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A kinetic equation is obtained for strongly and weakly coupled tunnel centers. In the case of weak 
coupling the equation is valid at any ratio of the tunnel splitting to the relaxation level width, and also in 
any resonant field (the field frequency is close to the frequency of the local oscillation or of the electron 
transition). The repopulation of the wells in the field is considered. If the time of the tunneling into the 
excited state is shorter than the time of tunneling to the ground state then the optical orientation takes 
place in relatively weak fields. The repopulation kinetics of centers with orientations [I001 and [Ill]  in 
cubic crystals is described in this case by the presented equations. The self-induced rotation of the plane 
of polarization of resonant radiation in cubic crystals on account of the optical orientation of the 
impurities is analyzed. 

PACS numbers: 78.50. - w 

1. INTRODUCTION 

Impurity molecules and noncentral ions in cubic crys- 
tals usually have several equivalent equilibrium posi- 
tions in the unit cells, qnd resonant tunneling can take 
place between these positions.c1'21 The tunneling leads 
to a splitting of the energy levels of the intrawell local 
or  quasilocal oscillations, a s  well as of the electron 
levels. If the potential barriers between the equilibrium 
positions a re  large enough, then the splitting for sever- 
a l  lowest excited states i s  small in comparison with the 
distance between the levels. The dynamics of the tunnel 
center i s  determined in this case by the relation between 
the characteristic relaxation time T and the tunnel split- 
ting he. In the case TAE >> R the below-the-barrier 
states a re  essentially of the tunnel type, and their wave 
functions a re  transformed in accord with the represen- 
tations of the cubic group (see e.g.,13'), while the role 
of the relaxation reduces to a small broadening of the 
levels. In the opposite case T A ~  << ti, the relaxation de- 
stroys the coherence of the equal-energy states of the 
impurities in different wells, i.e., it makes the tunnel- 
ing in fact nonresonant. As a result, the center be- 
comes effectively localized, the reorientation process 
acquires a hopping character, and the time of the tunnel 
transition turns out to be of the order of p/[~(Ar)']. 

The peak of the impurity absorption of light near the 
frequency of the intrawell transition a t  TAC >> R has a s  a 
result of the tunnel splitting a fine structure, and a t  
TAC <<ti it i s  smooth and, generally speaking, asym- 
metrical. In the case of absorption by local o r  quasi- 
local oscillations, the fine structure and the asymmetry 
of the spectrum can be connected also with the internal 
anharmonicity of these oscillations.c41 If the nonequi- 
distant character of the level due to the oscillations ex- 
ceeds the level width, and the temperature i s  low 
enough exp(tiwdT) >> 1 (tiw, i s  the energy of the f i rs t  ex- 
cited level), then the interaction of the local oscillation 
with the resonant raidation (9% w,) can be described 
within the framework of the two-level model with tun- 
neling between the wells. 

of the tunnel center is  quasilocalized, T,AE, <<t i .  It i s  
clear from general considerations that the overlap inte- 
grals of the intrawell wave functions should be larger 
for the excited level than for the ground level, i.e., 
Are,,> Ae,. Consequently a relatively weak resonant 
radiation can lead to a substantially anisotropic distri- 
bution of the tunnel centers over the equivalent minima. 
Resonant optical or ienta t ion(~O0) can be easily under- 
stood in the case of two-well potential if the dipole ab- 
sorption in the wells occurs at mutually perpendicular 
polarizations of the radiation ( E x  and E,).  Let E ,  = 0. 
Owing to the tunneling through the excited level, an im- 
purity initially in the ground state in the well x can, af- 
t e r  absorbing light and relaxing, turn out to be in the 
ground state in the well y. If the tunneling time in the 
ground state i s  larger than in the excited state, then 
pumping by the field E ,  will make the population in the 
well y larger than in the well x. The intensity of the 
resonant radiation needed to produce a substantial popu- 
lation difference, i s  determined by the ratio of the tun- 
neling times in the ground and excited states; this ratio 
can be very large a t  he,,, >> he, (if T,,,A~,,, >> ti, then 
the excited center i s  situated in the different well with 
practically equal probability and the tunneling tirneof 
the transition i s  close to zero). 

In the case of strongly coupled tunnel centers, owing 
to the increase of the overlap integral, the activation 
energy of the hops between the wells may turn out to be 
much smaller in the excited state than in the ground 
state, and the tunneling time i s  correspondingly expon- 
entially smaller. Optical orientation was experimentally 
observed for several types of strongly coupled cen- 
t e r ~ . [ ~ ~ ~ ]  The ROO theory for strong coupling i s  given 
in the Appendix. 

