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Theory of x-ray absorption spectra of central atoms in 
high-symmetry molecules and complexes 
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On the basis of the reflection-matrix concept introduced by the authors earlier, the formation of near- 
threshold singularities in x-ray absorption spectra are investigated. The conditions for the onset of 
resonances in a many-center potential are determined. Formulas are derived for the energies and 
intensities of the lines of the Rydberg-series when a molecular state is superimposed on the latter. A 
criterion for the separation of molecular and Rydberg levels is proposed. For the SF, molecule, the matrix 
of reflection from the fluorine octahedron and the x-ray absorption spectra of sulfur are calculated. The 
results are compared with experiment. 

PACS numbers: 33.20.Rm 

INTRODUCTION in  c rys ta l s ,  amorphous bodies, o r  liquids. 

X-ray absorption s p e c t r a  (XAS), as is well known, 
make it  possible t o  obtain important  information on the 
s t ruc ture  of mat te r .  The f a r  fine s t r u c t u r e  of the spec-  
t r a  makes  it  possible to de te rmine  the coordination 
number, the dis tances to  the neares t  a toms,  and the 
amplitudes of the thermal  vibrations.[1121 F r o m  the 
charac te r i s t i cs  of the Rydberg s e r i e s  observed before 
the threshold of the continuous absorption i t  i s  possible  
to establish the charges  of the ions and the symmetry  
of the neares t  These  effects  in  the XAS 
are caused mainly by the sca t te r ing  of the photoelectron 
in the final s ta te  by potentials localized in the region of 
space adjacent to the absorbing atom. The scat ter ing 
of a n  electron wave by  surrounding atoms,  which i s  
somet imes  described by specifying modified boundary 
conditions f o r  the wave function on the sur face  of the 
investigated atom or group of atoms,[43 plays a t  any 
r a t e  a very  important role in the formation of the local  
e lectron density (LED) in mat te r .  Without a detailed 
investigation of the s ingular i t ies  of this sca t te r ing  and 
without revealing the r o l e  of the b e a r e s t  and remote  
surroundings i t  is impossible to make s e r i o u s  p r o g r e s s  
in  the understanding of the electron s t r u c t u r e  of defects  

A number of au thors  have s h ~ w n [ ~ ' ~ ]  that calculations 
of the XAS intensi t ies  by the method of multiple sca t -  
t e r ing  in the X-a approximation[g1 gives r e s u l t s  that are 
in sat isfactory agreement  with experiment. There  i s  no 
doubt now that this  method makes  i t  possible  t o  descr ibe  
quantitatively both the f a r  and the n e a r  fine s t ruc ture  
of the XAS. The calculations, however, d o  not explain 
qualitatively the c a u s e s  of the s ingular i t ies  in  the spec- 
t r a  and cannot s e p a r a t e  the role of the potentials of 
the n e a r e s t  surroundings and of the atom to which the x- 
r a y  t ransi t ion takes  place. 

In this  paper ,  using a new procedure  recent ly pro-  
posed by us[10s111 to descr ibe  the influence of the s u r -  
rounding potent ials  on the LED and on the XAS in- 
tensity, we  c a r r y  out a sys temat ic  ana lys i s  of the role 
of the n e a r e s t  surrounding i n  the formation of the local 
electron s t ruc ture .  We investigate the XAS and LED 
of cen t ra l  a t o m s  of high-symmetry close-packed mole- 
cules, complexes, and  c l u s t e r s ,  and pay principal 
attention t o  the formation of the fine s t r u c t u r e  a t  the 
absorption edge. We consider  the laws governing the 
onset of resonances  i n  a many-center potential and of 
the theory of the  Rydberg s e r i e s  in  the p resence  of 
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molecular states near this series. ment of the reflection matrix R, depends only on the 

It i s  known that to solve our problem we can use the 
muffin-tin (MT) potential In this ap- 
proximation the potentials inside the intersecting atomic 
spheres a r e  assumed to be spherically symmetrical. 
(In the multiple-scattering method it suffices to specify 
in lieu of these potentials only the phase shifts 6, of the 
scattering by them.) The potential between the atomic 
spheres i s  assumed to be constant and i s  taken in this 
paper to be the zero point. In the case of a fine system 
of atoms, such a s  a molecule, a complex, o r  a cluster, 
the potential outside the large-radius sphere that in- 
cludes the entire system (the Watson sphere) i s  also 
assumed to be spherically symmetrical. At infinity, 
this potential tends to a constant value designated 
vw (V,c 3 0). 

1. MATRIX OF REFLECTION OF AN ELECTRON WAVE 
BY SURROUNDING ATOMS 

The intensity of the x-ray spectrum of the absorption 
of unpolarized radiation by an electron situated on a deep 
level with binding energy E, and wave function g, (r) can 
be written in the form[lol 

r ( E )  B-J Im G (r, r', k) rr'gl (r) g, (rf) d3r (1) 

where1) k = (E - E,)''' i s  the wave number, and G(r, r', k) 
is  the Green's function of the electron in the final state. 
(The functions g, (r) a r e  chosen real.) 

