
perimental dependence of the amplitude of the f i  oscil- 
lations on Hml.  

The small-amplitude oscillations of the thermoelec- 
tric power with a period close to that of the f l  oscilla- 
tions, observed in a wide range of angles, a re  clearly 
due to small-angle scattering and the resultant transfer 
of electrons from the second zone to the constant- 
energy surfaces of the four-cornered rings in the third 
zone. The periods of these oscillations a re  clearly 
governed by the extremal sections of the electron tubes. 

It follows that the experimental data obtained in our 
study support the conclusion that a coherent situation 
in aluminum single crystals with RRR-20 000 i s  
realized over the whole p space even in H - 100 kOe and 
T-4°K. This is the most important of our results. 

The authors a re  grateful to N. E. ~ l e k s e w s k i i ,  A. A. 
Slutskin, and V .  I. ~izhankovski; for a useful discussion 
and valuable comments. 
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Theory of Mossbauer spectra in the presence of spin-spin 
relaxation 

A. M. Afanas'ev and I!. V.-Onishchenko 
I. V. Kurchatov Atomic Energy Institute 
(Submitted 28 September 1977) 
Zh. Eksp. Teor. Fiz. 74, 1115-1125 (March 1978) 

Compared with other mechanisms, spin-spin relaxation substantially complicates the theory of Mossbauer 
spectra: the relaxation constants become frequency-dependent functions and, in addition, the number of 
relaxation parameters increases sharply. For systems of cubic symmetry and 2 4  nuclear transitions a 
method of analysis of the spectra is developed that makes it possible to extract the frequency dependence 
of the relaxation functions directly from the experimental data for single-crystal samples without invoking 
any theoretical models. The structure of these functions is analyzed using the method of moments. It is 
shown that in the case of dipole-dipole interaction the relaxation can be described with good accuracy by 
one function, the form of which can be established from experimental data obtained on polycrystalline 
samples. 

PACS numbers: 76.80. + y, 76.20. +q 

1. INTRODUCTION atom a re  sufficiently rapid, so  that the characteristic 
correlation time 7, of a fluctuation is much shorter than 
either the relaxation time 7, o r  the Larmor-precession 

The of resonance 'pectra that has time 7, of the nuclear spin in the hyperfine magnetic 
been developed up to now (see, e.g., Refs. 1-6) i s  

field (r,=R/A, where A is the hyperfine-interaction 
applicable only in those cases when the fluctuations of 

constant). the magnetic and electric fields giving rise to relaxa- 
tion of the spin of the electron shell of the M6ssbauer Both these conditions a re  fulfilled by a large margin 
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for processes such a s  spin-lattice r e l a ~ a t i o n [ l * ~ * ~ ]  
and relaxation via conduction electrons in  metal^,^^^^' 
and in these cases the ~ E s s b a u e r  spectra can be des- 
cribed with the aid of a certain set of relaxation con- 
stants {y , } .  The approximation based on the use of the 
inequalities T, << 7,  and 7,  << 7 ,  is commonly called the 
"white-noise" approximation. 

The position changes radically when we a re  dealing 
with spin-spin relaxation. In fact, in this case, 7, and 
r r  are  determined by the same interaction (either dipole- 
dipole or exchange) between the spins of neighboring 
atoms. If the magnitude J of this interaction turns out 
to be much larger than the hyperfine-interaction energy 
the condition 7,<< r L  i s  fulfilled and we can use the 
white-noise approximation to describe the spectra.[7' 
Moreover, in irregular systems in the presence of an 
external magnetic field H, the time 7, = A / A ~ ~ , H  (Ag i s  
the characteristic quantity defining the scatter in the 
components of the g-tensor), and at sufficiently large 
H it is possible to reduce 7, sharply. In this situation 
the analysis of spin-spin relaxation is also a completely 
solved theoretical problem.[81 In the remaining cases, 
however, especially when J - A ,  substantial modification 
of the theory is required. It i s  completely obvious that 
the main feature of this new theory, adapted for the 
description of spin-spin relaxation, should be the 
appearance of relaxation parameters that a re  not con- 
stants, a s  in the white-noise approximation, but depend 
on the energy w of the absorbed y quanta. This fact is 
already well recognized, and, e.g., in Ref. 9 variants 
for the phenomenological description of the dependence 
of the parameters {y,} on w have been proposed. 

