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The effect of the kinematics of motion of particles in solution on the transfer of energy between them, 
which results in the quenching of luminescence, is considered within the framework of the random walk 
model. An analysis of the general solution of the problem reveals the conditions under which diffusion- 
accelerated quenching occurs, and the conditions which involve purely hopping quenching. One other 
quenching mechanism is possible, besides these familiar mechanisms. This one is characterized by an 
unusual dependence of the quenching rate on the parameters of the problem. 

PACS numbers: 32.50. +d, 33.50. -j 

1. INTRODUCTION in the case of multipole interaction, 

Any reaction between dissolved particles is'important 
only upon sufficiently close approach of the partners. If 
the process of their approach is described a s  encounter 
diffusion, then the problem a s  to how it is organized 
cannot be given. The diffusion description of the migra- 
tion of particles is all-purpose and is always valid on a 
macroscopic scale. However, it has long been noted 
that this description can lose force upon decrease in the 
distance between partners to molecular  dimension^.^" 
In gases, where diffusion consists of a succession of 
free paths, the reaction begins and ends within the lim- 
its of one of them, when their length is large in com- 
parison with the characteristic size of the reaction 
zone. This also happens in the condensed phase, where 
the migration takes place as a result of the random 
wandering of the particles, one step frequently turns out 
to be sufficient if it strongly accelerates the reaction. 

In spite of the difference in the kinematics of the mo- 
tion, processes which come about in a single act (run or  
hop) a re  a natural alternative to diffusion-controlled re- 
actions. However, in spite of the fact that the theory of 
reactions in rarefield gases is  well developedc2] and the 
theory of hopping processes has advanced considerably 
in recent years,[5 41 the limits of their applicability a r e  
outlined only intuitively. An exception is the problem of 
the annihilation of excitions on impurity centers.c51 It 
has been solved in the case of an arbitrary relation be- 
tween the path length of the exciton and the quenching 
radius, which enables one to establish where and how 
the change in the quenching transfer mechanism is 
brought about by the diffusion. 

The present research sets  a s  its goal the solution in 
general fashion of the problem of quenching in the ran- 
dom walk model. This walk can be executed by a local- 
ized exciton in a crystal or  by an excited particle mi- 
grating in a liquid medium. The quenching is due to the 
transfer of energy to the metastable level of an impuri- 
ty center. The transfer probability increases sharply 
with decrease in their separation: 

U (r) -a/rm ( l . la)  

U ( r )  =(;,e-'"' (l.lb) 

in the exchange approximation. Therefore, the mutual 
approach of the particles during the time of motion 
forces the quenching process. 

The kinetics of multipole quenching has been studied 
in both the diffusionc6' and the hopping3**] variants, and 
it has been assumed that these exhausted all  possibili- 
ties. The stationary rate of exchange quenching, accel- 
erated diffusionC7] o r  hopsC8' have also been studied, but 
the problem a s  to how these mechanisms a r e  differenti- 
ated has remained unclear. In the present work, we 
have succeeded in answering this question in exhaustive 
fashion, thanks to the rigorous solution in its entirety 
of the problem of stationary exchange quenching. This 
solution is obtained within the framework of the specific 
random-walk model, but the basic conclusions can be 
formulated and substantiated in general form. 

It turns out that, along with the diffusion and hopping 
mechanisms of quenching, a mixed mechanism is pos- 
sible in which the molecule is  deactivated in the first  
step in the quenching zone, but leaves it only after sev- 
e ra l  successive steps. This situation comes about when 
the boundaries of the strong quenching zone a r e  sharply 
defined (in comparison with its extent), which occurs in 
the case of exchange quenching and in interactions of 
high multipolarity. With increase in viscosity, the or- 
dinary hopping quenching yields place to the mixed pro- 
cess, the rate of which falls off slowly and depends oth- 
erwise on the parameters of (1.lb). At the same time, 
for fixed viscosity, the effective quenching radius can 
be both greater and less than the diffusion radius, de- 
pending on which mechanism is realized. Therefore, in 
the interpretation of the experimental data, it is neces- 
sary  to take into account their boundaries in the param- 
e ter  %A (A is the mean value of the hop), which a re  es- 
tablished in the present work, and to use adequate for- 
mulas. 
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2. STATEMENT OF THE PROBLEM 

