoms in the region of 
intersection of light waves. 

It follows that the results of the present investigation 
together with those reported confirm the 
possibility of cooling and prolong the trapping of atoms 
in a standing light wave. Moreover, this discussion 
shows that, in contrast to free atoms, cold atoms in a 
standing light wave may absorb effectively microwave 
radiation going over from lower to higher allowed ener- 
gy bands. 

.The authors a r e  gratefui to A. T. Matachun for her 
great help in the numerical calculations of the eigen- 
values of the main equation in the present paper. 

APPENDIX I. PERIODIC SOLUTIONS OF THE 
DIFFERENTIAL EQUATION SYSTEM (7) 

Using the dimensionless variables 

we shall rewrite the system (7) in the form 

flu, - + (h+f )  11.4-20 cos 25 a,=O, 
dE2 

6% - + hu,+20 cos 25 u,=O. 
dEZ 

The known methods for finding periodic solutions of 
systems of differential equations with periodic coeffic - 
i e n t ~ ~ ' ~ * ' ~ ~  show that the system (1.1) with f* 0 has eight 
types of independent periodic solutions. We shall de- 
note them a s  solutions of the type C?:, C2:l, Si;tl, 
and S:,:, and for each of them we shall give the type 
of expansion and infinite transcendental equation which 
define all  the eigenvalues hm for this type of solution. 

1) Solutions of type C:,: 

2) Solutions of type Ci,: - 
c,.'~. = C .,'A,: cos 4ri ,  

* = o  

3) Solutions of type C:,,,: - 
C:.+,U* =C :"+,A:,+, cos(2r+l)E, 

,-" 
(1.6) - 

c:n+Iup =C ,.+,AL+, cos ( 2 s f I ) E ;  

8' 0' 8' O2 0' 
i-h-f- 9-h- 23-h-f- .  . . - (2kfI ) ' -h -  (2kf3)'-h-f- .. . ' 

(1.7) 
4)  Solutions of type Ci,,,: 

ck+,ue = 2 z:+j~lr+, c 0 ~ ( 2 f i 1 ) 5 ,  
7-0 

(1.8) - 
c:.+,u,= z . : , ~ ~ + l  cos (2s+ l ) f ;  

.-0 

5) Solutions of type S:,,,: 
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6) Solutions of type Sin+,: 

(I. 12) 

7) Solutions of type Sin+,: 

conditions p82<<m2,v82<< p,  ... . For f + 0 ,  the eigen- 
values hm a r e  even relative to the parameter 8 s o  that 
the odd powers of 8 in Eq. (II.3) a r e  of no interest. 
Then, in the first  approximation containing the small 
parameter 8, we find for m = 1 that 

and for m = 2 ,  

8) Solutions of type S:,,,: (1.15) and for higher numbers m = 3,4 ,5 , .  . . , we obtain 

The characteristic exponents X j  for the values of h 

h=b,,+2=4-f + f close to m2 a re  

APPENDIX II. CHARACTERISTIC EXPONENTS OF 
THE EQUATION SYSTEM (7) 

We shall not describe simple but time-consuming cal-  
culations and give directly, for f # 0 and 8<< l ,  the 
characteristic exponents Xi( j = 1,2 ,3 ,4)  of the system 
(I.l), which a re  related to the characteristic exponents 
11, of the system (7) by the relationship A, = A ,k/2. 

For h#m2 and h+f#n2(m,n=1 ,2 ,3 , .  . .), in the first  
approximation with the small parameter 8, the char- 
acteristic exponents A, a r e  governed by the relation- 
ships 

if h# (1 - f/4)', and by the relationships 

The characteristic exponents X, for the values h = m2, 
and also for h close to the squares of integers can be 
calculated, on condition that h + f # n2, only separately 
for each of the values m = 1 ,2 ,3 , .  . . . 

We shall assume that the difference between h and m2 
is of the order of the small parameter 9: 

where p ,  v ,  . . . a r e  arbitrary numbers satisfying the 

on condition that h#n2  and these a r e  also given by Eqs. 
(11.4)-(11.6) if we replace f with -f. 

The characteristic exponents in those cases when F, 
and h +  f a r e  both squares of integers a re  of interest 
only in a denumerable se t  of the values off = n2 - wz2 
= 0, *I, *2, . . . and these are  of very little practical im- 
portance. Therefore, we shall not give the relevant r e -  
sults. We shall simply point out that the indices A, for 
n2= m2 a r e  identical with the characteristic exponents 
of the Mathieu  equation^^'^*^^] calculated, for example, 
in the book by Yakubovich and ~tarzhinski!~'~] right up 
to the second order in 8. 

