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The partition function is calculated for a model of polymers with excluded volume on a square lattice. The 
model studied is represented as a modification of a certain exactly soluble model. In the representation 
obtained a small parameter is found that makes it possible to calculate the value of the critical point with 
an accuracy of -0.1% with respect to the results of high-temperature expansions. 

PACS numbers: 36.20.E~ 

A polymer with excluded volume is a long chain of 
atoms which, because of the action of forces of repul- 
sion, do not come into contact with each other. A 
common model of a polymer is an alternating sequence 
of sites and bonds of a regular A system 
of closed polymer chains with an arbitrary number of 
links i s  specified in this model by two conditions: 1) 
each bond of the lattice is occupied by not more than 
one link, and 2)  each site is either free o r  a junction of 
two links. An analogy appears between the closed-chain 
polymer model in this specification and the graphical 
representation of the Ising model; i t  is natural to ex- 
pect, therefore, that the system of polymers will 
possess critical behavior a t  a certain temperature. The 
conjecture that the critical values of the dimensionless 
temperature 0 in the model of polymers with excluded 
volume and in the Ising model a r e  equal in the two-di- 
mensional case was expressed by ~ e m p e r l e y . ~ ~ ]  This 
conjecture was soon refuted by Fisher and ~ y k e s , ~ ~ ]  
who gave upper and lower bounds for the possible values 
of 0,. Subsequently, the value of the critical point for 
different dimensionalities d has been refined several 
times by direct computation of the number of lattice 
 configuration^^^-'^^ and a t  the present time is known to 
the fourth decimal place for d = 2. 

In this paper an analytic approach to the calculation 
of the partition function of closed polymer chains on a 
square lattice is proposed. In this approach we use the 
method of Pfaffians, which has been used earlier to 
solve the problem of d i m e r ~ [ " * ' ~ ~  and the Ising 
m ~ d e l . ~ ' ~ * ' ~ ~  The partition function obtained in the 
paper gives the singularities of the thermodynamic 
quantities at the critical point, the value of which 
agrees to within -0.1% with the results of numerical 
calculations. 

The plan of the account i s  a s  follows. First ,  the 
original problem i s  modified, by the introduction of 
defects, in such a way that i t  admits an exact solution 
by the method of Pfaffians (Sec. 1). In Sec. 2 the 
number of defects introduced is estimated and in Sec. 3 
their contribution to the partition function is taken into 
account in the simplest approximation guaranteeing the 
aforementioned accuracy. 

1. THE AUXILIARY MODEL 

We suppose that we have a square lattice, containing 
N sites in the horizontal direction and M in the vertical 

direction. We shall consider a set  of closed polymer 
chains, situated on the lattice and having N ,  horizontal 
links and N ,  vertical links in total. We denote the total 
number of positions of the chains by G(N,,N,).  The 
problem consists in determining the partition function 
o r  generating function 

In place of the original problem we consider first  a 
modification of it. In arranging a chain on the lattice 
we shall assume that each pair  of consecutive vertical 
links can be placed on the lattice in two ways. We can 
suppose, e.g., that a "bridge" has been thrown across 
each lattice site in the vertical direction, and the junc- 
tion of two vertical links l ies sometimes on the bridge 
and at other times under it. We shall call this way of 
arranging the polymers on the lattice the auxiliary 
model. The total number of arrangements of a set  of 
chains with N ,  horizontal links and N,, vertical links in 
the auxiliary model will be denoted by G*&, N,). We 
shall calculate the generating function 

The method of Pfa f f i an~ ,~ '~ '  which we shall use to 
solve this problem, consists in reducing the problem 
to a certain equivalent problem of dimers. By a dimer 
we mean a marked bond of a graph, together with the 
adjoining vertices. Each vertex of the graph must 
belong to no more than one dimer. For  our purposes 
we need the graph depicted in Fig. la. Figure 2 shows 
all possible arrangements of the maximum number of 
dimers on this graph (a dimer is distinguished by a 
thick line). Each arrangement corresponds to a 
possible situation at a si te of the square lattice when a 
polymer chain is placed on it, i.e., it is either a free 
si te o r  a si te that is a junction of two links. Note that 
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FIG. 2. 

a junction of two vertical links a t  a site is associated 
with two dimer coverings, a s  required in the auxiliary 
model. 