The quenching rate constant is determined from the 
formulac7' 

k = 5 U ( r )  n  (r,  t )  dr, 

where n is the density of excitations a t  a distance r 
from the quencher a t  the time t. The latter quantity is  
obtained from the equation 

which differs from the generally accepted formc117' by a 
replacement of the differential operator corresponding 
to diffusion by the more general integral operator, 
which describes the random walk, a s  a consequence of 
stochastic hops. Here r0 is  the time between succes- 
sive hops and f (  I r - x I ) is the conditional probability of 
obtaining the value r a s  a result of the hop if, before 
the jump, it was equal to x, and 

If we neglect the characteristic size of the particles 
for simplicity, then f depends only on 5 = I r - x I. 
Moreover, we shall assume the quenching to be spher- 
ically isotropic, U(r) = U(Y), and we limit ourselves to 
consideration of the final quasi-stationary stage of the 
quenching, when an/at = 0. Then the formulas (2.1) and 
(2.2) take the form 

i 
* 

- ~ ( r )  n ( r )  - -( n ( r )  -4n j f ( r ,  x )  I L  ( z ) x 2 d z )  SO, 
To 

(2.4a) 
0 - 

k=4x j u ( r )  n(r)rzdr ,  n ( m )  =I, (2.4b) 
0 

and, by definition, 

where r={r, 6, cp) and x={x, 6', p'). Taking it into con- 
sideration that the result of integration should not de- 
pend on the orientation of x, we assume 6' = cp' = 0. Then 

1 "  
f ( r ,  z )  = 1j f ( [ l f+xZ-2xr  cos 01'")sin 0  dB 

0 

Here we introduce the function 

Q ( 1  4 j ,  j Q ( z ) ~ z = I .  
0 

Calculating the latter integral by parts, with account of 
(2.3), we can easily establish the fact that Q is actually 
normalized to unity and the function f ( r ,x )  is  normal- 
ized in both its arguments: 

4s f f ( r ,  z )rzdr=4x f f ( r ,  X )  z2dx=I ,  (2.6) 
0 0 

thanks to which the integral representation of n in (2.4a) 
leaves i t  constant if Us 0. 

We shall show that, both in the problem of the diffu- 
sion-accelerated quenchin$73 and in this more general 
case, the constant of the rate of quasi-stationary 
quenching is determined a s  a whole by the asymptotic 
behavior of n(r)  a s  r -a. For this, we transform for- 
mula (2.4b) with the help of Eq. (2.4a) and the proper- 
ties of the function f ( r ,x)  into the following equivalent 
formula: 

In view of the symmetry of f(r ,x) relative to the per- 
mutation of its arguments, the obtained expression 
changes sign when the order of integration is  inter- 
changed. However, it is obvious that k # 0 and conse- 
quently, such an interchange for the given improper in- 
tegral is incorrect and the integral should be regarded 
a s  the limit of the expression 

Here we have taken i t  into account that the multiple in- 
tegral in finite limits from 0 to R, which admits of in- 
terchange of the order of integration, is identically 
equal to zero. The expression (2.7) has the meaning of 
the total flux of excitations to the quencher through a 
sphere of radius R. Since f(r,x) differs from zero only 
a t  I r - x 1 5 h, where h is the mean scale of the jump, 
the, a s  x-00 in (2.7), r--. Thus, the quenching rate 
constant is  actually determined by the asymptotic be- 
havior of n(r). 

Taking it into account that a s  r - 00 both U(Y) and 
*(Y + X I  in Eq. (2.4a) vanish, we obtain the result that 
the n(r)  has the asymptotic form 

where RQ is the asymptotic coefficient. Substituting this 
expression in (2.7), carrying out the change of integra- 
tion variables z =x - Y  and y =R -Y, and taking the limit 
a s  R - m, we get 

Here D = h2/6r, is  the diffusion coefficient, and 

is the mean square value of the hop length. 