Finally, for f = 0 and 8<< 1, the characteristic expon- 
ents A, for the values of h# m2 and h =  m2 can be found 
in the same book by Yakubovich and starzhinskii .[12' 

 he idea of the trapping of atoms was first put forward by 
~ e t o k h o & ~  1 for a nonresonant standing light wave. A de- 
tailed classical analysis of this possibility was made by 
Letokhov and ~avlik!~] Cooling of atoms was predicted 
earlier by Hansch and ~ c h a w l o d ~ ~  for an isotropic li&t 
field. 

' ' ~o l lowin~  Letokhov and ~ i n o ~ i n ; ~ ]  we shall call these ul- 
tracold atoms. 

' )~n  a different approach an "atom+fieldm quasiparticle can 
be described by a quasimomentum EK and two effective 
masses M, =MI (K) and Me = Me (K) with quadratic disper- 
sion laws. 
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Temperature dependence of the refractive index in 
condensed media 

A. I. ~ r o k h i n ,  N. V. Morachevsk i ,  and F. S. Faizullov 
P. IV. Lebedev Institute of Physics, USSR Academy of Sciences 
(Submitted 12 October 1977) 
Zh. Eksp. Teor. Fiz. 74, 1336-1341 (April 1978) 

A method of direct measurement of the classical constant of physical optics (an/a T), is proposed and 
developed. The essential element of the experimental set-up, which makes such a technique possible, is a 
single-mode laser with a pulse width of 3X sec and energy 0.3 J. A detailed substantiation of the 
proposed method is presented. Values of (an/aT)p were measured for a number of substances. The 
results are discussed and compared with the results of calculations carried out by Raman. 

PACS numbers: 07.60.H~. 78.20.Dj 

Investigation of the t empera ture  dependence of the re- 
fract ive index is one of the  fundamental t a s k s  of physical 
optics. Up to now the solution of this  problem w a s  re- 
str ic ted to the measurement  of the so-called total d e r -  
ivative &/dT of the re f rac t ive  index with respect to 
temperature.  It is general ly  cus tomary  to e x p r e s s  the 
dependence of the refract ive index on the various ther-  
modynamic p a r a m e t e r s  by derivat ives with respec t  t o  
these parameters .  In th i s  traditional manner  the tem- 
pera ture  dependence of the re f rac t ive  index u(T) can be 
represented in the genera l  c a s e  in  the f o r m  

where  il, is the refract ive index a t  a cer ta in  fixed tem- 
pera ture ,  a ( T )  the coefficient of thermal  expansion, and 
p the density. The s u m  under  the integral  sign i s  the 
total der ivat ive h / d T .  The f i r s t  t e r m  of this  s u m  is due 
to the effect of thermal  expansion, and the second to the 
temperature dependence of molecular  polarizability. 

Knowledge of the total derivat ive dn/d T alone is often 
insufficient. Thus, f o r  instance, if one of the t e r m s  in 
the expression under the integral  s ign in (1) is not 
known in addition to dn/dT, it is impossible to establ ish 
a correspondence between the quantity An measured  ex- 
perimentally and the tempera ture  change AT in the case 
when AT depends on a space coordinate. In fact,  the rm-  
oelastic stresses arise in this  case and the  thermal  ex- 

pansion coefficient, with fringe effects  disregarded,  
m u s t  b e  replaced by the quantity 

where  v is Poisson's ratio. It is then impossible  to de- 
t e rmine  AT f r o m  the  measured  An and the known &/dT. 

In recen t  y e a r s  the study of the t empera ture  depend- 
ence of the re f rac t ive  index h a s  become a problem of 
t imely in te res t  due t o  the c rea t ion  of sources of s h o r t  
high-power light pulses ,  the lasers. As the laser radia-  
tion p a s s e s  through condensed media, additional re f rac-  
tion o c c u r s  in the la t ter ,  due to heating of the substance 
b y  absorption of radiant  energy. This  phenomenon may 
b e  utilized as a r e s e a r c h  tool. Thus inQ1 a method was 
proposed and developed f o r  the measurement  of s m a l l  
local  absorption coefficients, which is based  on high- 
speed interferometr ic  recording of change of the re- 
f rac t ive  index. On the other  hand, in m o s t  cases the 
s a m e  phenomenon leads  to undesirable  nonlinear effects 
such as self-focusing or d e f o c u ~ i n g . ~ ~ ]  In e i ther  c a s e  the 
change of the refract ive index is determined according 
t o  formula (1) with account taken of (2) o r ,  fo r  a suffici- 
ently s h o r t  t ime of action, according t o  the s a m e  form- 
u la  (1) with account taken of the t ime  dependence of p 
(nonstationary process) .  It  is obvious that fo r  a c o r r e c t  
solution of problems of the type descr ibed  above know- 
ledge of each of the t e r m s  in the expression under the 

699 Sov. Phys. JETP 47(4), April 1978 0038-5646/78/040699-03$02.40 01979 American Institute of Physics 699 