The presence of the rapidly decreasing function gl (r) 
under the integral sign limits the volume of integration 
to the internal region of the atomic sphere, in which 
the MT potential i s  spherically symmetrical. Inside 
this sphere, the dependence of ImG(r, r', k) on the co- 
ordinates can be easily separated in explicit form: 

where x,,(k, r )  i s  the regular solution of the Schr6- 
dinger equation in the potential of only one atomic 
sphere, and is normalized to 6(E - 

It i s  clear that the coefficient GLL*(k) depends both on 
the potential of the central atom and on the potential 
outside the atom. To ascertain the role of the poten- 
tials of the surroundings, we introduce an auxiliary 
irregular solution of the Schrbdinger equationAL) (k, r )  
with a potential equal to ze ro  in the intra-atomic region 
of the center in question, and left unchanged outside the 
region. We specify for this solution the boundary con- 
ditions in the form 

hjll (kr) Y,. (r) + R u .  (k) h:," (kr) YL, (r) at r c h .  
I ' 

fCL, (k, r) = (3) 
(k) h!!' (kr) YL.(r) at r e - ,  

where h,(')(x) a r e  Hankel functions of the f i rs t  and 
second kind and 7, i s  the radius of the central atomic 
sphere. 

The quantity RLL,, henceforth called the matrix ele- 

potential situated outside the atomic sphere of the ab- 
sorbing center, and has a rather clear physical mean- 
ing. This is  the amplitude of a converging wave 
h , ,( (kr) with an angular dependence YLt (r), reflected 
from the ligands, in the presence of a wave h I(i)(kr) 
emerging from the center and having an angular depen- 
dence YL(r). Similarly, the quantities DL,, have the 
meaning of transmission amplitudes.r12s131 As shown 
in[lZ1, the matrix R i s  symmetrical and if only elastic 
processes a r e  taken into account it satisfies a condition 
analogous to the unitarity condition 

Equation (4), which i s  a consequence of the flux conb 
servation, imposes on the matrix element RLLn and 
DL,, important a priori limitations that do not depend 
on the concrete form of the potentials of the ligands. 
Satisfaction of this equality i s  a test of the correctness 
of the approximate calculations of the matrix R and re-  
stricts the range of variation IRLLt I g 1. 

The connection between the coefficients GLLl and RLL, 
can be established by comparing in the region of the 
central atomic sphere the expansions, in cubic har- 
monics, of the solution3,) (k, r )  [formula (3)] and of the 
Green's function calculated in the same potential a s  
4,) (k, r), and by taking subsequently the central po- 
tential into account with the aid of the Dyson equation["]: 

where S, = exp(2i6,) i s  the S matrix of scattering by the 
central atomic sphere. 

Using the selection rules for the dipole transition, 
we write down with the aid of (1)-(5) an expression for 
the absorption K-spectrum (the formula for the L -spec- 
trum can be written analogously[131): 

Formula (6) i s  exact, but its analysis in the general 
case i s  difficult, and we therefore consider in the pres- 
ent paper only the case of a diagonal R matrix. It takes 
place for a cubic symmetry in the basis of cubic har- 
monic we confine ourselves to inclusion of 1 s 2 on the 
central atoms. We shall henceforth use the notation 

FIG. 1. Modulus of the reflection amplitude from an octahedral 
surrounding p (f i,,), calculated exactly (solid line) and in 
first-order pertrubation theory in the scattering multiplicity 
(dashed). The phase shifts of the scattering by the ligands do 
not depend on the energy, be - 0 ,  In ,  4 = 0 ,  57r. 
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FIG. 2. Phase shift of the amplitude of reflection from a cubic 
surrounding 9 (ab). The phase shifts of the scattering by the 
ligands do not depend on the energy, q - 0 ,  bi =no, 1r (the num- 
ber n is marked on the curve). 

where p, and cp, a r e  real. 

If there a r e  no ligands, then R= 0 and formula (6) 
takes on the usual form of the XAS intensity of an iso- 
lated center. Thus, the quantity P L ( E )  describes the 
change of the XAS under the influence of the potential 
of the ligands and coincides by definition with the local 
partial density of states. 