To investigate the ROO it i s  convenient to use the 
kinetic equation. I t  i s  derived in Sec. 2 for  a many-well 
tunnel center with weakly coupled dipole transition. In 
Sec. 3 we develop the quasistationary approximation, 
derive the balance equation for the well populations a t  
The <<ti, and analyze the weak-field ROO. Owing to the 
reorientation of the resonant radiation, a cubic crystal 

We consider hereafter the case when the ground state with tunnel centers becomes anisotropic. The resultant 
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self-induced rotation of the polarization plane of the re- 
sonant radiation i s  investigated in Sec. 4 for various 
centers. It i s  shown that the   umber of independent 
component of the nonlinear polarizability increases in 
the resonance region. 

2. MODEL OF TUNNEL CENTER WITH WEAKLY 
COUPLED DIPOLE TRANSITION. KINETIC EQUATION 

We consider a two-level tunnel center in the case 
when the intrawell wave functions a re  strongly localized. 
The Hamiltonian of the system in a resonant external 
field can be written in the form 

Here Ho i s  the Harniltonian of the tunnel center proper 
(the energy i s  reckoned frem the ground k v e l  in the 
well); a;, and a,, a r e  the operators of creation and an- 
nihilation of a center in the well i in the ground (a = 0) 
o r  excited (a = 1) states, satisfying the usual relations: 

The parameters V determine the resonant tunneling, 
( V  I<< w,. In the Hamiltonian (2) of the interaction with 
the field we took into account only the resonant intra- 
well terms (fn-eiwt,w =wo) under the assumption 
Ifn 1 << w o; fn(t) = (d,E(t), d, is the dipole moment of the in- 
trawell transition, and E i s  the field intensity. It will 
be assumed in the future for concreteness that the di- 
rection of the dipole moment d,, coincides with the sym- 
metry axis of the intrawell potential and, consequently, 
the excited level is  nondegenerate within the limits of 
one well. 

The Hamiltonian HI describes the oscillations of the 
continuous spectrum in a crystal with a defect and their 
interaction with the tunnel center: 

b, and bi a r e  the operators of annihilation and production 
of the oscillations of the continuous spectrum q ;  w, i s  
i t s  frequency. The term 

determines the change of the equilibrium positions of the 
oscillations of the continuous spectrum upon reorienta- 
tion of the impurity. This interaction i s  quite substan- 
tial for tunnel  center^[^*^' and will henceforth not be re- 
garded as weak 

The intrawell dipole transition i s  assumed to be 
weakly coupled with the phonons, so that the width I?, of 
the light absorption line and the corresponding shift a re  
small, I?, <<coo, w,  (where w, is the maximal frequency 
of the continuum oscillations that a re  significant for the 
relaxation). The weak-interaction Hamiltonian takes the 

form 

The f i rs t  t e r m  in (5) corresponds to the change of the 
phonon frequencies both following the reorientation and 
following the transition of the impurity to the excited 
level, while the second term is nonadiabatic and, gen- 
erally speaking, anharmonic. In second-order pertur- 
bation theory i t  describes the decay of the excited state 
with emission of one o r  several phonons and the level 
shift. No account i s  taken in (4) of the dependence of 
V,, on a ,  which in the case of a weakly coupled dipole 
transition leads to a small level shift. In addition, as- 
suming a weak overlap of the wave functions of the dif- 
ferent wells, we have left out of Hi, the terms propor- 
tional to a;,aje(l - 6,j). 

In second order in H$, the half-width of the light- 
absorption peak a t  eWofT>> 1 in the absence of tunneling 
is (cf. [g'): 

r, and r a r e  the parameters of the modulation a r  'J 2e- 
cay broadenings, (. . . ), denotes averaging over the 
phonons with Hamiltonian H,,. The broadening of r, i s  
due to the relaxation of the phase difference of the wave 
functions of the ground and excited levels due to the 
quasielastic scattering of the phonons by the impurity. 