Now let each of the iWV cells of the decorated lattice 
be the graph depicted in Fig. la, which i s  joined to the 
neighboring cells a s  shown in Fig. lb. Because of the 
correspondence established, the problem of enumerat- 
ing the possible arrangements of the polymer chains on 
a square lattice with bridges is equivalent to the prob- 
lem of enumerating the ways of covering with dimers 
all the sites of the decorated lattice constructed. In 
other words, G*(N,,N,) in formula (2) is the total 
number of dimer configurations with N, dimers linking 
cells in the horizontal direction and with N, dimers 
linking cells in the vertical direction. We assign a 
weight x to the horizontal links between cells and a 
weight y to the vertical links. To the other bonds of 
the decorated lattice we assign unit weight. 

Before introducing the Pfaffian we must verify that 
the lattice constructed satisfies the condition of 
Kasteleyn's theorem,[18] i.e., that we can supply each 
bond with an arrow in such a way that when we go 
right round an elementary polygon in a given direction 
it contains an odd number of arrows pointing in this 
direction. It i s  easy to convince oneself by direct 
inspection that the arrangement of arrows in Fig. l b  
satisfies this condition. We now label all the points of 
the decorated lattice by the numbers p ( p  = 1,2, .  . . , 
6MN). We introduce an antisymmetric matrix A 
of order 6MN, with elements corresponding to the 
possible dimer bonds. The element a(p,pl) of this 
matrix is equal to the weight of the bond common to 
the points p and p' if the points p and p ' a r e  neighboring, 
and equal to zero if the points p and p' a re  not neigh- 
boring. The element a(p,pf) i s  positive if the arrow 
on the bond points from p to p', and negative if the 
arrow points from p' to p. Under these conditions the 
generating function (2) is equal to the Pfaffian of the 
matrix A['~]: 

The algorithm described in the review by M o n t r ~ l l ~ ' ~ ~  
for calculating the Pfaffian leads to the formula 

For the decorated lattice in Fig. l b  the matrix 
X(a, 8 )  has the form 

Using the relations (3) and (4), we obtain the solution 
of the auxiliary problem: 

+ 4 y c o s  $(l+s cos a) Ida d> (6) 

which is correct in the limit M, N -00.  To find the 
critical values x, and y,, according to the general 
prescription for investigating partition functions of 
the form (6)>l7] it i s  necessary to put cosa = cosb = -1. 
Then the argument of the logarithm under the integral 
sign vanishes if the equality 

is fulfilled. From this equality it follows that x, and y, 
satisfy the condition 

Some freedom still remains in the determination of 
x, and y,. We shall use this to bring the solution (6) to 
a symmetric form. Namely, we require that the aver- 
age values of the numbers of vertical and horizontal 
links 

be equal. We find directly from the form of the parti- 
tion function (6) that this requirement is fulfilled under 
the condition x = 2y. The latter condition, together 
with the condition (8), gives the critical values of the 
parameters of the auxiliary problem in the symmetric 
case: x,=$,  yc=i. Introducing the new variable t, we 
can write x =  2lI2t, =2-lI2t ,  and t,= 2lI2/4. 

