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An analysis is made of the electromagnetic contribution to the nonlinear coefficient of absorption of short- 
wave sound in a metal, when the wavelength is much smaller than the free-path length of the electrons. It 
is shown that, depending on the value of the ratio of the wavelength of the sound to the skin depth (with 
anomalous skin effect), there are two possible types of dependence of the absorption cmcient on the 
sound intensity. In the high-frequency range, the deformation contribution to the absorption dominates; 
the absorption coefficient decreases, with increase of the sound intensity S ,  as S -"'. In the low- 
frequency range, the electromagnetic contribution to the nonlinear absorption coefficient dominates, 
although in the linear range the electromagnetic and deformational contributions are of the same orc&r of 
magnitude. The sound-absorption coefficient initially increases with increase of the sound intensity as S ' I 2  

but then begins to decrease as S 'I4. The value of the nonlinear absorption coefficient may exceed the 
value of the linear c ~ ~ c i e n t .  This type of dependence is due to the nonlinear character of the shielding 
of the priming eddy currents, which lead to the electromagnetic absorption, by conductivity currents. The 
estimates made show that the predicted dependences are completely accessible for experimental 
investigation. 

PACS numbers: 62.65. + k, 43.35.Pt 

INTRODUCTION caused by Joule losses during flow in the metal of eddy 
currents produced by the sound wave. In metals with a 

The propagation inmetals of short-wave sound, whose complicated Fermi surface, and also in propagation of 
wavelength 2n/q is much smaller than the free-path mixed sound modes containing longitudinal and trans- 
length I of the electrons, has been repeatedly investi- verse components, the two mechanisms of absorption 
gated both experimentally and theoretically. In an over- may compete. 
whelming majority of the experiments, what was studied 

Experimentalists a r e  now able to introduce into me- was the propagation of sound of small  intensity, so  that 
the experimental situation was well described by a the- tallic crystals sound waves of sufficiently large inten- 

ory, developed in a number of papers, that is linear in - sity for study fo the characteristics of their propaga- 

the sound-wave amplitude. By comparison of the ex- 
tion in the nonlinear range. It has therefore become 
timely to develop a nonlinear theory of absorption of 

perirnental results with the theory, the basic mechan- 
short-wave sound in the range isms responsible for sound absorption have been esta- 

blished. For longitudinal sound, a typical mechanism is p l ~ i .  (1) 
the so-called deformation mechanism,c1I due to modula- 
tion of the energy of the electrons in the field of the For the deformation mechanism of absorption, such a 
sound wave. In the case of transverse sound, along with theory has already been de~eloped.~"~'  A qualitative 
the deformational absorption, an important role is picture describing nonlinear deformational absorption 
played by the so-called electromagnetic absorption,c21 consists of the following. It is well knowncll that what is 
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responsible for the absorption of short-wave sound is a 
group of resonance electrons, small in phase volume, 
the projections of whose velocities in the direction of 
the wave vector q of the sound a re  close to  the phase 
velocity w of the sound. In consequence, the absorption 
is very sensitive to the form of the distribution of the 
electrons in the resonance region of p-space. On the 
other hand, a traveling sound wave is accompanied by a 
traveling wave of potential energy of the electrons, 
whose amplitude is proportional to the strain potential. 
This wave, acting on the resonance electrons, distorts 
their distribution, leading to nonlinear absorption. This 
mechanism, resulting from distortion of the distribution 
of electrons with respect to momentum in the resonance 
region of p-space, has received the name "momental" 
nonlinearity. Experimentally, momental nonlinearity 
has been observed by Ivanov et al.c61 in the piezosemi- 
conductor n-InSb and by Fil' et al.c71 in superpure gal- 
lium. 