The appearance of relaxation functions is not the only 
conlplication of the theory. On top of this, the number 
of independent relaxation parameters increases sharply. 
It i s  obvious that their number i s  determined by the 
symmetry of the environment, and also by the values of 
the spins of the MGssbauer nuclei in the ground and 
excited states. In the present work we have confined 
ourselves to analyzing the simplest situation-a system 
of cubic symmetry and nuclear transitions of the type 
2 - 0. (The simpler situation with 1-0 transitions i s  
not realized for the M8ssbauer isotopes.) As we have 
been able to show, the relaxation process in the given 
case i s  determined by just two independent relaxation 
functions; moreover, it i s  shown (and this constitutes 
the main result of the paper) that these functions can be 
found directly from experimental data without invoking 
any theoretical models o r  assumptions about the form 
of these functions. Section 2 i s  devoted to this question. 
In Sec. 4 the properties of the relaxation functions are  
analyzed using the method of moments, and the simp- 
lest models are  also briefly discussed. 

2. FORMULATION OF THE PROBLEM AND 
DERIVATION OF THE GENERAL FORMULAS 

We shall consider a M6ssbauer atom with an electron 
shell with half-integer total angular momentum, situa- 
ted in an environment of cubic symmetry. The crystal 
fields partially lift the degeneracy (with respect to the 

angular-momentum projections) of the ground term, 
and in the general case in a field of cubic symmetry 
the levels a r e  grouped into r6 and r7 doublets and 
r, quartets. We shall assume that the ground state of 
the atom is a I?, (or r,) doublet, and that the excited 
states a re  separated from the ground state by an energy 
A>> kT (T is the temperature of the sample), so  that 
they can be completely ignored. For  the r, and r, 
doublets the hyperfine interaction is isotropic: 

here x= e,g;  I ,  and I ,  are  the spin of the nucleus in the 
ground state and excited state, respectively, and So is 
the effective spin of the doublet, equal to 1/2. 

Owing to the interaction (1) hyperfine structure 
appears in the M6ssbauer spectra, but the manner in 
which it is displayed depends to an important extent on 
the interaction of the electron spin with i ts  environment. 
In this work we shall be interested in the influence of 
the magnetic interaction (exchange o r  dipole-dipole) be- 
tween the atomic spins on the spectra of the hyperfine 
structure. We find it convenient for the following to 
split the Hamiltonian of the spin-spin interaction into 
two parts-the interaction between the atoms surround- 
ing the M6ssbauer atom: 

and the interaction between the M6ssbauer atom and its 
environment: 

We assume now that resonance y quanta in the direction 
of k, with energy w and polarization q, a re  incident 
on such a system. 

The starting point of the analysis i s  usually the fol- 
lowing formal expresssion for the absorption spectrum 
(see, e.g., Ref. 7): 

Here a, ( P )  labels the state of the whole system when 
the nucleus i s  in the ground (excited) state, Eor,B are  
the energies corresponding to these states, j(k) i s  the 
operator of a Fourier component of the nuclear-current 
density, and pa are  the diagonal elements of the equili- 
brium density matrix 

where H i s  the sum of the three interactions (1)-(3). 

Before proceeding to the transformations of formula 
(5) we shall discuss the general properties of the func- 
tion ~ ( w ,  k ,  q) that follow directly from (5). It is not 
difficult to see that, a s  a function of the variable w, 
F ( w ,  k, q )  is analytic in the upper half-plane, and, 
consequently, the dispersion relation 

586 Sov. Phys. JETP 47(3), March 1978 A. M. Afanas'ev and E. V. Onishchenko 586 



1 P" (o', k, q) 
P'(o, k, 9)'-- 

n f @-"I 

do' 

holds for it. Here Ff and F" are  the real  and imaginary. 
parts of the function F, and the integral is to be under- 
stood in the principal-value sense. As we shall see 
below, the relation (7) can be used effectively in the 
analysis of the experimental data. 