Thus, the determination of the constant k in terms of 
the asymptotic coefficient RQ turns out to be the same 
as  in the diffusion-accelerated quenching.c71 This is 
connected with the fact that in the remote approach to 
the quencher, the motion of the excitations via stochas- 
tic hops can always be regarded a s  diffuse. 

3, MODEL PROBLEM 

The direct solution of Eq. (2.4a) becomes possible on- 
ly after specification of its kernel. However, the ker- 
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nel cannot be determined in more detail than in (2.51, 
because of the general physical considerations. Thus, 
there is a certain freedom of choice in the function @(z). 
We use this to solve the problem analytically. For  this 
purpose, we set  

Then the corresponding distribution over the hop lengths 
takes the form 

The parameter X, has the meaning of the most probable 
hop length, since its mean square value is - 5 E'd6e-tfh=GL2. (3.2) 

0 

The choice of @ in the form (3.1) is  useful in that, in 
the case of such a definition, the function f (r ,  x), intro- 
duced in (2.5), becomes the regular solution of the 
equation 

3, / (r ,  z) =LO-'f (7, x )  - ( 4 ~ ? . ~ ~ r x )  -'a (r-x)  , 

where Ar is the Laplacian, acting on the variable r. 
Expressing the functioc f(r ,x) in this equation, and sub- 
stituting it in (2.4a), we can transform the obtained in- 
tegral equation to a differential equation. In fact, in- 
terchanging the integration over x and the differentia- 
tion with respect to r in it and again making use of Eq. 
(2.4a), we get 

Here, we have introduced a new function 

in place of n, satisfying the condition of boundedness a t  
r = 0 and the condition q(-)  =n(w) = 1. 

Since U(r) - 0 more rapidly than re3 as r - - (which is 
necessary for  the existence of a finite quenching rate 
constant), g(r) according to (3.4) has the same asymp- 
totic form (2.8) a s  n(r). For this reason, the quenching 
rate constant is determined by a formula identical to 
(2.9): 

heZ Lo' d 
k-4n -- R,=4n - lim f - q ( r )  

TO TO .-- dr 

We solve Eq. (3.3) in the case of exchange mechanism 
of transfer of the energy, when U is given by Eq. (1.lb). 
Substituting it in (3.3), we obtain an equation which has 
already been encountered in the theory of diffusion-ac- 
celerated quenching,t71 albeit in a somewhat different 
form. Copying its solution from Ref. 7, we obtain, af- 
ter suitable rearrangement of the parameters, 

where 
F (v,  v,  1+2v; - i / z )  

F (v ,  v,  l+2v; -1l.z) -eZnDYQ) (v, v, 1+2v; -l/z) 
(3.6b) 

ln 2;); 

I: 1 FIG. 1. Regions corre- 
sponding to various 

In U,T, quenching mechanisms : 
I-jump, II4i f fus ion,  

I 111-mixed. 

F(v, v, 1 +2v; = 1/21 and @(v, v, 1 +2v, - l/z) a re  the hy- 
pergeometric functions of the first  and second kind, 
$(v) is the Euler psi function, y = eC (C = ~ u l e r ' s  con- 
stant). 

The obtained two-parameter solution is completely 
general. The parameter z = U,T, characterizes the 
depth of the course of the process during the time that 
the excitation remains a t  the point where the quenching 
is maximal. The quenching will be strong o r  weak, 
depending on the value of this parameter. So fa r  a s  the 
parameter v = l/2XX0 is concerned, it correlates the 
spatial scale of the change in the quenching probability 
with the hop length and a t  the same time distinguishes 
the situations according to the method of crossing of 
the quenching zone. Depending on this, we shall in 
what follows, designate the quenching process a s  dif- 
fusion, hopping, o r  mixed. Figure 1 shows the bound- 
ar ies  of the situations, both according to the sign of the 
quenching force and also according to the mechanism. 
We shall consider each of these in turn. 