The purpose of the present paper is to study the mani- 
festation of momental nonlinearity in a situation in which 
the electromagnetic contribution to the absorption is 
significant. We shall show that redistribution of the 
electrons in p-space may significantly modify the trans- 
verse component of the electrical-conductivity tensor of 
the metal, which is responsible for the shielding of vor- 
tical electromagnetic fields. This modification of the 
shielding may in turn significantly affect the Joule 
losses due to eddy currents and consequently the sound 
absorption. In particular, in the region of sufficiently 
low frequencies the nonlinear absorption coefficient may 
increase with increase of the sound intensity. In this 
region, the nonlinear electromagnetic contribution may 
significantly exceed the nonlinear deformational, even 
though in the linear range these contributions a re  of the 
same order of magnitude. 

2. DISTRIBUTION FUNCTION OF THE ELECTRONS, 
AND EXPRESSION FOR THE COEFFICIENT OF 
SOUND ABSORPTION 

The kinetic equation for the distribution function nt of 
the electrons, in a coordinate system K, attached to  a 
deformed lattice, has the f ~ r m ~ " ' ~ ~  

an' ae'an' ae'an' -+----- at ap ,  art a*, apt+ I1(n')=O. 

where 

(3) 
A,(pf) is the strain-potential tensor, dependent on the 
electron quasimomenturn p'; uu = $(8u,/8xk + Bu, /8x,) is 
the strain tensor; u is the displacement vector of the 
lattice in the sound wave; v' is the velocity of an elec- 
tron, e the electron charge, m, the mass of a free elec- 
tron, and r,(p') the energy spectrum of the undeformed 
metal. The scalar potential cp and vector potential A 
of the electromagnetic field must be determined from 
the electrical neutrality condition and Maxwell's equa- 
tions. We choose a gauge in which div A =  0 (Alq). 

From analysis of theelectrical-neutrality condition it is 
easily shown that, except for corrections proportional 
to the small parameters w /up (u, is the velocity of an 
electron on the Fermi surface) and (ql)", the scalar po- 
tential may be considered equal to  -e"X,,(p'), where 
the bar denotes an average over the Fermi surface. 
With the same accuracy, in the term m0v16 it  is permis- 
sible to  retain only fi,, where u, is the component of the 
vector u in the place perpendicular to q. We shall sup- 
pose below that the tensor A,, is so defined that X =  0. 

A 

The operator I' for collisions of electrons with im- 
purities has the standard form 

Equation (2) was derived on the assumption 

which we shall suppose satisfied. We shall see that non- 
linear effects of electronic origin will be appreciable 
even when this condition is satisfied. 

We shall direct the axis QX along the direction of 
sound propagation q, Since the energy of an electron is 
an even function of i t s  quasimomentum, the part of the 
strain-potential tensor that is odd in u, must be odd also 
in vL(vL = (v,, u,)). Therefore the strain addition to the 
energy of an electron may be represented in the form 

where dih(v') and A(vt) a re  dimensionless functions, 
even in u: and v: , of order of magnitude unity. By vir  - 
tue of the electrical-neutrality condition, d,, = 0. 

For what follows, we find it convenient to transform 
to an auxiliary coordinate system K, in which the part 
of the stain potential that is odd in u, is absent. We ac- 
complish this transformation by means of the generating 
function1' 

Q (rf, p, t )  =prt-rno:i(v) (v,u) ; v==r ( p )  . (7) 

The transformation has the form 

am 
~ ( p ,  r )  =e l (p ' ,  r') + - = eo(p)  - e ~ ' v + e , d i r u r r ,  

at C 

where 

By use of the condition (51, the kinetic equation for 
the distribution function n, , dependent on the "kinema- 
tic" momentum 

k (v) =p-eAe/c, (1 2) 
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can be represented in the form 

an, - + ~ . - + ( ~ E . + ~ [ V X A . ] - V U ) - + ~ . ( ~ ~ ) - O .  an, ank (13) 
at as ak 

Here Ee = -cw'j?., H8 = curl A*, U = c,dikuik , and the col- 
lision integral I, contains in the argument of the 6 -func- 
tion 

s,(k) +U+m,A(v) (vLu). 

A solution of the kinetic equation is conveniently 
sought in the form 

nt=n,[e,(k) +U+moA(\r) (vlli) I +  (14) 

where no is the Fermi function. It is easily shown that 
the formal expression for X, has the form 

where k1 is the operator inverse to the kinetic-equation 
operator 

Thus in order to determine the nonequilibrium part of 
the distribution function X, , it is necessary to deter- 
mine the operator 8-' ; that is, essentially, to solve 
the kinetic equation. 