2. THE DENSITY OF DEFECTS 

In the auxiliary model the bridge thrown across each 
site in the vertical direction is the cause of a defect in 
the laying of a polymer chain on the lattice. We shall 
calculate the density of si tes a t  which a chain is 
positioned in the defect situation, i.e., si tes that a re  
junctions of two vertical links. In terms of the equiva- 
lent problem of dimers, for this purpose i t  is necessary 
to find the proportion of all the dimer coverings of the 
decorated lattice in which a given cell is covered by 
dimers in the way shown in Fig. 2, cases 7 and 8. We 
have one of these two situations with certainty if the 
bonds 12 and 56 in the cell a re  not covered by dimers. 
We denote by g*(N,, N,) the number of dimer coverings 
in which the given cell (having, for definiteness, the 
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coordinates (0,O)) does not contain dimers on the 
bonds 12 and 56. The variables N, and N,, a s  before, 
denote the numbers of horizontal and vertical bonds 
between cells occupied by dimers. 

The desired defect density n,(x, y) is determined by 
the ratio 

In order to exclude dimers from falling on the bonds 
12 and 56 of the cell (0,0), we assign these bonds 
zero weight. The elements a ( p , p ' )  of the matrix A 
that correspond to these bonds should be altered to 
zero. We represent this change with the aid of a matrix 
6 such that the new matrix is equal to A +  6. When the 
formulas (2) and (3) a r e  taken into account the expres- 
sion (10) takes the form 

Let X"(a , p) be the inverse of the matrix ~ ( a ,  p) 
(5), and let Aql(r, r'),, (in which r and r' denote the 
coordinates of cells of the decorated lattice and j and 
k a re  labels of sites in these cells) be an element of the 
inverse of the matrix A. Using the invariance of the 
lattice under translations, we can determine the ele- 
ments of the matrix A-1c161: 

(12) 
The calculation of the determinant in formula (11) is  

straightforward, because all but four of the elements of 
the matrix X-' a re  equal to zero. We denote by Y the 
matrix obtained from 6 by crossing out rows and 
columns containing only zeros, and by Q the 4 x 4 
matrix obtained by deleting the same rows and columns 
from A-l. Then formula (11) is brought to the form 

Finding the elements of the matrix A-'(a, 8 )  and using 
the relation (12), we obtain the following expressions 
for the elements of the matrix Q: 

1 l+rZ+ 22 cos a+2y ( l + x c o s  a ) cos  P 
Qt2=QII = - jj d a  dp 

( 2 4 '  , 1+x2+4y2+2x cos a+4y ( l + x  cos a)cos  p 
(?*a-Qz6-0. 

-1 'a 1+x cos a+ 2y cos fi - G uda , + ~ ' + 4 y ' + h  cos a +  l y  ( I+x  cos a ) ~  

1% 
-Y (l+x'+2xcos a ) cos  p+2y ( l+x  cos a )  

~ = = ~ [ J d a d f i  1+x1+4yZ+2x cos a+4y (l+z cos a ) cos  i3 ' 

Qc,=Q,, i>j, i , j = 1 , 2 , 3 , 4 .  (14) 

At the critical point x, = i, y, = i, the calculations of the 
integrals (14) give 

Taking into account the explicit form of the matrix 

and substituting the values (15) into formula (13), we 
obtain n$ = 0.042307. . . 

For the following we shall also need the average 
value of the density of sites occupied by a chain in the 
auxiliary model: 

For the partition function (6), from the definition (9) we 
obtain 

1 xz+4y2+z cos a+ 2y cos ?+ 'txy cos a cos p 
u ( c . y ) = - - _ J J d a d p  ( 2 ~ ) -  , 1+z't4y'+3z eos a i 4 y  ( l+x  cos a ) cos  $ ' 

(18) 
so that, at  the critical point, 

nc=l-4,3-'"n-' nrctg 3"=0.23020.. . . 

