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An analysis is made of the absorption, in normal metals and superconductors, of the surface sound whose 
wavelength is much less than the mean free path of electrons. The relative role of the deformation and 
electromagnetic absorption mechanisms is considered. An analytic formula is obtained for the latter case 
and this formula shows that at low sound frequencies (when the wavelength of sound is greater than, or of 
the order of, the skin depth in the anomalous skin effect) both contributions are of the same order. The 
change in the absorption coefficient on transition to the superconducting state is discussed. An 
experimental study of this change makes it possible to separate the electromagnetic from the deformation 
absorption. Analytic formulas are obtained for electromagnetic fields which appear as a result of 
propagation of an acoustic wave. 
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Many recent papers have dealt with the surface 
acoustic waves in conductors. Most of this work 
applies to semiconductors (see, for example, the re- 
view on this subjectC1l). However, very careful experi- 
mental investigations have now been made of the Ray- 
leigh waves in metals.c21 A method suitable for such 
investigations has now been developed. The absorption 
of the Rayleigh acoustic waves in metals has been in- 
vestigated theoretically by Grishin, Kaner, and Tara- 
S O V . [ ~ - ~ '  They studied very thoroughly the deformation 
absorption of the surface sound in the absence and pre- 
sence of an external magnetic field. In particular, 
they considered the possibility of determination of the 
reflection coefficient of electrons from the surface of 
a metal by comparing the theory with experiment. 

The most interesting is the study of the surface 
sound in the case of strong spatial dispersion when 
the wavelength of sound 2n /k  is much less than the mean 
free path I of electrons (kl>> 1). Then, the interaction 
of a surface wave with electrons may differ consider- 
ably from the bulk case. 

Under experimental conditions it is usual to have 
k6<< 1, where 6 i s  the skin depth (in the anomalous 
skin effect). It is also well known that when this condi- 
tion i s  satisfied, the electromagnetic contribution to 
the absorption of bulk sound becomes i r n p ~ r t a n t . ~ ~ ]  
Therefore, it i s  natural to expect that the electromag- 
netic contribution i s  also important in the case of trans- 
verse sound with transverse and longitudinal displace- 
ment components. 

The purpose of the present paper i s  to investigate 
this contribution and to compare it with the deformation 
contribution. We shall show that the electromagnetic 
and deformation contributions may be of the same order 
of magnitude. On the other hand, it is well knownc7' 
that in the case of metals which can go over to the 
superconducting state the electromagnetic absorption 
falls strongly a t  the transition temperature T, because 
of the Meissner screening of electromagnetic fields 
(rapid-fall effect). Thus, measurements of the absorp- 

tion coefficient of the surface sound in normal and 
superconducting states may be used as an experimental 
method for separating the two absorption mechanisms. 
In view of this, the last part  of the paper will be devoted 
to a study of the absorption of surface sound in a super- 
conductor. 

For  simplicity, we shall consider a metal a s  an iso- 
tropic elastic medium. A Rayleigh wave in such a 
medium can be represented by a superposition of the 
potential U ,  and vortex U, displacement wavescs1: 

We shall assume that the metal occupies the half- 
space z 3 0 and the wave travels along the x axis paral- 
lel to the surface; U, = (U,,, 0, U,,) is the displacement 
vector of the component 0. The components U, and U,  
a r e  related by the boundary condition on the surface of 
the metal and this condition determines the dispersion 
law w(k) of the Rayleigh wave. The exponential decay 
factors x,  are  given by the expression 

where w ,  and w ,  are ,  respectively, the velocities of 
the longitudinal and transverse bulk waves. The phase 
velocity of a surface wave w can be represented in the 
form w = w,y, where y depends only on the ratio w,/w,  
and is a characteristic of a given metal with a value 
close to unity. 

The absorption coefficient of the surface sound iscS1 

where 

p is the density of the crystal, f, is the nonequilibrium 
part  of the distribution function expressed in a coordi- 
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nate system linked to the deformed lattice, and 6~ is the 
correction to the Hamiltonian of the electron, propor- 
tional to the displacement in the acoustic wave and con- 
taining a term describing the interaction with the elec- 
tromagnetic field. 