4. DIFFUSION QUENCHING 

It is obvious that diffusion quenching should occur a t  
small values of the hop length. Actually, as shown in 
Appendix A, a t  

the general solution (3.6) reduces to the well-known re- 
sult of diffusion quenching7' 

where Z,(x) and K,(x) a r e  the modified Bessel functions, 
D = X,~/T, is  the diffusion coefficient, and j3, = v: = U,/ 
4X2D i s  a parameter which characterizes the effective- 
ness of the diffusion quenching. At j3, << 1, the diffusion 
quenching is weak and its  constant 

does not depend on the diffusion rate; this corresponds 
to the so-called kinetic stage. On the other hand, a t  j3, 
>> 1, the quenching becomes strong, i.e., 

which corresponds to diffusion control. As was shown 
in Ref. 7, R, has the meaning of the radius of the 
sphere of strong quenching, falling into which surely 
leads to annihilation of the excitation. Here the total 
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extinction of the excitation already occurs on the bound- 
a r y  of this sphere in a layer of thickness 1/2% (in the 
following we shall cal l  this the quenching layer). 
Therefore R, i s  determined by the equality 

where 1 / 4 x 2 ~  has the meaning of the time of crossing 
of the quenching layer. Upon satisfaction of (4.1), this 
time becomes much longer than r,, thanks to which the 
diffusion damping becomes strong long before z = U,r, 
becomes equal to unity. 

We can give a universal form to the cri ter ion of dif- 
fusion quenching (4.1) if we establish the thickness of 
the quenching layer 6 in the general  case. For  a 
quenching probability that is  monotonically falling with 
increase in r, it can be estimated a s  the distance from 
the boundary of the quenching sphere, a t  which ~ ( r )  
falls off by a factor of e. Using (1.11, it i s  not difficult 
to prove that 

fo r  multipole interaction and 

fo r  the exchange interaction, while the radius of the 
quenching sphere i s  determined by the relation 

which is  a natural generalization of (4.5). As is  seen 
from these formulas, the thickness of the quenching 
layer is  always less  than the radius of the quenching 
sphere, even in the case of dipole-dipole interaction, 
when m is minimal and equal to 6. But no matter  how 
narrow the layer, in the case  of diffusion quenching 
several  s teps would be required to effect i t s  crossing. 
This is easily proved if we take it into account that the 
equation (3.3) goes over into the ordinary equation of 
diffusion-accelerated quenching ( ~ q s .  (3.1) from Ref. 71, 
when u(Y)T,<< 1. It is  important only that this equation 
keep valid until r=R , .  The character  of the motion in 
the interior of the sphere of strong quenching no longer 
has significance, because the excitation does not reach 
that region. Therefore, the actual cri ter ion for  diffu- 
sion description of the process is the inequality 

Using (4.7) in it, we find the desired relation 

E.<6, (4.9) 

which generalizes (4.1) to the case of a rb i t ra ry  depen- 
dence of U(r). Although these considerations allow u s  to 
establish the boundary of diffusion quenching only in the 
case  in which it i s  strong, this i s  quite sufficient. In 
kinetic control, the character  of the motion i s  not im- 
portant a t  all, because nothing depends on it. 

For  exchange interaction, the cri ter ion (4.9) i s  the 
final one. since the thickness 6 i s  a constant quantity. 

On the other hand, in the case  of multipole quenching 
both the layer thickness and i ts  radius depend on A, and 
therefore the limit on the hop length 

introduced in (4.91, is not explicit. Using (4.6a), (4.7) 
and ( l . la) ,  i t  is  not difficult to establish the fact that 

With the help of this relation, we get from (4.10) 

where R,= (a~ , ) '~" ,  a s  i s  shown in the next section, i s  
the radius of the sphere of strong multipole quenching, 
in the hopping variant of the theory, and i s  the analog 
of R,. 