Except in the region of ultralow temperatures, in 
the density matrix (6) we can always neglect the inter- 
action HA,, and, since in our case all three interactions 
H h f ,  HA and HB a re  of the same order, we can assume 
that the matrix p is proportional to unity. In this situa- 
tion we can write for F the following expression (see 
Ref. 7): 

c(~,)~1r,~2) = ( ( o - E  ,- 11 (~,))+ir,:)-~. (10) 

Here LA is the Liouville superoperator, acting in the 
space of the operators a of subsystem A (the M6ss- 
bauer atom) in accordance with the rule 

L,,/rl=[JJh;. n ] ,  

and its eigenvalues give us the frequencies of the hyper- 
fine transitions in the absence of relaxation; ic(w) is 
the relaxation superoperator, determining the renor- 
malization of the positions and widths of the individual 
components of the spectrum. Its general structure is  
given by the expression (see Ref, 7) 

where P and Q = 1 - P are  projection operators ( P  de- 
notes taking the trace over the variables of the environ- 
ment, or ,  a s  they a r e  commo?ly called, the variables 
of the heat bath), and i, and LA, are  the Liouville 
superoperators corresponding to the Hamiltonians HB 
and HA,. 

Since the spin of the ground state is equal to zero, 
the superoperator G(w) i s  transformed into an ordinary 
operator acting in the space of the functions I nz,), 
where l n z , )  is the wavefunction of the nuclear excited 
state with spin projection equal to nz, along the axis of 
quantization. 

From the functions I me) we construct linear combina- 
tions that a re  basis functions of irreducible represent- 
ations of the cubic group: 

The functions (12) realize the irreducible representation 
r, and the functions (13) realize the representation r,. 
In the presence of cubic symmetry the matrix elements 
of c(w) within the same representation coincide, e.g., 

Using this fact, and also explicit expressions for the 
matrix elements of the operator j(k) in the specific case 
of E2-transitions, we easily find 

In formula (15) and below we shall mean by the vector k 
the unit vector along the direction of propagation of the 
y quanta; the axes x ,  y and z are  the crystallographic 
directions [loo], [010] and LO01 1, respectively. After 
averaging over the polarizations we obtain 

and, finally, for a polycrystalline sample we have 

Thus, the problem has been reduced to the determina- 
tion of the diagonal elements of the operator G ( w )  in 
the states 111) and I I"I). For this purpose i t  is necessary 
for us to proceed to the analysis of the structure of the 
superoperator C^(w), which acts in a larger space, 
namely, the product I me) I u)(o'l, where 1 a) is the 
space of the wavefunctions of the r, doublet and (of 1 is 
its Hermitian-conjugate space. As the basis states of 
this space it i s  convenient to introduce the following: 

Here E i s  the unit operator in the space of the spin 
variables: 

and S,' are  the operators of the spin components: 

We note that, according to its definition (11), the relax- 
ation operator ~ ( w )  possesses the following property: 

We proceed now to determine the matrix element 
(11 I G(w) I u). 

Taking (14) and (9) into account, we obtain 

We shall find how many times the irreducible represen- 
tations I', and I?, a r e  cont_ained in the space (19) in 
which the superoperator G(w) acts. According to well- 
known results of group theory (see, e.g., Ref. lo), 

Thus, to calculate the matrix element (21) it is suf- 
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ficient to construct from the basis states (19) two ortho- 
gonal states transforming according to the representa- 
tion r,. They canbe  constructed by the standard 

but i t  is sufficient to bear in mind that they 
a r e  invariant under rotations about the z axis and a 
second-order symmetry axis perpendicular to it. These 
conditions a re  satisfied by the states 10) and 10,) = (1 1)s; 
+ I -1)Sa. Using this result and also the property (20) 
of the relaxation superoperator, we find that the latter 
appears in the final expression for (0 1 C(w) 10) only 
through the one relaxation function 

Simple direct calculations give us, finally, 

where Z= w+ir/2. 

It i s  a slightly more complicated matter to calculate 
the matrix element 

According to (22), here we need to construct three 
states transforming according to the representation r,. 
Besides the state (G) we choose two others, invariant 
under the subgroup D,: 

The states (25) have been chosen in such a way that 
19,) is an eigenfunction of the superoperator i,: 

In this subspace the matrix G - ' ( ~ + i r / 2 )  has the follow- 
ing structure: 

where 

Finally, straightforward calculations lead to a result 
coinciding in form with (24): 