On the other hand, if one knows the function n, and 
also the fields Ee and He, it is possible to determine the 
absorbed power. In fact, the absorbed power P isc8' 

where the angular brackets denote averaging over a pe- 
riod of the wave in time or over a wavelength in space. 

On transforming to the variables of the system iZ, and 
using equations (8)-(11) and the condition (I), we have 

where S ~ S ,  denotes integration over the Fermi surface. 
The first term in (18) describes the deformation absorp- 
tion, analyzed in detail in Refs. 3-5. The second des- 
cribes Joule losses due to the presence of alternating 
electromagnetic fields. The third term is due to incom- 
plete entrainment of the electronic lattice.c21 In the lim- 
it of frequent collisions, it would vanish. In our approx- 
imation, this term is proportional to the sound intensity 
and leads to a linear absorption. 

Thus in.order to solve the absorptpn problem, it is 
necessary to construct the operator B" (that is, to 
solve the nonlinear kinetic equation) and to calculate the 
field Ee from Maxwell's equations. 

3. SOLUTION OF THE KINETIC EQUATION 

Thus we must solve the equation 

By:') -eE.v+G. 

The function x(", as well as Ee, H., and U, depends on 
the wave coordinate f =qx - wt j  here, as follows from 
Maxwell's equation curl E = -H/c, the dependences of 
Ee and of He on f are identical. But in general the B 
and U waves have different phases, and this consider- 
ably complicates the analysis. For this reason, we 
shall analyze a number of limiting cases. The case in 
which deformation absorption dominates was studied in 
Refs. 3-5. Here we shall consider the opposite limiting 
case, in which the electromagnetic absorption is im- 
portant. Thus for transverse sound in a metal with an 
isotropic spectrum, U = 0. In general, the condition for 
control of the electron motion by the electromagnetic 
forces canbe easily derived by comparison of the various 
terms in the force that acts on an electron. Since 

this condition has the form 

where Eg and u& are, respectively, the amplitude val- 
ues of the field Eg and of the strain tensor u,.  The part 
eEe(w -q.v)/w, as is easily shown, is small with re- 
spect to the parameters w/v, , (ql )", and e w p ,  ; be- 
low, we shall neglect it. We note that the fields % and 
EB, themselves depend on u;, ; therefore the conditions 
(20) constitute a limitation on the range of frequencies 
and of intensities of the sound. We shall introduce this 
limitation in explicit form below, after analysis of the 
electrodynamic part of the problem. 

Thus we neglect terms containing U in equation (19) 
and represent Ee(f) in the form Egq(f), where rp is a pe- 
riodic function, (q) = 0, and (q2) = l. Similarly to the 
manner in which this was done in Ref. 4, one can show 
that in our formulation the problem* reduces to a one- 
dimensional one, and the operator I, to an inverse drift 
relaxation time (in the case that we are considering, of 
scattering by short-range impurities, the drift and 
transport relaxation times coincide). Furthermore, in 
the functions A(v) and d,(v) one may set v,=O, since 
the function is small except in the region of small v,. 

If we measure the x component of velocity in units 

where m;:=8v,/8px, it is easy to derive the following 
equation: 

where the functions i *  are defined by the relation 
x = ew','(Ep v)ji '; the signs * correspond to the sign of 
( q *  v) , 

where s = (v, -w)/C is the dimensionless x component 
of the velocity, and w, aqC. The quantity wor plays the 

(19) role of nonlinearity parameter. 
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All the quantities of interest to us contain, as is 
easily shown, 