1. NORMAL METAL 

In determining the absorption coefficient which i s  a 
linear function of the displacement vector, it is neces- 
sary to solve simultaneously the transport equation for 
f and the Maxwell equation for the vector potential A 
of the electromagnetic field which occurs in the expres- 
sion for 66.  The transport equation will be written 
down and solved in a coordinate system linked to the 
deformed lattice because the interaction of an electron 
with an acoustic wave i s  simplest in this system. 
Moreover, the same coordinate system i s  the most 
natural means for describing all the boundary conditions 
on the surface. On the other hand, it i s  more natural 
to write the Maxwell equations in the laboratory coordi- 
nate system. However, since, on the one hand, the 
difference between the fields in these coordinate sys- 
tems -c-'[Ux H] i s  less than the precision of our theory 
and, on the other hand, the total current density in the 
laboratory coordinate system is equal to the current 
density of electrons in the deformed coordinate system, 
we shall solve the Maxwell equations without distin- 
guishing between the two coordinate systems. 

In the deformed coordinate system, we have['' 

6e(p, r, t)=hjr(p)Vk(r, t ) - L A V - n t , r ~ ( r ,  t ) .  
c .  

(4) 

Here, e, p, and v are, respectively, the charge, 
momentum, and velocity of an electron, m, is the mass 
of a free electron, c i s  the velocity of light, A,,(p) i s  
the deformation potential tensor, and 

i s  the strain tensor. 

We shall begin by solving the transport equation. We 
shall consider a metal with an isotropic spectrum1' 
and bear in mind that the strain tensor of a Rayleigh 
wave (because of the boundary conditions at the metal- 
vacuum interface) is diagonal. Then, the term A,,Ufk 
can be represented in the form 

.\,,Um=C[ (rT) (PC) -'/.p,v,div U], (5) 

where C -1 and v=p/m. 

The solution of the transport equation can convenient- 
ly be sought in the form 

Here, f, i s  the Fermi function of the total energy and 
<,= &,(p) + 6c(p, r ,  t). In the linear (in respect of the 
displacement vector) approximation, the transport 
equation is 

Bzp-epr (7) 

where = 8/8t + vv +? i s  the transport equation operator 
and f is the collision operator (we a re  assuming that 
the dominant scattering mechanism is that involving 
impurities). 

The solution of Eq. (7) subject to Eqs. (4) and (5), 
can be represented in the form 

X~'C(P, u (4 ) +X;. (8) 

The function 2, i s  found from 

&;p=g(z, v). 

Here, 
PFVF - g(z, v)- eE"'v-C-div U,(z) -Cl(p, U), 

3 

Since the average of the function g over the constant- 
energy surface differs from zero, the collision opera- 
tor in the transport equation should be represented in 
the form 

where WAq i s  the probability of a transition of an elec- 
tron from a state p to a state p,, and T =  1/v the depar- 
ture time. Then, Eq. (9) can be solved by iteration 
over the arrival term. In this case we can show that, 
in the lowest order in respect to 1/k1 and w/v,, the 
arrival term can be ignored in the calculation of the 
absorption coefficient and of the current density given 
by 

j-CenP+ 7 (2nfi) " I  d'p v%=j,+jt 

(n, i s  the total electron density). 

It follows that we can calculate the quantities of 
interest to us by solving Eq. (9). The actual form of 
the solution depends on the nature of the boundary con- 
ditions for the reflection of electrons from the surface 
of a metal. We shall give the results for specular scat- 
tering and the corresponding generalization to nonspec- 
ular scattering will be discussed later. In our approxi- 
mation, 

where L = (ikv,+ v)/v,, and 8 i s  the.Heaviside function. 
The presence of the term -2Cp,u,U,(O) in Eq. (12) is 
associated with the boundary conditions imposed on the 
complete function X, The field Eeff can be determined 
by solving the Maxwell equations using the expression 
for the current (11). It is clear from Eqs. (11) and (12) 
that the relationship between the current and field is 
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nonlocal. Therefore, to solve the Maxwell equations, 
we shall continue formally E af(z) and U(z) over the 
whole space. In this case the x components of Ee" and 
U a re  continued in an even manner and the z compo- 
nents in an odd manner: 

K , ( : ) - K , ( l z l )  s igns ,  K , ( z ) = K . ( l z l ) ,  (13) 

where K is any vector. 