The conditions (4.9) and (4.12) a r e  valid for  any dis- 
tribution of hop lengths. It is only important that the 
mean hop length X remain sma l l  in comparison with the 
layer thickness 6, which the diffusion flow of excita- 
tions, directed toward the quencher, is exhausted. 
Writing this relation in the form 

djldr=jlr<jlb, 

it i s  not difficult to s ee  that it i s  the upper bound of the 
value of the second derivative of n with respect to the 
first.  This  makes valid the expansion n ( r  +x) in (2.4a) 
in a Taylor s e r i e s  in the vicinity of the point Y, which 
converts the integral operator into a differential one. 
Retaining only the f i r s t  non-vanishing te rm in it, we get 
fo r  a l l  r > >  A (where @ ( r  +x) = 0), with account of (2.51, 

where the diffusion coefficient i s  expressed in the usual 
fashion in t e rms  of X2, which i s  defined in (2.10). 

There have been attempts to improve the diffusion 
description of the reaction by keeping subsequent t e rms  
of the expansion, in particular, the third derivative of 
n.['' However, the correction is umimportant on the 
boundaries of applicability of diffusion quenching of 
such type and insufficient beyond them. When the in- 
equalities (4.9) o r  (4.12) a r e  applied, a l l  the te rms of 
the expension become important and, in order  to obtain 
a simple description of the process,  it is  necessary to 
approach it from another side. 

5. HOPPING QUENCHING 

As an  alternative to the above, we consider f i r s t  the 
case in which v - 0. Expanding the general solution 
(3.6) in this parameter ,  with accuracy to te rms of f i r s t  
order (Appendix B), we find 
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where 

The expression (5.1), represented in the form (Appen- 
dix B) 

is easily identified with the result pertaining to the hop- 
ping mechanism of exchange quenching.[83 Although this 
result was obtained in Ref. 8 for migration of the exci- 
tation over equivalently located donors, when the hop 
length changes by a discrete amount, this result re- 
mains in force, a s  is  now seen, even in the case in 
which this distribution is continuous. The parameter z 
in this case, a s  also in the previous, characterizes the 
effectiveness of the quenching, in absolute fashion, 
without relation to the quantity v, i.e., the result (4.3) 
referring to the kinetic stage of the quench, is repro- 
duced here in every case in which 

The coincidence of the results with the conditions of su- 
perfast migration was expected, inasmuch as the reac- 
tion constant should not depend on the migration velocity 
in this case, but rather on the methods of this realiza- 
tion. 

The situation is different in the case of strong inter- 
action, when the inequality (5.3) i s  applied. In such a 
case, we get from (5.lb) 

where R, has the meaning of the radius of the sphere, 
hops into which annihilate the excitation. This radius 
is  the analog of R, in (4.41, but is  determined by the re- 
lation 

U ( R t v )  ~ o = l ,  (5.5) 

differing essentially from (4.5). Upon substitution of 
(1.la) in it, we obtain just that value of R, which figured 
in (4.12) as the radius of the sphere of strong jump 
quenching in the case of multipole transfer of energy. 

Analysis of the expansion of (3.6) in a ser ies  in v un- 
de r  the conditions of strong hopping quenching ( z  >> 1) 
shows that it is admissible only upon satisfaction of the 
inequality 

which is equivalent to the requirement 

It is not difficult to recognize here the ordinary criteri- 
on of applicability of the hopping quenching mechan- 
ism.C54' The physical meaning of it is  that the particle 
carrying the excitation falls into the quenching sphere 

and gives it up in a single hop. 

The obtained results a r e  easily extended to quenching 
of an arbitrary type. At large Xo the second term in 
(3.3) is small  in comparison with the first  and it can be 
neglected in the zeroth approximation. The evident so- 
lution in this case, which satisfies the condition a t  in- 
finity, is 

Using this in the determination of the rate constant 
(2.4b), we find 

This result i s  the direct generalization of (5.2) for a r -  
bitrary U(r). In strong exchange interactions, the frac- 
tion under the integral, as a function of Y, is close to a 
right triangle with height 1/r0 and base R,, the latter 
determined by the condition (5.5). Therefore, the con- 
stant (5.4) is  simply the volume of a sphere of radius 
R,, multiplied by the frequency of falling into it. In 
multipole interaction, this function is not so  close to a 
right triangle, and therefore, the result should be found 
by direct integration of (5.9) with account of (l.la). 
The satisfaction of it is not a necessity, since the pre- 
scription (5.9) is  identical to that used earlier for these 
same purposes (see Ref. 3). 