Thus, the formulas (15), (24) and (27) give us a 
general expression for the description of the relaxation 
spectra. It can be seen that the spin-spin relaxation 
process can be described by specifying only two func- 
tions: ?,(w) (23) and y2(w) (28). In the case of fast 
relaxation, when J >>A,  the dispersion of the para- 
meters y,,(w) can be neglected. Moreover, in this 
case, y,, and y,, vanish and yll = y,,. For the absorption 

spectrum we obtain the known expressioncu1 

We shall discuss the properties of the relaxation 
functions yl(w) and y,(w) in Sec. 4. We note only that 
the exact calculation of the frequency dependence of 
these relaxation parameters starting directly from the 
microscopic interactions (2) and (3) i s  a separate and 
still unsolved problem. Below we concentrate our 
attention on the following very important fact: the func- 
tions ?,(w) and y,(w) can be found directly from the 
experimental data on the absorption spectra in mono- 
crystalline samples. Indeed, performing the measure- 
ments for two different directions of incidence of the r 
quantum on the crystal, according to (17) we can 
establish Fif(w) and Fit(w) independently. Using the 
dispersion relations (7) i t  is  not difficult to find the 
real  parts of the corresponding functions too. Conse- 
quently, the experimental data give us, in fact, the 
frequency behavior of the functions Fl(w) and F,(w) a s  a 
whole. Inverting the formulas (24) and (27), we find 

Thus, experimental data on the absorption spectra 
can be used directly to establish the frequency depen- 
dence of the relaxation parameters introduced above. 
This seems to us to be important, primarily because 
there exist difficulties in the theoretical calculation of 
these parameters that have not yet been overcome. 

3. ALLOWANCE FOR INTERFERENCE EFFECTS 62 .131  

The theory developed above has a s  i ts  purpose an 
application to the analysis of the experimental data for 
the compound Cs,NaYbCl, with the Mijssbauer isotope 
1 7 0 ~ b .  It i s  well known that, for the latter, interference 
between the photoeffect and internal-conversion proces- 
s e s  accompanying the resonance absorption of y quanta 
i s  manifested in the absorption spectrac1" In the ab- 
sence of relaxation processes the effect of this inter- 
ference reduces to the appearance in formula (5) of an 
extra exponential factor of the type el2', [15' where 5 i s  
the so-called dispersion amplitude. I t  i s  not difficult 
to show that the presence of relaxation does not change 
this result. Therefore, allowance for the interference 
effects reduces to the following: in the formulas (4) 
and (7) we must replace F(w) by 

In the remaining formulas, including (30), F,, ,(w) has 
the previous meaning. 

4. ANALYSIS OF THE RELAXATION FUNCTIONS 

As already noted above, there i s  still, a s  yet, no 
exact direct method of calculating functions of the type 
y,,2(w), although a large amount of theoretical work 
has recently been carried out, with attempts to obtain 
analytic approximate formulas for functions of a similar 
typec16-181 or  direct numerical calculations with the aid 
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of a computer. c10*20' The problem of spin-spin relax* 
tion has great significance for electron paramagnetic 
and nuclear magnetic resonance, and, amongst the 
methods developed to analyze this process, only the 
method of m ~ m e n t s , ~ ' * ~ '  by virtue of i ts  completeness, 
can be distinguished a s  giving the possibility of finding 
the integral characteristics of the relaxation functions 
from the Hamiltonians (2), (3). This i s  the method we 
shall use below to analyze the functions yl,z(w) that 
ar ise  in our case. 

First  of all we note that, according to the definitions 
(23), (26) and ( l l ) ,  we can represent the parameters 
yik(w) in the following form: 

where 

Here 6 i s  the delta-function, dependent on operator 
argument.. For the functions y,, i t  i s  not difficult to 
calculate the moments in accordance with the formula 

Taking into account that i, and LA, a re  Liouville 
superoperators, i.e., their action on an arbitrary 
operator reduces to the commutation operation, 
i t  is not difficult to calculate the f i rs t  few mo- 
ments M:'. Thus, e.g., we shall find the zeroth mo- 
ment of the function ?,,(w). In accordance with (34), 

We shall c,alculate f i rs t  the result of the action of the 
superoperator LAB on the state (8,): 

Here efk'  i s  the antisymmetric unit tensor. Finally, 
for 'ME' we have 

In the case of dipole-dipole interaction, 

Here a i s  the lattice constant, Jo= (gp,)', and S, i s  the 
lattice sum, which, for lattices with a cubic structure, 
depends only on the relative (in units of a) distances 
R,,, between the atoms: 

St-2 u 'F (Re,) -I. (37) 
* 

Thus, the problem has been reduced to the calcula- 
tion of the standard lattice sums that arise in the 

analysis of the lineshapes in EPR andNMR 
In formula (36) we have introduced the quantity Aw, 
which defines the energy scale of variation of the 
relaxation parameters. Thus, concrete calculations 
for  the compound Cs,NaYbCl, from the formulas (36) 
and (37) give S, = 230 and Aw = 1.2 x lo3 MHz, or ,  in 
the units adopted in M6ssbauer spectroscopy, Aw 
= 17 mm/sec. 