3. ALLOWANCE FOR THE EFFECT OF THE DEFECTS 

Proceeding to the solution of the original problem, 
we note that the calculations in the preceding section 
indicate the presence of a small parameter in the 
problem. This parameter is the defect density n i .  
The smallness of n$ enables us, a s  a first  step, to 
neglect the correlation between defects and treat them 
a s  independent random quantities. We shall assume 
that in the square lattice each site occupied by a poly- 
mer chain is, with probability a(x, y), a junction of 
two vertical links. On the lattice with bridges such a 
point corresponds to a defect. The average number of 
defects in a configuration with N, horizontal and N, 
vertical links is equal to (~,+N,)a(x, y). The presence 
of each defect doubles the number of possible config- 
urations; therefore, for large N, and N, we have the 
approximate equality 

The partition function (1) can now be represented in 
the form 

s. y >-" 

z ( ~ , ~ ) -  CO.(X,S.)  ( f )  (li) -Z'(i.S). (20) - 
SI.S" 

where 

To determine the probability a(x, y) we shall find 
g(N,, N,)-the number of configurations of a chain on 
the square lattice that have N, horizontal and N ,  verti- 
cal links and satisfy the condition that the site at the 
coordinate origin be a junction of two vertical links. 
On the lattice with bridges, each of the N,+N,- 1 sites 
of such a configuration contains a defect with probability 
a, while the site at  the coordinate origin is a defect 
with certainty. On this basis, in analogy with the 
equality (19) we have 
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i ge(N., N,) 2""."' g' (N=, Nn) 
3--- 

g ( " 1 s " v v ) = ~ 2 ( ~ . + ~ y - 1 ) ~ ( ~ . y j  2 21N.+Sl)~lz.yJ ' 

We introduce into the analysis the function p,(x, y)- 
the density of si tes of the square lattice that a re  junc- 
tions of two vertical links: 

P D ~ ,  y) = g(iIT,, Ny)Zl=yNu/Z(r, y). 
BI.Sy 

Substituting the expression (21) into this, taking into 
account the definition (10) and the relation (20) we 
obtain 

We also determine the density of sites of the square 
lattice that a re  occupied by a chain: 

p (z, y) =Z (z, y) -I (NX) -I (N,+N,) G (N,, A',) zN=yNu 
-. . 

G' (N,, N,) zN=yNn - 
=z (2. n-I(sAr) -1 '5' (x=+s.) 2,h.= + N  v,alq ,, - n (i.9. (24) d 

IV.,N" 

For the desired probability a(x, y) we obtain the equa- 
tion 

We note now that the functions n,(x, y) and n(x, y) 
determined by the formulas (13) and (18), and, conse- 
quently, a(x, y), have no singularities in the entire 
region in which they a re  defined, with the exception, 
perhaps of the critical point. Therefore, the relation 
(20) gives the connection between the critical points of 
the partition functions Z and Z*, namely, 

where cu,= (Y(x,, y,). 

We shall substitute the calculated critical values of 
the parameters of the auxiliary model into Eq. (25). 
We obtain the transcendental equation 

which has the solution a,=0.09837.. . . A quantity con- 
venient for comparison with the results of numerical 
calculations is t;'. In the paper by Fisher and ~ ~ k e s [ ~ '  
the following estimate was given for this quantity: 
2.5767 c ti1 < 2.712. The most accurate result from 

high-temperature  expansion^^'^' is the value ti1= 2.6385 
* 0.0001. The formulas (26) with (27) lead to the value 

The theory expounded can be regarded as the approxi- 
mation of f i rs t  order in the defect density n,. The 
problem of taking into account correlations between 
the defects is analogous to the problem of calculating 
spin correlations in the Ising model in the framework 
of the method of P f a f f i a n ~ . ~ ~ ~ ]  The complexity of the 
analytic expressions for the correlators increases 
rapidly as their order increases. Nevertheless, the 
hope of obtaining an analytic expression for the parti- 
tion function with an accuracy obtainable, up to now, 
only by the method of high-temperature expansions, 
makes this problem attractive. 

I tender my deep gratitude to Ya. ~oval ' ski ;  for 
discussions on the work in all i ts  stages. 
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