We can show that such continuation ensures the vorti- 
cal nature of EM' and U, and the potential nature of U, 
throughout all  space. We note that the z components of 
the continued fields lose their continuity over the whole 
space because they may have a discontinuity a t  the 
point z = 0 (in the same way a s  the derivatives of the 
x components of the same fields). Therefore, all the 
differential equations should be redefined in order to 
remove nonphysical sources on the interface associated 
with the nature of our continuation. For  example, the 
divergence has to be defined so that 

Dir K=div I<-26 (:) K ,  ( z )  sign 2. 
(14) 

Then, the relationship between the current and the field 
EeH can be described by the difference kernel: 

Here, Jds , ,  denotes integration over half the Fermi 
surface for v , ~  0; g,(z, v,) and g-(z, v,) are ,  respective- 
ly, the even and odd (with respect to z and v,) parts of 
the function g(z, v,); ~ ( c , )  = 2~:/(2&)~v, is the density 
of states on the Fermi surface. 

It should be noted that this procedure can be carried 
out also in the case of nonspecular reflection of elec- 
trons from the surface described by the boundary con- 
dition 

Then, instead of Eq. (13), it is sufficient to define all 
the fields and displacements outside the metal in accor- 
dance with the rule: 

This transformation results in a slight change in the 
subsequent expressions. However, several experi- 
ments have indicatedCl0' that the reflection of electrons 
from the surface of a single crystal is specular over a 
wide range of angles. Therefore, we shall give the 
actual results for the specular reflection case. 

The existence of the difference kernel makes it pos- 
sible to solve the Maxwell equations by expanding them 
a s  Fourier series in terms of the variable z. The 
Fourier component of the current is 

FIG. 1. 

where 

U,U* 2 R e L  
o " ( q ) = e z N ( e ~ )  (q+ lmL)2 iRex  (17) 

2 .  u q + I m L  
F ,  ( q )  = - iCeN(e.)p~u= j d ~ ~ ' $  (q+lm L ) z + ~ ~ : h  

3 (1 8) 
q+Im L 

S ,  ( q )  -4iCeN ( e l )  j d ~ ~ + p , u i  ( q + l m  L)'+ R e Z L  ' 

We can easily show that a ,,(q) is degenerate. This 
i s  due to the fact that the x and z components of the 
field and current a re  connected by the solenoidal con- 
ditions. However, we can see that each Fourier compo- 
nent has i t s  own coordinate system in which this matrix 
has one nonzero matrix element. This coordinate sys- 
tem i s  shown in Fig. 1. If we apply these coordinates, 
we find that 

and the only nonzero component of the conductivity 
tensor is  

We can easily show that j ,  = 0 and the Maxwell equations 
for Et" a re  satisfied identically. The equation for E:" 
is 

Here, %= mc2/4ne2no = c2/w; is the London depth of 
penetration at T = 0 and 

dE,(z)  
E.' ( 0 )  = lim .- 

.-+o dz ' 

A comparison of the last term on the right-hand side 
of Eq. (22) with the f i rs t  one readily shows that their 
ratio is -(kA$. Therefore, we can ignore the last 
term, representing the Steward-Tolman effect, up to 
frequencies dk- 10" sec-'. In subsequent analysis we 
shall assume that the condition k&<< 1 is satisfied. An 
analysis of the boundary conditions on the metal- 
vacuum interface shows that, in this range of frequen- 
cies, EL(+ 0) = 0 and E,(+ 0) = 0. 

In the calculation of the absorption coefficient i t  is 
also convenient to continue the fields and displacements 
over the whole space. The absorbed power consists 
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of the deformation and electromagnetic contributions. 
The application of Eqs. (3) and (22) gives the results 

The most interesting case is when kb<< 1, because 
it is in this situation that the electromagnetic absorp- 
tion is important. Then, on the left-hand side of Eq. 
(22) we can leave only the third term in parentheses. 
Then, 

where 

The asymptotic form of this expression for a = 1 - y<< 1 
is 

The formula for r,, was first  obtained by Grishin and 
~ a n e r ~ "  so that we shall simply give the asymptote of 
a obtained from Eq. (23) 

Hence, we can see that 

Since a varies from 0.14 to 0.05, this ratio can range 
from 0.3 to 1. 

It follows that the electromagnetic absorption in the 
k6<< 1 case is generally of the same order a s  the defor- 
mation absorption. This means that in analyzing the 
experimental results at frequencies lower than f - w / 6  
-300 MHz one has to allow for the electromagnetic 
absorption. 