Even in the diagonal case, the dependence R(E) can 
be investigated analytically only in the asymptotic reg- 
ions kd<< 1 and kd>> 1 (d i s  the radius of the system). 
To investigate the most interesting intermediate region 
kd we calculated the reflection matrices of octahedral 
and cubic surroundings for the irreducible representa- 
tions a, (1 = 0 on the central atomic sphere), f , ( l =  I), 
and also e, and f,(l= 2) a t  kd < 7 and all possible phase 
shifts 6, and 6 ,  for scattering by the potentials of the 
surrounding atomic spheres, assuming that 6, = 0 a t  
12 2. The calculations have shown the following: 

a) At kd > 6 first-order perturbation theory in the 
scattering multiplicity i s  quantitatively in good agree- 
ment with the exact results, thus confirming the cor- 
rectness of the use of this perturbation theory in the 
calculation of the far fine structure of the XAS. 

b) At 2 < kc1 < 6  first-order perturbation theory does 
not agree quantitatively with the results of the exact 
calculations, and even yields unphysical values p >  1, 
but accounts qualitatively correctly for their variation 
(Fig. 1). 

c) In the region kd < 2 the value of p i s  close to unity 
for almost all values of 6,  and 6,. This i s  due to the 
large values of the spherical Neumann functions of small 
arguments. 

d) In the region kd > 2 the value of p usually begins 
to decrease, but a t  3 < kd < 5 one frequently observes a 
maximum or a step on the p(E) plot (Fig. 1) a t  fixed 6, 
or 6,. This phenomenon, a s  can be seen, appears al-  
ready in first-order perturbation theory. Analysis 
shows that it is due to the suppression of the wave that 
emerges from the internal region of the atomic system 
on account of interference between the primary wave 
and the wave resulting from its scattering by the sur- 

rounding. This effect i s  very important, since i t  leads 
to p>0.5 in the essential region of the variation of 6, 
and 6, up to kda 5.[12] The appreciable value of p con- 
tributes in turn to the onset of.sharp maxima in the XAS 
and LED a t  these values of kd. 

e) The dependence of cp on kd a t  fixed phase shifts 
6, and 6 ,  i s  almost linear a t  k d > 2  (Fig. 2), with acp/ 
akd= 1. At kd < 1 the value of cp i s  small a t  all  values 
of 6, and 6,. 

f) The rate a t  which p, and cp, tend to their limiting 
values a s  kd-  0 increases with increasing 1. It can be 
shown that in this region the following asymptotic form- 
ulas a r e  valid: 

Thus, the phase of the reflection matrix has a t  low en- 
ergy the same order in k a s  the ordinary scattering 
phase. 

2. RESONANT STATES I N  A MANY- CENTER 
POTENTIAL 

In the continuous-absorption region, the most char- 
acteristic details of the spectrum a r e  the resonant maxi- 
ma, and the attention paid to their study i s  therefore 
natural. The first  attempt to explain the cause of the 
maxima in the XAS of the SF, molecule was based on 
the molecular-orbital method.[14] ~ e f e d o v ~ ' ~ ]  intro- 
duced the concept of a pseudopotential barr ier  surround- 
ing the central atom. This concept was further de- 
veloped in a two-well m ~ d e l [ ' ~ . ' ~ ~  which made it possible 
to explain qualitatively some characteristic details of 
the absorption spectra of molecules of the type SF,, BF,, 
and others. Of late, the study of resonant states in 
molecules i s  based on the method of multiple scatter- 
ing.['-'] Calculations of the generalized phase of scat- 
tering by a molecule show that the phase increases 
rapidly in the regions of the resonances. However, even 
in the case of pronounced maxima in the XAS, the dis- 
continuity of the generalized phase in the resonance 
region can be noticeably smaller than a ,  the partial 
scattering cross  section need not necessarily reach i ts  
unitary limit, and the maximum of the XAS i s  not al- 
ways connected with the maxima in the cross section 
for the scattering of an electron by a molecule. 

The concept of reflection matrix makes it possible 
to explain quite simply and illustratively the nature of 
the resonances in a many-center potential. The calcu- 
lations performed show that the most widespread cause 
of such resonances i s  the abrupt growth of P,(E) in the 
vicinity of the point E, a t  which the following condition 
i s  satisfiedr13]: 

GI (E,) + q,(E,) =sx, s=O,i, 2, . . . . (8) 

For a sharp resonance to appear a t  this point it i s  
necessary merely that the reflection amplitude pL be 
not less than 0.3-0.4. Physically, the condition (8) 
means that in the internal region of the atomic group 
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there i s  formed a standing wave whose intensity i s  
higher the larger the amplitude of the reflection of the 
wave from the surrounding. It i s  important to note that 
in the considered case the resonant behavior of the 
quantity P,(E) takes place a t  smooth energy depen- 
dences of all  the parameters p, cp, and 6 which enter 
in formula (6) for this quantity. 

If we neglect the energy dependence of P, on the sec- 
tion I E  - E,I <r, and approximate cp,(~) + 6,(E) by a 
linear function, then PL(E) takes in the vicinity of E, 
the form of a Lorentz curve: 

with a half-width 

and integral intensity 

By continuing analytically the quantity (1 + SR) (1 
-SR)-' to the complex E plane, we can verify that in 
the case of resonance it has a pole on the unphysical 
sheet near the real  axis: 

Formulas (8)-(12) remain valid also for p = 1. In this 
case the pole turns out to lie on the real axis, P(E) 
=A6(E - E,), and the resonance i s  transformed into a 
bound state. 