When tunnel transitions between wells a re  considered, 
the analog of modulation broadening i s  obviously 

The dynamics of the tunnel center depends on the ratio 
of the time of the interwell transition T,,, to y::, and 
the value of rij, depends in turn on the interaction H:::. 
If this interaction i s  very strong, 

the problem of the tunnel center i s  close to the problem 
of the small-radius polaron, see  the Appendix. In this 
section we consider the case of not too strong a cou- 
pling" and low temperatures, s o  that 

where r,, i s  the damping due to H::; i t  i s  proportional 
a t  least to (V/w,)' and i s  analogous to the damping of 
the small- radius polaron. [lo' 

To analyze the ROO and the nonlinear polarizability 
of tunnel centers it is convenient to eliminate H',:: with 
the aid of the standard canonical transformation 
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S-exp [- x ~ ~ ~ a ~ . + a ~ . ( b ~ - b ~ + ) l ~ . ] .  
iaq 

The operator of the intrawell dipole transition remains 
unchanged in this case, SahaioS+= a;,a,,; the transfor- 
mation of H:: gives r ise  to terms that reduce in second 
order in to a renormalization of w, an$ G, and in 
the approximation (8) V,,, i s  replaced by V,,,. In se- 
cond order in ki;: and in f i rs t  order in H f  and v,,,, the 
kinetic equation for the density matrix 

can be derived in the region of long times t >> wil ,  w: by 
the method of the integral operator equation,'"] a s  was 
done in c12-141 for other systems with several resonant 
dipole transitions: 

+ix {fm(t)ei'ola,,+a.o+ h.c., 01, Sp 0-1. (9) 
", 

The expressions for the parameters of the modulation 
broadening yzE in (9) a r e  obtained from (6) and (7) with 
the aid of the obvious replacement of the indices (inas- 
much a s  the modulation broadening is due to phase re- 
laxation, i t  contributes to the damping of only the off- 
diagonal matrix elements of (3); 

The renormalization of o, on account of the phonons is 
assumed carried out in (9), and the corrections 
- I ? 1 /w,, r /w, ,  1 f I/w, and y/w, a re  assumed discarded. 
In addition, i t  is  assumed that T >  r, y, I ? I  (but 
exp(wJ7') >> 1 and Eq. (8) i s  satisfied). 

Equation (9) i s  valid a t  arbitrary I ?\/I?, and If i/I',, 
and therefore allows us  to consider both the fine struc- 
ture of the spectrum of absorption by a tunnel center (at 
I ?  I>> r,), as well a s  a smooth spectrum, and also the 
weak-field and strong-field (absorption saturation) 
cases. It can be shown, in particular, that when ac- 
count i s  taken of the quadratic corrections in I 1 /r, < 1 
the absorption spectrum becomes nun-Lorentzian, but 
remains symmetrical. 

3. QUASISTATIONARY APPROXIMATION. OPTICAL 
ORIENTATION IN WEAK FIELDS 

The operator equation (9) for an N-well center i s  
equivalent to a system of N(2N+ 1) linear equations for 
the matrix elements pg", Sp(a~,a,,P), which in the gen- 
era l  case can be solved with the aid of a computer. 
However, if the tunnel splitting is small compared with 
the reciprocal relaxation time (this is apparently fre- 
quently the case for under- the- barrier excited lev- 
e l ~ [ ' ~ ] )  and the impurity is localized in wells, Eq. (9) 
can be solved analytically. The criterion for the local- 

ization i s  slowness of the change of the well population 

during the time 1 pi,, I-' of the resonant tunnel transi- 
tion. Since, a s  seen from (9), 

localization calls for  smallness of the off-diagonal ele- 
ments I a", I<< p,. 

The structure of Eq. (9) is such that the elements of 
diagonal and off-diagonal in the upper indices ( in t ra  

and interwell) relax and interact with the field indepen- 
dently of one another, and the connection between them 
is due only to tunneling. If the field amplitude varies 
slowly: 

then, in the case of small tunnel splitting 

the system relaxes in the following manner: after times 
-max(r l ,  y'') equilibrium is established within each 
well [two-level system in a monochromatic field with 
summary level population p,(t) = const a s  a result (11) 
and (13)]; the interwell elements of jj likewise reach 
their quasistationary values in this case. The latter 
can be determined in f i rs t  order in p/y from the sys- 
tem of equations 

5;; = p~~exp[-iCit(8,0 - b,)],  62 = w - w,, withf and p?, 
dependent on the time as a parameter: 

I'(r,-i9)exp (iQt) 
poon"==p.(t) -plln", ~ ~ , ~ ~ = - i f ~ ' ( t )  p. ( t )  

r ( r e 2 + ~ z ~ + 2 r o ~ j a ~ t 7  

For  each (m,n)  pair, (14) constitutes a system of 
four equations that can be readily solved. Substituting 
the solution in (l l) ,  we obtain 

Equations (16) take the form of balance equations and 
describe the slow variation of the well populations. The 
explicit expression for C,, is in the general case quite 
complicated and is not given here, b_ut it is seen from 
(13) and (14) that C,- (f('/r;,~<< I V I  << r , y ,  i.e., both 
the localization criterion and the quasistationarity con- 
dition a r e  satisfied (with large margin). The need for 
sufficiently rapid relaxation for reorientation of the 
hopping type was noted already inc8], but i t  was not 
made clear there which a re  the quantities that relax, 
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what causes the relaxation, and how the reorientation 
process is to be described. 