2. SUPERCONDUCTOR 

A s  pointed out earlier, it i s  convenient to use the 
measured value of the change in the absorption coeffi- 
cient on transition through the superconducting temper- 
ature in experimental separation of the electromagnetic 
and deformation contributions to the absorption. 

To analyze the situation, we shall consider a fairly 
pure superconductor and sound of moderately high 
frequency : 

Aoe4(T) ,  Dlo, X.Ecl, (29) 

where A ( T )  is the superconductor gap, {=Piv,/n~(T) is 

the coherence length, and to= [(T= 0). When the condi- 
tions of Eq. (29) a r e  obeyed, we can apply the transport 
equation for quasiparticle excitations["] which is 

anp ae, an, + - - -  
at a~ ar 

pee -- ' A .  (32) 

The collision operator of the transport equation for the 
scattering by impurities reduces, on the basis of the 
same considerations as for a normal metal, to the 
outgoing term equal to v 1 [,I /E,, where [,= Eo(p) - p. 
Bearing this point in mind, we can represent the dis- 
tribution function in the form 

where is found from the equation 

The electric current density can be expressed in terms 
of and v,: 

mo 
j-e xv2 (- %) +e~.(v,- ;u) +C~N*U. 

P..  

Here, v, = p,/m, and N, and N, a r e  the densities of the 
"normal" and "superconducting" electrons: 

The rest  of the calculation is fully analogous to that 
given above for a normal metal. The expression for 
F ,  and S ,  a r e  fully analogous to Eqs. (18) and (19) and 
differ only by the replacement of no with N,,. In the 
calculation of the electrical conductivity tensor u,,(q), 
ignoring the time dispersion, a divergence occurs a t  
the lower limit of the energy integral: 

This divergence is removed by allowing for the time 
dispersion (the corresponding parameter which follows 
from the transport equation is [ -?BA/V,). Consequent- 
ly, at temperatures close to T ,  the tensor u,, acquires 
the following factorc121 

A Tu, 
g ( ~ ) = l + - l n ( ~ - ) .  2T A w '  (36) 

It should be noted that for k t  >> 1 the corresponding 
expression cannot be obtained from the transport equa- 
tion and should be determined by a quantum-mechanical 
calculation. Then,c131 
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When k 5, >> 1, there is also a change in the expression 
for N,. In this range, we havec14' 

The electric field in a superconductor (for k6<< 1) a t  a 
temperature near T, is [compare with Eq. (22)] 

We can see that the electromagnetic absorption is im- 
portant only in the immediate vicinity of T,, where 
N , / Y z , ~  w/v, (region of the rapid fall effect). In this 
region it i s  governed by the expressions (25) and (26) 
with 

and with the factor g-l in front of the formula. Thus, in 
the limit T - T,, we have r:,/r,, - 1 and when the 
temperature i s  lowered, the value of r:,/r,, drops 
rapidly: 

Far  from T, we have only the deformation contribution 
r:,,, which i s  equal to 2f,(A)r ,,,. 

It follows from the above analysis that an investiga- 
tion of the absorption of the surface sound in a normal 
metal and in a superconductor allows us to deduce, 
from the sudden change in the absorption a t  the temper- 
ature T,, the separate electromagnetic and deformation 
contributions to the absorption, which a re  of the same 
order for k6  << 1. 

We wish to draw attention to the fact that there i s  one 
other method for investigating the electromagnetic in- 
teraction of surface sound with conduction electrons. 
This method is based on the direct recording of electro- 
magnetic fields near the surface of a sample. Such a 
method has been used in a study of the propagation of 
transverse bulk waves in superconducting 
Therefore, we shall give an estimate for the amplitude 
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of the resultant magnetic fields. A typical estimate of 
the field (for k6<< 1) gives 

For  typical metal parameters Uik  - (corresponding 
to sound intensity of the order of 1 w/cm2) and k -10' 
cm", we have H -0.1 Oe. In the superconducting range 
of temperatures this field decreases by a factor of 
1 + ~,v,/n,w. Fields of this kind can be recorded by 
modern detectors. 

"1n the case of an anisotropic spectrum, the results obtained 
below can be regarded as order-of-magnitude estimates. 

2 ' ~ n  f a d ,  Eq. (31) includes an additional term ti$ in the paren- 
theses (in the radicand) and Eq. (32) includes the term imp, 
where cp is the phase of the order parameter. However, since 
w/v,<< 1,  the first term can be ignored and the second can be 
removed by a gauge transformation. 
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