If we take into account the variation of p with energy, 
then the obtained curve i s  contracted on the side of 
lower p with an asymmetry index[17] 

The maximum of the curve i s  then located a t  the point 
E; : 

i - p  ap a(cp+ti) -= 
Eo'=Eo+-- - 

8p d E [  dE  1 ' 

A possible, but according to calculations rare ,  cause 
of the onset of maxima in the XAS i s  the sharp decrease 
and subsequent rapid growth of p. This situation can 
occur in a solid in the vicinity of narrow forbidden 
bands. 

If it i s  assumed that 6 (0) + rp (0) = 0, then the condition 
(8) can be a t  f irst  satisfied in the region E >O either a t  
s = 0 or  a t  s = 1. (The case s = - 1 is  not realized, in- 
asmuch a s  a t  the resonance point we have a (q + 6)/ 
BE>o.['~]) The first  situation can occur if one of two 
conditions i s  satisfied: 

a) C i s  a large positive quantity in the low-energy 
expansion of the phaser181 

kZ1+' ctg 61=-1/C+rk'/2. (15) 

This behavior of the phase corresponds to the presence 
of a shallow bound state in the central potential. 

b) C i s  small, and the coefficient b ,  in the expansion 
(7) i s  negative and i s  large in absolute value. 

The case 6 (El) + cp (El) = n (s = 1) can be realized also 
under two typical conditions: 

c) the phase shift 6 increases sharply in the con- 
sidered energy interval. This behavior of the phase 
occurs when a low-energy resonance exists on the cen- 
tral  potential. 

6) The phase rp increases rapidly a t  low energies 
and a rather sharp maximum of the quantity P(E) i s  
observed even a t  6 = 0. 

In cases a) and c) one can assume that the resonance 
is produced in the system because of the existence of 
either a coupling o r  a resonance on an isolated potential 
of the central atomic sphere, and it changes energy and 
width under the influence of the ligand potential. In 
cases b) and d) the resonance i s  formed by the potential 
of the ligands, and the potential of the central atom only 
changes i ts  characteristics. It i s  clear that the con- 
sidered cases a r e  extreme and in fact it i s  not always 
possible to indicate unambiguously the "initiator" of the 
resonance. 

Calculations show that if the phase shifts of the scat- 
tering by the ligands have smooth energy dependences, 
the situation d) i s  realized quite rarely. For all the 
phases 6, and 6, considered above, the quantity q turned 
out to be negative a t  low energies in the irreducible 
representations e, and f, of the octahedron and cube, 
respectively. (Those a r e  the irreducible representa- 
tions in which the maxima of the electron density a r e  
directed to the largest degree to the atoms of the sur-  
rounding.) In the representation f, of the octahedron, 
q i s  negative only in a certain region of variation of the 
variables 6, and 6,. Thus, in the absence of a central 
atom the presence of a low-energy resonance in the 
system when 6, and 6, have smooth dependences on the 
coordinates seems to reflect more readily the geometry 
of the arrangement of the surrounding atom, rather than 
the properties of their potentials. 

As already noted, in cases a) and c) the maximum in 
the XAS of the entire system is the result of the ex- 
istence of a line in the XAS of a single central potential. 
Let us see  to what degree such line characteristics a s  
the width, position, and integral intensity a re  preserved. 
Consider the case c). The resonant variation of the 
phase shift 6 corresponds to expansion of the matrix 
element S near the point E, in the form[181 

where i s  the potential part  of the S matrix, and i s  a 
smooth function of the energy in the vicinity of the point 
E,. The square of the matrix element of the transition 
on the central atom has here a Lorentz form 

M' ( E )  = A  
1 

(E-E,)2+rz . 
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If the center in question i s  placed inside an atomic 
system with a reflection matrix R ,  then the XAS in- 
tensity can be obtained from formula (6). Putting 

1+R'_ * 
SR-R', T z  

and approximately assuming R' to be a quantity inde- 
pendent of energy, we get, substituting (16) in (6), 

(E-Eo)'+P 
P ( E ) E R e  ' (E-E , - r  Im A) '+ ( rRe  A)' ' 

From this we get 

I ( E )  =A 
I'ReA 

(E-En-r  Im A)'+(r  Re 8)' ' 

It i s  seen from formula (19) that the ehergy of the r e -  
sonance is shifted by an amount I'ImA, the half-width 
takes on the value rReA, and the integral intensity 
remains the same a s  before. At p =  1 the quantity A 

becomes imaginary and 

I ( E )  =A6(E-E,,-T Im A ) ,  (20) 

i.e., the resonance i s  transformed into a bound state. 

Obviously, the foregoing analysis remains in force 
also for a clearly pronounced resonance in a molecule 
or  a complex when the latter a r e  placed inside a large 
atomic system. 