By starting from the properties oi  the operator 2, one 
can easily show that (cpLilcp) = (cpl;cp); therefore it is 
sufficient ;or us to limit ourselves to  analysis of the 
operator L;', that is to the solution of Eq. (22) with the 
sign +. This equation essentially coincides with the 
equation analyzed in detail in Ref. 4, and we shall use 
the results of this analysis. The characteristics of Eq. 
(22) a re  determined by the one-dimensional "energy" in- 
tegral 

where cp(5) = -dV/d[, (V) = 0. The function V([) plays 
the role of dimensimless potential energy (its extreme 
values V,,, , V,, - 1), and 6 of dimensionless total en- 
ergy. Depending on the value of 6, the electrons a re  
divided into two groups: transient (6 > Vm,) and trapped 
(Vm,>'> Vmin)O 

The solutions of Eq. (22) look simplest in the case of 
strong nonlinearity, w,T>> 1. We shall consider this 
case below. When w,T>> 1, the solution of the kinetic 
equation can be expanded a s  a series in powers of 
(W~T)". The lowest order of the expansion that gives a 
contribution to  the current density j and to the sound ab- 
sorption has the formc4] 

where 

when 6 > V,, (untrapped particles), and where 

when V,,,< 6 < V,, (trapped particles). 
(27) 

In equations (26) and (27) 
I 

cca, ; ) = [ 2 ( C - V ( : ) )  I-"., A ( 2 ,  y)= j G ( f ) d Z .  y (5. y, g) 

= e ( : - t ) e ( ~ - : ) ,  

B(x) is the unit step function, and a re  the roots of 
the equation V(5) = 6. 

4. ELECTRODYNAMIC PART OF THE PROBLEM 

Knowing the solution of the kinetic equation, one can 
determine the electric current density (in the laboratory 
coordinate system) and, by substituting the expression 
for it in Maxwell's equations, can determine the field 
Ee. We shall restrict  ourselves to the case in which the 
condition qc << w, is satisfied, where w, is the plasma 
f requen~y .~)  Then, a s  is easily shown, the second term 
in the expression (11) is small in comparison with the 
first, and Ee coincides with the electric field E. 

The electric current density in the system is 

where N is the concentration of the electrons and C, ,  is 
a tensor with components of order unity; the meaning of 
the quantities C,, and 6,,  is clear from equation (28). 
From equations (25)-(27) i t  is easily perceived that the 
relation of the current to the electric field E is non- 
local; the norm of the operator 6 i s  of the order 

1 Ne' -- [ e E m / ' v F  I % 
, i;)oT=qT 

G O T  qpl. 0 .  

The specific expression for the operator depends on 
the form of the function ~ ( 5 ) .  The latter must be de- 
termined by simultaneous solution of Maxwell's equa- 
tions and of the dispersion equation for a sound wave. 
We represent f([) in the form &,b(t), where (b2)=1, and 
we direct the axes OY and O Z  along the principal axes of 
the tensor $,,. Then Maxwell's equation can be put into 
the form 

where 

f, are  numbers of order unity (in the isotropic case 
they a re  equal to unity). The parameter 6, is in order 
of magnitude equal to the cube root of the ratio of the 
length of the sound wave to the skin depth (for the ano- 
malous skin effect). Equation (29) must be solved with 
periodic boundary conditions; the relation of E, to u, is 
determined by the normalization condition (cp2) = 1. The 
form of the sound wave (form of the function b(f)) de- 
pends on a number of circumstances. As is easily 
shown from formulas (25)-(27), even with a sinusoidal 
~ ( 5 )  there a re  higher harmonics of the current of the 
same order of magnitude as the fundamental. In con- 
sequence, higher harmonics of the displacement a re  
produced in the sound wave. The relative value of these 
harmonics is determined by the ratio of the nonlinear 
terms to the characteristic dispersion or  the frequency- 
dependent part of the attenuation. Analysis shows that 
the electronic contribution to the dispersion of sound in 
a metal is small and cannot guarantee smallness of the 
higher harmonics. Therefore the higher harmonics de- 
velop at distances of the order of the nonlinear attenua- 
tion distance. At this distance, the higher harmonics 
may attain values of the order of the fundamental (they 
have no literal smallness parameter). But from the 
form of the distribution function (25)-(27) i t  can be seen 
that the electronic response depends little on the form 
of the function ~ ( 5 )  and hence on the form of the sound 
wave. The relation between the amplitude of the field 
Eo and the amplitude of the velocity of motion u, in the 