The model representation of the distribution function 
over hop lengths, used in the derivation of (3.3), in no 
way limits the generality of the results. They also fol- 
low directly from (2.4) if it i s  taken into account that 
n(x) rapidly reaches its asymptotic value, equal to uni- 
ty, beyond the limits of the quenching sphere (at x>R,). 
Therefore, if X, which characterizes the width of the 
function f(r,x), in accord with (5.7), significantly ex- 
ceeds the radius of the quenching sphere R,, then the 
principal contribution to the integral (2.44 is made by 
the region lying outside it, where n = 1. Taking this in- 
to account, and also the condition of stationarity of 
(2.6), we can set  

after which the solution (2.4a) transforms into (5.8), 
and (5.9) follows from (2.4b). 

It must be noted that n(x), which is determined in 
(5.8), in the zeroth approxima tion in u = 1/2xX, does not 
agree entirely with the asymptotic behavior of this 
quantity established in (2.8). The term R,/Y is absent 
in it. This term, a s  has been pointed out, is connected 
with the diffusion character of the motion in the remote 
approach to quenching. This is  explained by the fact 
that the f i rs t  term in (2.4a) falls off a t  r - m more rap- 
idly than l/r. It is therefore evident that the next term 
in the expansion in (5.10) is  responsible for the term 
Ro/r  in n(r)  a s  Y - .o. This is  quite natural, since, ac- 
cording to (2.19), R,-0(1/X2) a s  A - m .  The absence of 
this correction to (5.8) roughens the asymptotic behav- 
ior of n. Nevertheless, the use of such a function in 
(2.4b) does not distort the result, thanks to the pres- 

627 Sov. Phys. JETP 47(3), March 1978 Doktorov et aL 627 



ence of the cutoff factor ~ ( r )  under the integral sign; it 
reveals its inadequacy only in the use of the formula (2.9) 
a s  a rule for the calculation of k. 

In this connection, it is appropriate to note that the 
effective quenching radius (it is also the asymptotic co- 
efficient) RQ can be identified with the radius of strong 
quenching, except that i t  is  of the diffusion type. It ac- 
tually follows from the formal similarity of (2.9) and 
(4.4) that 

But, if we compare (2.9) and (5.4), it then turns out that 

In view of the inequality (5.71, RQ in hopping quench- 
ing is much smaller than R,. Determined experimen- 
tally a s  the ratio k/47D, this quantity can also turn out 
to be smaller than the molecular size, which is typical 
of the kinetic stage of the reaction, but will increase 
with increase in the viscosity, which is characteristic 
for the diffusion stage in the ordinary sense of this word. 
A combination of these conflicting properties simply in- 
dicates that we a r e  dealing with hopping control of the 
reaction. 

6. MIXED QUENCHING MECHANISM 

Figure 1 enables us to see how and where the change 
in mechanisms with increase in h (decrease in v) takes 
place. At z << 1, strong quenching gives way to weak, 
remaining diffusive in character. The replacement of 
the diffusion mechanism by the jump that takes place 
after this (at v- 1) i s  imperceptible since the quenching 
ra te  does not depend on the motion in the kinetic stage. 
If z > 1, then the quenching is strong for a l l  v and the 
situation is much more complicated. 

First  of all, it is  necessary to take into account the 
difference between the cri teria (4.1) and (5.6). The first  
of these limits from below the range of diffusion 
quenching, while the second establishes the upper bound 
of v for the jump. These n limits do not abut one anoth- 
er ,  a s  a consequence of which there is space between 
the limiting cases considered for the intermediate situ- 
ation (see Fig. 1): 

In the case of multipole quenching we can assess  the 
change in the situation in terms of Fig. 2. On i t  is shown the 
change with increase in X of the radii of the quenching 
spheres, with which we must compare the hop length in 
order to make the choice between the mechanisms. In 
this case, the intermediate region is 

which has a large extent only for large m, and in the 
dipole case it degenerates into a comparatively narrow 
band that separates the diffusion and the hopping 

FIG. 2. Behavior of effective radii Rw and Rs upon change in 
hopping scale A for multipole quenching. 

quenchings. 