It should be noted that there a r e  quite frequent cases 
in which R' cannot be regarded as constant over an en- 
ergy interval of the order of 1'. The presence of a r e -  
sonance of this sort  on the central potential can induce 
a resonance in the entire system, realizing the con- 
dition (8), but the result that its integral intensity re-  
mains unchanged turns out to be incorrect. As will be 
shown in Sec. 4, this situation takes place in the SF, 
molecule, in which a weakly pronounced resonance a t  
1 = 2 on the potential in the atomic sphere of sulfur 
induces two sharp intense maxima in the irreducible 
representations e, and f,. 

In case a), which i s  realized in the region of low 
levels, it can also be shown that the integral intensity 
of the resonance i s  equal to the integral intensity of the 
bound state that has generated it, if this state i s  suf- 
ficiently well localized in the central atomic sphere. 

3. RYDBERG SERIES I N  HIGH-SYMMETRY 
MOLECULES 

If the system remains positively charged after the 
emission of a photoelectron, then the potential outside 
the Watson square (WS) contains a Coulomb part and 
a characteristic Rydberg series appears in the absorp- 
tion spectrum.C31 Experiment shows that the intensity 
of this ser ies  i s  strongly suppressed in molecules with 
large coordination numbers.['g1 In the potential-barrier 
model, this suppression i s  attributed to the small pene- 
trability of the barr ier  that separates the center of the 
molecule from the region of localization of the Rydberg 
states.[16] For a correct reduction of the experimental 
data it is  necessary to know the form that the spectrum 

possesses if, a s  is  frequently the case, a molecular 
state is  superimposed on the Rydberg ser ies  (RS), and 
how to classify correctly the spectral lines in this case. 

To solve this problem we find f i rs t  the amplitude of 
the reflection of an electron wave from a potential be- 
hind the WS. In the region of interest to us, near the 
vacuum zero, we can use a quasiclassical approximation 
that yields good results in a Coulomb potential a t  low 
energies. In this approximation, the radial Schriidinger 
equation takes the form 

g,"+ (k' -V(r)  -IYr2)$,=0, (21) 

where h = 1 + 1/2. 

We reckon the potential V(r) from the potential in the 
interatomic region (the MT zero). Then a t  r <r ,  

v ( T )  =o, (224 

and a s  Y - .o 

v ( r )  +VDnc-2Z/r, (22b) 

where r, i s  the radius of the WS and V,, > 0. 

It is  clear that a t  k2 < V,,, we have p = 1. To find the 
phase of the reflection amplitude we need the value, a t  
Y =r,, of the quasiclassical wave function Ji ,  that tends 
to zero a t  infinity["]: 

*n 

pi (x. r.) - ( P ,  (r.1 sin{ J pi ( 2 )  & +$I, (23) 
7. 

where p , b )  =[k2 - Vb)  - A ~ / x ~ ] ~ / ~ ,  and r, i s  a turning 
point that is  far from the origin. 

We integrate the argument of the sine function by 
parts, recognizing that p,(r,) = 0: 

We put x 2 =  x ,  - k2. AS x - 0, the f i rs t  two terms 
of the asymptotic expansion of the integral in the right- 
hand side of (23) in powers of x takes the form 

The quantity v, in this expansion depends on the con- 
crete form of the potential V(r) and on the WS radius. 

To find the reflection amplitude it is  necessary to 
represent the wave function (23) on the WS in the form 

( k ,  r,)=~kr,Ih:" ( k r , ) + ~ ~ , ( k ) h : "  (kr,) 1. (26) 

It follows therefore that 

If an atomic potential with a scattering phase shift 6, 
that can be regarded a s  constant in the considered ener- 
gy i s  situated inside the WS, then from the condition for 
the existence of bound states (8) it i s  easy to derive the 
usual formula for the energy levels in the RS: 
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Assuming approximately that the transition matrix 
element i s  independent of the energy, we obtain from 
(27) and (11) an expression for the integral intensity of 
the investigated lines: 

We consider first  the question of the formation of the 
Rydberg series on the central atom of the molecule. We 
use the formula for the XAS intensity of an atom sur- 
rounded by two concentric potentials['21-the potential 
of the atoms of the nearest surrounding and the potential 
outside the WS: 

where 

R, and D, = deZie a r e  the reflection and transmission 
matrices for the nearest atomic surrounding, and R, 
= exp(2iqo2) i s  the matrix of the reflection from the po- 
tentials past the WS. 

The condition for the existence of a bound state (8) 
can be rewritten in our case in the form 

p sin 2((p+6) 
-tg'i 1-p cos 2(cp+6) 

where 

The character of the obtained spectrum depends 
qualitatively on whether or not there exists, in the 
group of atomic potentials situated inside the WS, a 
resonant state in the considered energy region. If not, 
the phase 6' can be regarded a s  constant a s  E - V,,, , 
and formula (28) for the energy levels remains in force. 
On the other hand in the expression for the absolute line 
intensities there appears a factor 

which i s  small in the entire considered region and de- 
pends little on the energy by virtue of our assumption 
that there a r e  no resonances. This factor suppresses 
the RS in the considered class of molecules. 