594 Sov. Phys. JETP 47(3), March 1978 Yu. M. Gal'perin 594 



sound wave can be obtained by multiplying (29) first by 
cp and then by cp', averaging over the wavelength, and 
combining the formulas obtained. This relation can be 
put into the form 

To determine a,, = [{rp &)'+ (cp &')2]/(cp :2) and Qzr = (cp iW ,) 
/2( P:~), it is necessary to solve the following equation, 
which follows from (29) and (30): 

It is evident that the values of a,, and a,, depend only on 
the single parameter 6f /&? and vary little, remaining 
always of order of magnitude unity, We shall consider 
them to be constants and shall treat formula (30) as  an 
interpolation formula. 

By use of the expression (30), it is easy to relate the 
nonlinearity parameter tS,? to the sound intensity S =  
a,p lu,12, where a3=(b2)+ 6'') - 1. This relation has the 
form 

The function 13,?(S) looks simplest in the case when 
a2y=a2r=a2, 6y=6.=62. Thell 

QOT=&'~> [ ( l + S / S o )  " - I ] " ,  (33) 

where the characteristic intensity So is 

&=al ( ~ l q l )  'proS, (34) 

and where the constant a,- 1 is a combination of the con- 
stants a,,,. In general, the qualitative behavior of the 
function i&,r(S) is similar to that described by formula 
(33). 

The electromagnetic part of the nonlinear absorption 
coefficient, I',, is according to (18) 

where a, - 1, and where 

is a quantity of the order of the linear absorption coef- 
ficient of longitudinal sound in the metal, or order of 
magnitude qw /v,; C is a characteristic value of the 
components of the tensor Cp. The linear electromag- 
netic Contribution to the absorption (in our notation) isC8] 

the contribution of incomplete entrainment, described 
by the third term in (la), is of the order of I', - r,(ql)". 

We turn now to the condition (20), which determines 
the possibility of neglecting the deformational forces in 
comparison with the electromagnetic. In accordance 
with the formulas obtained above, the cofldition (20) can 
be rewritten in the form 

We shall therefore consider three limiting cases. 

The second inequality in (39) is necessary for satisfac- 
tion of the condition for strong nonlinearity, Zo? >> 1. 
Case I can be realized when 64 >> 1; that is, at suffi- 
ciently low frequencies. 

11. S I S o w l ,  G B  I; (40) 
111. G a i .  (41) 

Case I. In this case, condition (38) turns out to be 
satisfied automatically. Since 6* >> 1, roe - r, >> r,. For 
the ratio re/rOe we have 

the electromagnetic absorption coefficient increases 
with increase of the sound intensity and exceeds the val- 
ue of the linear absorption coefficient r,. It is easy to 
show that in Case I the electromagnetic and defbrma- 
tional forces vary in phase. Therefore the analysis of 
the deformation absorption is completely analogous to 
that presented in Ref. 4. The deformatiorl absorption, 
described by the first term in (18), is of the order 

Thus in Case I the nonlinear electromagnetic absorption 
dominates over the deformational, despite the fact that 
the contributions to the linear absorption are of the 
same order. The frequency dependence of the absorp- 
tion coefficient is re-03, since I?,-o, 62- w", and 
So - 0. Thus in Case f we have I' - w3~lf2.  

Case II .  In Case 11, the condition (38) is also satis- 
fied. The nonlinear coefficient of electromagnetic ab- 
sorption is 

re - o'3~114. We note that the nonlinear absorption co- 
efficient may exceed the linear, -r, in the range 
(S/SO)lf4 s6'. The nonlinear coefficient of deformational 
absorption is 

Therefore r/r, - 64>> 1 : the electromagnetic contribu- 
tion dominates in the nonlinear range, although in the 
linear range the contributions are  of the same order. 