In order to decide on how the exchange quenching 
exists in the intermediate region, it is necessary to ex- 
pand (3.6) under the condition l / lnz  << 1 (Appendix B), 
which gives 

This result is new. Such a combination of the param- 
e ters  of the problem in the determination of the rate of 
the process has never been encountered previously. 
The rate constant is  expressed linearly in terms of the 
radius of the band of strong quenching, both in diffusion 
quenching (but the radius is determined by the equation 
(5.5)) and in the hopping mechanism. It is  just this 
which furnishes the basis for calling the mechanism a 
mixed one. 

However, the situation can be considered in another 
aspect; in the cross  section v=const<< 1 we can assume 
that we a r e  dealing simply with a new quenching stage, 
which is  controlled by the migrations. Increase in z in 
this cross  section corresponds to a slowing of the dif- 
fusion (increase in the viscosity of the medium). The 
kinetic stage a t  z << 1 gives way to hopping, but ends a s  
a mixed stage, in which the latter two can be described 
by the single expression 

which is  obtained from (3.6) a t  v << 1 and lnz >> 1, but 
arbitrary v lnz. (~ppend ix  B). It is  obvious that it will 
be necessary to deal with the mixed state, a s  a rule, in 
the change of viscosity over wide ranges. This conclu- 
sion is  valid in relation to arbitrary short-range types 
of quenching, including quenching of high multipolarity. 
It is  necessary to keep it in mind also in the calculations 
of quenching a s  a consequence of migration of the exci- 
tation through donors in solid and viscous solutions. In 
this case, the frequency of migration is determined by 
the concentrations of the activator no, according to the 

where d is  the constant of dipole-dipole interaction be- 
tween the particles of the activator. For this reason, 
R, turns out to be dependent on n,C8': 
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However, the rate constant, which is determined by R, 
in (6.3), is  different from the hopping variant of the the- 
ory developed in Ref. 8. An entirely different concen- 
tration dependence is characteristic of it: 

which can be used for the identification of the mechan- 
ism. 

7. CONCLUSION 

The stationary quenching rate constant, when it is  
controlled by migrations, can always be represented in 
the form 

where v has the meaning of the volume of the quenching 
sphere, and T is its duration in it. The table indicates 
how al l  these quantities a r e  determined in the case of 
the various quenching mechanisms considered above. 
In the hopping and mixed mechanisms, the volumes of 
the quenching sphere is identical. On the contrary, the 
expression for the time of stay in the sphere is of the 
same structure in the diffusion and mixed mechanisms, 
since in both these cases the crossing of this sphere i s  
accomplished by several hops, a s  is  clear from the 
criteria of applicability. 

The existence of three different mechanisms of 
strong quenching creates the problem of choice among 
them, on which the interpretation of the experimental 
data depends critically. If the diffusion coefficient i s  
known along with the rate constant, then this enables us  
to calculate RQ = k/47rD, but this is  not to be identified 
with the diffusion radius R,, as has been done up to 
now. As is seen from Fig. 3, the found quantity can be 
larger or  smaller than its asymptotic value, which i t  
achieves in the diffusion limit (A-0). The mechanism 
can be identified only by studying the dependences of RQ 
on A and T,, which is different in a l l  cases. If A = const, 
then it is relatively simple to distinguish the hopping 
mechanism from the others according to its dependence 
RQ a lnZD (for the others RQ a: 1nD). The wider the range 
of change of the diffusion coefficient, the more reliable 
will be this choice. By varying the pressure on the 
liquid over wide limits, we can significantly change the 
diffusion rate, without changing the composition of the 
solution. For purity of such an experiment, it is  desir- 
able to control the coefficient of encounter diffusion di- 
rectly by the given luminescence. This is possible, for 
example, if, in addition to the phosphorescence of the 

FIG. 3. Behavior of the quenching rate constant in a change in 
the hopping scale ( k D =  47rDRs is  the value of the rate constant 
calculated from the formula for diffusion accelerated quench- 
ing; regions I, II and 111 correspond to diffusion, mixed and 
hopping quenching mechanisms). 

triplet state of the donor, its fluorescence in the dipole- 
dipole transition is also recorded.CG7' Knowing the 
quenching rate of the triplet and the diffusion rate, we 
can readily identify the mechanism. The realization of 
such an experiment would allow us  to extract informa- 
tion on the scale of the hops, i.e., on the methods of 
organization of the diffusion in the liquid phase. 