If a resonance exists near V,, in the internal group 
of atoms, then the phase 6' in its vicinity can no longer 
be  regarded as constant, and to calculate the level en- 
ergies it i s  necessary to use Eq. (32). Let the re- 
sonance be characterized by an energy E,, a half-width 
I?, and an integral intensity A .  We expand the right- 
hand side of (32) in powers of E ; E,  and retain the 
linear term: 

I f  E ,  lies close enough to V,,,, then in an energy interval 
of the order of the width of the resonance the phase q, 
can change very little. The character of the solution of 
the equation i s  clear in this case from Fig. 3. In each 
interval (xi, x i +  ,) there exists only one solution. Since 
the entire region of variation of the energy i s  of the 
order of the width of the resonance, it follows that 
IE - E,] /r s 1 and we can approximately replace - tany, 
inside each integral by a linear function of the energy: 

The energy E ,  of a level situated in the i-th interval i s  
then determined from the equation 

Its solution i s  of the form 

We see therefore that the solutions condense, so  to 
speak, near the point Eo and do not fit the usual Rydberg 
series. 

To find the integral intensity of the line A it i s  neces- 
sary to divide the function 

which has by assumption the form ( 9 ) ,  by the derivative 

The resultant quotient i s  

It is obvious that if 

thenAi - A .  On the other hand if E,  i s  far from E,, then 

and 

where A; = l/p, i s  the integral intensity of the RS line 
(2 7). 

It is  seen from (38) that if the point E, lies near Yi, 
then one of the spectral lines will be much more intense 
than the others, and if on the other hand the point Eo 
i s  close to xi ,  then the spectrum will contain two intense 
neighboring lines. The physical nature of the singulari- 
ties in both cases i s  the same-the presence of a re-  
sonant state in a system without a potential outside the 
WS. It i s  possible in this connection, with physical 
justification, to subdivide the states lying above the 
MT zero into molecular and Rydberg states. Molecular 
states can be defined a s  levels that go over into sta- 
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FIG. 3. Graphical solution 
of Eq. (31) ; curve 1 - z 
= ( E - E ~ ) , ~ / , , ~ - ~ =  
-tan J? 

I 
I 
I 
I 
I 
I 

tionary states of the potential past the WS i s  made to 
tend to zero. The remaining lines in the spectrum can 
be called Rydberg lines, since their existence i s  due 
only to the potential past  the WS. It must be  remem- 
bered however, that for  a cor rec t  reduction of these 
states it i s  necessary to use not formula (28) but 
formulas (36) and (38). 

4. CALCULATION OF REFLECTION MATRIX FROM 
FLUORINE OCTAHEDRON IN  THE K and L,, ,  
ABSORPTION SPECTRA OF SULFUR IN  THE SF, 
MOLECULE 

A good illustration of the developed methods i s  pro- 
vided by calculations of the R matrix and the XAS in 
the SF, molecule. This molecule i s  a well investigated 
object, to which a large number of studies, both ex- 
perimental and theoretical, h a v e b e e n d e v ~ t e d . [ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '  
Its XAS i s  characterized by the presence of narrow in- 
tense maxima above the continuous absorption, by a 
strongly suppressed RS, and by the absence of a jump 
on the absorption threshold. 

We used in our calculation the phase shifts for scat-  
tering by the potentials in the atomic spheres  of sulfur 
and fluorine, obtained a s  a resul t  of a self-consistent 
calculation of the ground state of the molecule by the 
multiple-scattering method in the X - a  approximation. 
The radius of the atomic sphere of the sulfur was a s -  
sumed in this calculation to be  1.762 a.u., and the 

FIG. 4. Phase shifts of scattering by atomic spheres of sulfur 
and fluorine in the SF, molecule (solid lines), probabilities of 
transitions on an isolated atomic sphere of sulfur in the same 
molecule (dashed). The probabilities of the transitions are 
given in different relatige units. The energy is reckoned from 
the MT zero. I-$, 2-69, 3 4 ,  4-6f, 5 4 ,  6 - ~ i ~ ,  
7 -M& , 8 - ~ & .  

FIG. 5. Calculations of in- 
tensities of the transitions 
and of the reflection matrix 
in the SF6 molecuIe: 1, 
2-K and LZs3 absorption 
spectra of sulfur ,a013 
3 4-I(fl,), 
5 -I(e,), 6 -1Cf i.), 7 .  
7 -zCfzr)+6:. 8-(~(e,) 
+ 6 2 ,  9-p(ak)+6;,  
10-vCf 1,)+68,11 - ~ ( e , ) ,  
12 -p(ak),  1 3 - ~ ( f  I,), 
14 -p(f ). A l l  diagrams 
are  drawn to the same en- 
ergy scale. The vertical 
bar denotes the ionization 
threshold. 