As regards the zeroth moments of the functions F,,(w) 
and Fs(w), these coincide exactly with M;', while the 
zeroth moments of the functions y,, and y, a r e  identi- 
cally equal to zero. Below we give only the results. 

As direct calculations show, 

Here, S,,S3 and S, a re  lattice sums of the form 

The sums S, and S, a r e  computed trivially, and their 
approximate values for a face-centered cubic lattice 
a r e  indicated in the formulas (40). The sum S, has a 
more complicated structure, but it too can be estimated 
easily if we write (41) in the simpler form 

where rp is the angle between the vectors ROT and Ro,. 
Direct evaluation gives us 

It is also relatively easy to calculate the third mo- 
ment: 

M$' - M ~ ~ ) - M ~ ~ ' - M ( ~ ' - ~  ['/l,A (Ao)'-i/IAM(a)-8/11A'M(1)-'/IIAaM101]. 

(43) 
As regards the moments of the cross  functions F,, and 
F3,, up to and including the third moment we have 
values identically equal to zero. 

The calculation of the higher moments becomes ex- 
tremely unwieldy. We note that the calculation of .the 
fourth moment in our case is equivalent in practice to 
the calculation of the sixth moment in calculations of 
EPR and NMR lineshapes. Moreover, even a knowledge 
of the fourth and higher moments does not give us the 
possibility of describing the behavior of the relaxation 
functions exactly. Nevertheless, we need to analyze 
the higher moments. This i s  connected with the follow- 
ing specific circumstance, inherent in Midssbauer 
spectroscopy. 

In fact, in the investigation of spin-spin relaxation 
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in systems of the type described, the extent to which 
the relaxation parameters yl(w) and y,(w) differ is ex- 

-- - 
tremely important. In the case when the differ- 
ence of the functions yl(w) and y,(o) can be neglec- 
ted, then, as can be seen from (30), the sole relaxa%on' 
function ~ ( w )  = Y,(w) = Y,(w) can be established from the 
experimental data for a polycrystalline sample. This, 
naturally, would extend the number of cases to which 
the theory developed above i s  applicable. Below, there- 
fore, we shall make estimates of the fourth moments 
also. The calculation of M::' and M::' i s  performed 
fairly simply and leads to the result 

A s  already noted above, the exact evaluation of the 
fourth moment of the functions TI, and T,, i s  extremely 
complicated, but we can make an approximate estimate. 
For example, the fourth moment M::' will be a sum of 
positive terms, of which one has the structure (44), 
(451, where the minus sign must be replaced by a plus 
sign in the square brackets in (45). The value of the 
corresponding term will then be approximately thirty 
times greater then the quantity M::'. In fact, we have 
here a small parameter, associated with the following 
physical circumstance. If we go over from cubic to 
spherical symmetry, i.e., replace the lattice sums that 
arise in the calculation of the moments by integrals 
over regions of spherical symmetry, the values of all 
the moments for the functions T,, and ;5;, will be rigor- 
ously equal to zero. In other words, in the lattice sum 
(45) the terms in the square brackets cancel each other 
to a considerable extent. A s  regards the moments of 
the functions from the diagonal elements, cancellations 
of this type is not observed in them. This situation is 
maintained in the calculation not only of the fourth 
moment but also in higher moments. Therefore, for 
the estimates we can assume that the off-diagonal ele- 
ments, in order of magnitude, amount to 

where ar is a small parameter defined by the relation 

r - (IL) -"[3 (R.,xR.,'i)'- (Rdrr)'] / 2 ( R ~ . ) - ~ ~ ~ 3 ~ ~ o r ~ R e , q ~ z +  (Rott)'],  

(47) 
and, as already noted above, for a face-centered cubic 
lattice a! = 1/30. We note that (46) is certainly an over- 
estimate of the functions y,,, y,,. In estimating the 
fourth moment Mi:' we discarded a large number of 
other positive terms, having a structure different from 
that of (44). The contribution of these discarded terms 
depends on the relative value of A w  and A, and, for the 
specific substance Cs,NaYbCl,, by our estimate, a! 
c 0.001. Since the cross functions appear quadratically 
in y,(w), we can certainly neglect this term, i.e., put 

However, even when we have made the approximation 
(46), the functions y,(w) and y,(w) still differ from 

each other. It i s  not difficult to calculate the difference 
of their fourth moments, and we obtain the result 

i.e., in the given case the difference is also small and 
i s  linear in the parameter a. In the first approxima- 
tion, with good accuracy we can set the relaxation 
functions equal: 

This gives the possibility of using experimental data on 
polycrystalline samples. We specially emphasize that 
the validity of the approximation (50) can be easily 
checked experimentally by using monocrystalline 
samples. 