APPENDIX A 

To determine the formulas (4.2), we express (3.6b) 
only in terms of the hypergeometric function of the first  
kind: 

where r ( v )  is the Euler gamma function. We now take it 
into account that as v - 00 and p, = zv2 = const, z - 0. Car- 
rying out such a transition for the analytic continuation 
of the hypergeometric 

where 

h,=2$(l+n) - ~ ( I L - \ . )  -$(n+v)  +n  ctg n ( l + v ) ,  
( v ) . = v ( v + l ) .  . . ( v+n-I ) ,  

and using the asymptotic expansion 

we get 

TABLE I. - - 
Region of 
applicability 

DYhhn 1 4nDR. 141:,nRs' I R o y  1 1.8 
Mixed 4nDRw '1;nRu.J R2,,./3D 6 = h a R , ,  
Hoppine 4xRwV3r0 V J ~ R I V ~  R u - a h  

Substituting (A.4) in (A.11, ( ~ . 1 )  in (3.6a) with account 
of (A.31, we obtain the expression (4.2), and the dis- 
carded terms a r e  small under the condition v2 
>> max(1, @k'z). At p, -S 1, the obtained condition is iden- 
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tical with (4.11, but at j3,>> 1 it is more rigorous. The 
latter circumstance, however, does not change the gen- 
e ra l  criterion for the diffusion description (4.1), since 
a t  pm>> 1, the expansion of the functions in (3.6) can be 
carried out subject to the solitary condition v>> 1, if 
we use the integral representation FCH1: 

and the formula 

obtained from (A.1) by use of the properties of hyper- 
- geometric functions. Actually, carrying out the a s  ymp- 

totic estimate of F(v; v; 1 +2v; - l /z)  by the saddle-point 
method: 

and using (see Ref. 10) 

we establish the fact that these estimates a r e  correct 
under the conditions p,>> 1, v>> 1. Using them in (A.6), 
and (A.6) and (A.3) in (3.61, we obtain the result (4.4), 
which is just a special case of (4.2), corresponding to 
strong diffusion quenching pm>> 1. Thus, the result 
(4.2) is valid for any value of 0, if only the condition 
(4.1) is  satisfied. 

APPENDIX B 

To obtain Eq. (5.la), we must use the expression 
(A.51, substituting (A.2) in it. Further, using the rep- 
resentation F(- V ,  v, 1, - z), in the form of a series,  and 
the asymptotic formula (as v- 0) 

(where [ ( x )  is the Riemann zeta function), under the 
condition v << 1, we get the desired result. 

To obtain (5.lb), we must use the expression (A.1) 
and, for the function F entering into it, a representation 
in the form of a series. Further, using the expansion 

z" = e2" lnL under the condition v ln z << 1, and expanding 
the remaining function under the condition v << 1, we 
obtain the desired result. 

The identity of the result (5.la) with (5.2) is estab- 
lished by reduction of the integral (5.2) to the tablecu1 
by the change of variable y = 2 x r .  Calculation of (5.2) a t  
z 3 1 is performed by dividing it into two integrals (af- 
ter  the variable change y = 2xr): 

in each of which the integrand is represented in the 
form of the sum of an infinite geometric progression. 
Integrating term by term, we obtain (5.lb). 

To obtain the result (6.4), which covers the region of 
the mixed and strong jump quenching, we may use the 
same expanded functions as in obtaining (5.1), but now 
take it into account that we do not expand the function 
z2" = exp(2v lnz), since v lnz is  not small  in the general 
case. The expression (6.3) follows from (6.4) a t  v lnz 
>> 1. 
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