fluorine sphere  radius 1.244 a.u. The ionization thres-  
hold turned out to b e  1.1 Ry higher than the average 
interatomic potential chosen to be  the origin. The en- 
ergy dependences of the scattering phase shifts and of 
the matrix elements of the transition a r e  shown in Fig. 
4. The plots of the quantities p,, (F, + 6,, and I, cal- 
culated by u s  a r e  shown in Fig. 5 together with the 
experimental spectrum. The calculations were  made 
for  the irreducible representations a,(l= O),f,(l= 1), e,, 
and f,(l = 2). It i s  seen from Fig. 5 that q, and p, a r e  
smooth functions of the energy. In a l l  four irreducible 
representations the condition (4) turned out to be sat is-  
fied in the region of la rge  p. In the representations 
a, and f, this was due to the la rge  s a n d p  scattering 
lengths of the sulfur (case a) of Sec. 2). In the repre-  
sentations e, andf, the resonant behavior of the phase 
6, of the sulfur came into play a t  E =  1.5 Ry (case c) of 
Sec. 2). This resonance turned out to be  quite weak, 
s o  that the maximum in the matrix element of the transi- 
tion i s  quite broad, and the jump in the phase amounted 
to only 1.7. None the less ,  it was precisely this jump 
which induced the very sharp  intense maximum in P(e,) 
and P(f,), which l ie  above the threshold of the con- 
tinuous absorption. The calculated rat io of the integral 
intensities of the maxima in P(e,) and P(f,) i s  1.5, 
which agrees  well with the experimental value 1.3. 

The potential situated beyond the'WS, which was not 
taken into account in our calculation, had little effect 
on the behavior of the spec t ra  above the threshold of the 
continuous absorption because of the smallness of the 
coefficient of reflection from it. On the other hand, 
the resonances in the representations a, andf,, which 
a r e  located below the threshold, were transformed 
under the influence of this potential into bound s ta tes  
with the same integral intensity (see Sec. 2), observable 
in the K and L,,, spectra. The RS and the jump on the 
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absorption threshold turned out to be suppressed be- 
cause of the low penetrability of the fluorine octahedron 
for the electron wave in this energy region. 

In conclusion, a few remarks concerning the line 
width. The experimentally observed widths of the max- 
ima corresponding to bound states in the representa- 
tions a, and f,, turn out to be respectively of the order 
of 1 and 3 eV. These widths a r e  due to multielectron 
effects and to apparatus distortions, which were not 
taken into account in our analysis. The very same ef- 
fects contribute also to the experimentally observed 
resonance widths. It follows from our calculations that 
the widths corresponding to the departure of the elec- 
tron to infinity a r e  of the order of 0.2 and 0.1 re-  
spectively for the representations f, and e,, i.e., they 
a r e  appreciably less  than the observed widths of the 
bound states. This explains the similarity of the line 
widths in the discrete and in the continuous parts of the 
spectrum in molecules of this class. 

The experimental value of the width of a resonance 
with high energy (representation e,) i s  of the order of 
3 eV, whereas the width of the low-energy resonance 
i s  1 eV. This increase of the resonance width a t  a 
relatively small increase of its energy can be attributed 
to two causes. First, the maxima of the electron den- 
sity in the e, representations a re  directed towards the 
fluorine atoms, and not towards the intervals between 
them a s  in the f, representation, and consequently the 
amplitudes of the Auger processes on the fluorine atoms 
in the e, representation should be substantially larger. 
Second, the width corresponding to the departure of the 
electron to infinity turned out to be very small because 
of the anomalously large reflection amplitude in the e, 
representation, this being due to the fact that the maxi- 
ma of the electron wave a r e  directed exactly towards 
the atoms of the surroundings. The reflection amplitude 
in this representation should be very sensitive to small 
displacements of the atoms from the equilibrium po- 
sition. Therefore the thermal vibrations of the mole- 
cules can decrease the reflection amplitude in this 
channel and consequently increase the width,of the re -  
sonant state. 

The RS levels having a low integral intensity a r e  in a 
special situation. The electrons on these levels a r e  
localized behind the nearestatomic surrounding, where 
the electron density i s  small. This leads to a sharp 
decrease of the probability of the Auger processes. 
Therefore the indicated lines a r e  much narrower than 
the states localized in the internal region of the mole- 
cule. 

CONCLUSION 

In our preceding  paper^,['^*^^] with an aim at in- 
vestigating the role of the ligands in the formation of 
the near-threshold singularities of the XAS, we pro- 
posed to introduce a matrix RLLt whose elements a r e  
the reflection amplitudes of the electron waves having 
different orbital angular momenta and radiated out of 
the investigated center. In the present article, on the 

basis of a calculation of the matrix of the reflection 
from the octahedral and cubic surroundings a t  1 Q 2 (the 
matrix RLLn for the central atom is diagonal in this 
case), we carried out a systematic analysis of the 
physical nature and the conditions for the onset of the 
principal near-threshold singularities of theXAS-of the 
resonances and of the Rydberg ser ies  -for central atoms 
in the investigated high-symmetry systems. We have 
shown the following: The reflection amplitude RLL 
varies as a rule slowly with changing energy in the case 
when the phases shifts of the scattering b y  the ligand 
potentials a r e  smooth functions of the energy. 