We shall discuss briefly approximate models to des- 
c ribe the relaxation functions. In the relaxation super- 
operator M(w) we neglect the interaction HA, in the 
denominator. Immediately, we easily find that y,, = y,, 
=O; in addition, the condition (50) is fulfilled, and for 
y(w) we have the following representation: 

where K(w) is the spin autocorrelation function: 

According to (51), the function y"(w) is a set of two 
peaks, concentrated about the positions of the resonance 
frequencies corresponding to the initial hyperfine inter- 
action. However, even for such a substantially simpler 
correlator, exact methods of determining its form do 
not exist. Again, we can only calculate a series of its 
moments and then approximate by some standard func- 
tion-either a Gaussian or  a Lorentzian distribution, 
a s  was done in Ref. 9. Inasmuch a s  the moments of the 
function K(w) are  ail finite, it appears to us that the 
Gaussian distribution is preferable: 

The formula (53) can be used for a rough comparison 
of the form of the relaxation functions with the experi- 
mental data obtained, and can in no way be regarded a s  
the result of an exact theory. 
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Nonlinear electromagnetic absorption of short-wave sound in 
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An analysis is made of the electromagnetic contribution to the nonlinear coefficient of absorption of short- 
wave sound in a metal, when the wavelength is much smaller than the free-path length of the electrons. It 
is shown that, depending on the value of the ratio of the wavelength of the sound to the skin depth (with 
anomalous skin effect), there are two possible types of dependence of the absorption cmcient on the 
sound intensity. In the high-frequency range, the deformation contribution to the absorption dominates; 
the absorption coefficient decreases, with increase of the sound intensity S ,  as S -"'. In the low- 
frequency range, the electromagnetic contribution to the nonlinear absorption coefficient dominates, 
although in the linear range the electromagnetic and deformational contributions are of the same orc&r of 
magnitude. The sound-absorption coefficient initially increases with increase of the sound intensity as S ' I 2  

but then begins to decrease as S 'I4. The value of the nonlinear absorption coefficient may exceed the 
value of the linear c ~ ~ c i e n t .  This type of dependence is due to the nonlinear character of the shielding 
of the priming eddy currents, which lead to the electromagnetic absorption, by conductivity currents. The 
estimates made show that the predicted dependences are completely accessible for experimental 
investigation. 

PACS numbers: 62.65. + k, 43.35.Pt 

INTRODUCTION caused by Joule losses during flow in the metal of eddy 
currents produced by the sound wave. In metals with a 

The propagation inmetals of short-wave sound, whose complicated Fermi surface, and also in propagation of 
wavelength 2n/q is much smaller than the free-path mixed sound modes containing longitudinal and trans- 
length I of the electrons, has been repeatedly investi- verse components, the two mechanisms of absorption 
gated both experimentally and theoretically. In an over- may compete. 
whelming majority of the experiments, what was studied 

Experimentalists a r e  now able to introduce into me- was the propagation of sound of small  intensity, so  that 
the experimental situation was well described by a the- tallic crystals sound waves of sufficiently large inten- 

ory, developed in a number of papers, that is linear in - sity for study fo the characteristics of their propaga- 

the sound-wave amplitude. By comparison of the ex- 
tion in the nonlinear range. It has therefore become 
timely to develop a nonlinear theory of absorption of 

perirnental results with the theory, the basic mechan- 
short-wave sound in the range isms responsible for sound absorption have been esta- 

blished. For longitudinal sound, a typical mechanism is p l ~ i .  (1) 
the so-called deformation mechanism,c1I due to modula- 
tion of the energy of the electrons in the field of the For the deformation mechanism of absorption, such a 
sound wave. In the case of transverse sound, along with theory has already been de~eloped.~"~'  A qualitative 
the deformational absorption, an important role is picture describing nonlinear deformational absorption 
played by the so-called electromagnetic absorption,c21 consists of the following. It is well knowncll that what is 
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