Thus when 6 >> 1, the absorption coefficient initially 
increases (in region I) with increase of the sound inten- 
sity, and then begins to decrease (in region 11). Such 
behavior of the absorption coefficient is easy to under- 
stand qualitatively. The electromagnetic absorption of 
sound resulting from Joule losses in eddy currents is 
proportional to the product of the appropriate component 
of the electrical conductivity tensor by the square of the 
effective electric field. The latter in turn depends sub- 
swt ia l ly  on the degree of shielding of the priming eddy 
currents by conductivity currents. The degree of this 
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shielding i s  determined by the ratio of the length of the 
sound wave to the skin depth-the parameter 6. If 6 >> 1, 
then the shielding i s  significant in the linear range, and 
the sound absorption i s  actually inversely proportional 
to the electrical conductivity. With increase of the 
sound intensity, the latter decreases; the coefficient of 
sound absorption increases. But with further increase 
of the sound intensity, the degree of shielding decreases 
(in the nonlinear range, the shielding is determined by 
the parameter €i2/W,v). Therefore, begnining with a 
certain intensity, the shielding becomes insignificant, 
the absorption coefficient becomes directly proportional 
to the electrical conductivity, and it decreases with in- 
crease of the sound intensity. 

Case 111. In this caw,  condition (38) i s  not satisfied, 
and deformational forces play a decisive role in the dy- 
namics of the electrons. The appropriate nonlinearity 
parameter Go? for deformational interaction was ob- 
tained in Ref. 3 and i s  equal in order of magnitude to 

Thus in region IlI the nonlinear deformational absorp- 
tion i s  of the order 

The coefficient of electromagnetic absorption is 

By virtue of condition (46)) re<< ro,=r,64; the ratio of 
the electromagnetic absorption to the deformational 
-64 << 1. Therefore in range 111 the deformational ab- 
sorption dominates, and the dependence of the total ab- 
sorption on the intensity i s  I? - s-'14. An exception is the 
case of purely transverse sound in a metal with an iso- 
tropic spectrum. In this case, deformational absorption 
is absent, and the total absorption coefficient is de- 
scribed by formula (47) as long as ( S / S , ) ' ~ ~ < ~ ~ ~ Z .  At 
higher intensities, the principal contribution comes 
from the third term in (18); r - I',(qZ)" and is indepen- 
dent of the sound intensity. 

Thus, depending on the frequency of the sound (the 
parameter 6), there are two types of variation of the 
nonlinear absorption with the sound intensity : when 6 << 
1, we have I? - s-'14; but when 6 >> 1, the absorption co- 
efficient initially increases-s'12 and then decreases 
-s'1/4. 

In conclusion, we shall present representative esti- 
mates of the possibility of observing nonlinear electro- 
magnetic attenuation of short-wave sound. 

The ratio 6/91, which occurs in the expression for So, 

has for typical metallic parameters the order of magni- 
tude lO5/qZ1 (if q i s  measured in cm-' and I in centime- 
ters); the value of pw3-4.109 w/cm2. Thus if we set 
I = lo-' cm and q = 2- lo4 cm-' (frequency of order 1 GHz), 
we have So - 0.2 w/cm2. The parameter 6 under these 
conditions -5. It i s  evident that it i s  possible to realize 
experimentally both Case I and Case 11. In range I, on 
assuming S- S0/4 we have Go?- 10; in 11, with S- 5S0 we 
get ij,r- 30. Case 111 can be realized at higher fre- 
quencies, since 6 -9-'. 

We remark that it is possible to separate the nonlin- 
ear deformational and electromagnetic contributions to 
the attenuation of sound in metals that transform to a 
superconducting state, by studying the change of the 
nonlinear absorption coefficient during the supercon- 
ducting transition. In the temperature range below T,, 
in consequence of the Meissner shielding of the eddy 
currents, the electromagnetic absorption disappears. 
We propose to investigate later the nonlinear electro- 
magnetic absorption in the vicinity of T, 

The author thanks V. L. Gurevich for useful discus- 
sion and for review of the manuscript. 

"we note that the coordinate systems KA are in general differ- 
ent for electrons with different momenta p. It is easily 
shown that for free electrons A = -  1, and the system KA 
coincides with the laboratory system. 

''1n the opposite limiting case, the contribution 01 electro- 
magnetic effects is small. 
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