The main cause for the appearance of sharp maxima 
in the XAS i s  the satisfaction of the phase condition (8) 
in the case when the amplitude of the reflection from 
the surrounding i s  large enough @,=1RLLI>0.3). Such 
resonances ar ise  even in the case of smooth energy 
dependences of RLL and 6,, and a r e  due to the formation 
of a standing wave in the internal region of the atomic 
system. The amplitude of this wave with increasing p. 
In the case when p =  1, the resonance i s  transformed 
into a bound state. The large value of p in the con- 
sidered cases i s  typical of a large class of ligand po- 
tentials in the region kd < 6 .  

Resonance on the central potential, a s  a rule, induces 
resonance in the entire system. At values of p close to 
unity this resonance i s  more strongly pronounced than 
the bare one. If the resonance on the center is  well 
formed (the phase discontinuity is close to n),  then its 
integral intensity is  not changed when the center i s  
placed in the atomic system. An analogous situation 
obtains when a shallow bound state i s  present on the 
central potential. 

The calculation carried out for the SF, molecule 
shows that the onset of all the maxima in the XAS of 
sulfur i s  due to the causes listed above. The calculation 
results agree well with experiment. 

The reflection-matrix method applied to the theory of 
the Rydberg series makes it possible to explain simply 
and illustratively the decrease of i ts  intensity on ac- 
count of the potentials of the nearest surroundings, and 
also obtain formulas that give the positions and inten- 
sities of the RS lines, if a molecular state i s  super- 
imposed on this series. The presented analysis allows 
us to define the molecular state a s  a state that goes 
over into a resonant state when a potential past the 
Watson sphere is turned on. 

The existence of such states, which a re  formed main- 
ly because of the strong reflection of the electron wave 
from the nearest environment, i s  an important fact that 
must be taken into account in the analysis of the long- 
range order and of the formation of LED in a solid. 
One can expect that the cluster approach, which has 
been extensively used of late to calculate the electron 
structure of defects in crystals,[231 will give good re- 
sults for that part of the LED which i s  due to the 
indicated states. 

An approach based on introduction of a reflection 
matrix can be used to study the LED and XAS of atoms 
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in infinite systems. Although there i s  as yet no ef- 
fective method of calculating the reflection matrix, one 
can  hope that it will remain a smooth function of the 
energy and can be  specified with the aid of a small  num- 
be r  of parameters.  

In conclusion, the authors are grateful to A. P. 
Kovtun for  providing the results  of the calculations of 
the electron structure of the SF, molecule. The authors 
thank V. P. Sachenko and A. P. Kovtun for  a discussion 
of the manuscript. 

 he energy is measured in this paper in Rydbergs, and the 
remaining quantities are given in the atomic system of units. 

''we use here real spherical functions, the so-called cubic 
harmonics. u ' l~herefore  m does not have the meaning of the 
magnetic quantum number, and merely numbers harmonics 
with a definite value of orbital angular momentum (m = 1, 2, . . . , 21 + 1). The symbol L denotes the pair of numbers ( 1 ,  m) . 
Bearing in mind that all the calculations are carried out in 
this paper in a definite irreducible representation of the point 
group of the system, corresponding to the chosen L on the 
central atom, we shall hereafter frequently omit the index L,  
or replace it by the symbol of the irreducible representation. 
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Effects of the Landau-Zener type in the optical spectra of 
molecules 
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We investigate the influence of nonadiabatic coupling of electron-vibrational terms of molecular systems 
on their optical properties. It is shown that Landau-Zener effects in the vicinity of the quasicrossing of the 
terms lead to a substantial restructuring of the energy spectrum, to beats in the absorption line intensities, 
and to asymmetry in the absorption and emission spectra. Typical objects in which the predicted 
singularities can be observed are indicated. The case of laser-induced quasicrossing of terms is considered 
separately. 

PACS numbers: 33.80.Be 

when a theory is developed for the theory of electron- nonadiabatic coupling of the t e r m s  in the quasicrossing 

vibrational optical spectra of molecular sys tems i t  is region. The coupling of the t e rm can be due to elec-  

important to take into account the fact that the excited tron-vibrational interaction, to spin-orbit coupling, o r  

term to which the transition is realized is as a rule not to  mixing of these s ta tes  by external l a s e r  radiation 

isolated and has  regions of approach (quasicrossing) (induced quasicrossing). 

with the ground-state o r  some other excited t e r m s  in If the matrix element of the coupling of the t e rms  is 
configuration space of the molecule. A special role can comparable in magnitude with the characteristic dis- 

be played here by quantum s ta tes  that result  from the tance between the vibrational conditions, then a sub- 
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