If the multiwell potential has an inversion center, 
then i t  i s  possible to obtain from (16) an analogous sys- 
tem of ~ / 2  equations for fin = p , + p,- @) i s  the number 
of the well that i s  the reflection of the well n), with - 
C,, = C,, + CnZ, C,, = CE. The last  equality is due to the 
fact that the inversion changes only the sign of the field 
in the coefficients C,, but this change is equjvalent, 
by virtue of (12), to a time shift ~t =n/w << I v(", rq, 
which cannot be reflected in C,. Consequently, C,, 
contains only even powers of the field. 

Greatest interest attaches to consideration of the ROO 
in the case when the tunnel splitting for the excited 
level is much larger than for the ground level, and 
orientation is possible even in fields that a re  weak com- 
pared with those that lead to saturation. 

If the inequalities 

a r e  satisfied in addition to (13), then in non-saturating 
fields we obtain from (14)-(16) 

(18) 

In the case of a weakly coupled dipole transition the 
resonant field leads to a mixing of the wave functions 
of the ground and excited intrawell states (as resonant 
tunneling in the case of equal-energy level). Conse- 
quently the parameter C, does not reduce to the sum 
of the probabilities of the hops in the ground and ex- 
cited states, but if (17) i s  satisfied C,, contains only 
the squares of the moduli of the fields that act  in the 
wells. The relation between the field-free rate of re- 
orientation A,, and ~ , , ( f , ( ~  in (18) is arbitrary. 

To illustrate the repopulation of the wells, we con- 
sider a two-well system at  constant Ifla. The solution 
of (16) with allowance for (18) takes in this case the 
form 

According to (19), the change of the well populations 
from the initial value to the final stationary value is 
monotonic. The maximum repopulation takes place if 
the field excites transitions in only one of the wells, 

In this case 

i.e., in a relatively weak field, when (17) is satisfied, 

practically total depletion of one of the two equivalent 
wells is possible. 

The system (16) and (18) can be easily solved also 
for a larger number of wells in the case of tunnel cen- 
t e r s  in cubic crystals, if the symmetry group of the 
multiwell potential is Oh, and the minima a re  oriented 
in the directions [loo] and [110]. For the total popula- 
tion of the wells that a r e  equivalent with respect to in- 
version, s,, Eq. (16) takes the form 

The parameter A for the centers [loo] and [lll] is re -  

spectively equal to ~A~IOOI,O,OI and ALIIII~II~I + A ~ ~ ~ ~ I L I I I I  
(the expressions for B a r e  analogous), while N = 6 and 
8. Equation (20) can be represented in a reduced form 
by going over to the dimensionless time At and to the 
field ( ~ / ~ ) ' / 2 f .  Therefore the kinetics of the optical 
orientation for the different tunnel centers with wells 
in the direction [loo] o r  [lll] is the same (for centers 
with minima along [110] there a r e  no such minima; an 
equation such as (20) contains the dimensionless param- 
e ters  of the concrete center). 

The stationary solution of (20) in a monochromatic 
field is of the form 

N/I Nlt NI1 B -1  

I.~-)- n ( I + +  1t~12)[c a ( I + ~ I ~ . I ~ ) ]  . (21) 
m-I .-L r - l  

If the field is relatively strong for all wells, B l f , ( ' / ~  
>> 1, then the population distribution (this takes place 
also in the case of two wells) does not depend on the 
field, 

If the field i s  strong for only wall well and for i ts  re- 
flection (this is possible only for [loo] centers), If,I2 
>>A/B >> Jf,,,12, the well is depleted. If, on the con- 
trary, the field is weak for only one well, then prac- 
tically all the centers go over into this well. In con- 
trast  to the case of two wells, the transition from the 
field-free distribution A(0) to (21) takes place, gener- 
ally speaking, in nonmonotonic fashion, since the char- 
acteristic equation corresponding to (20) has several 
roots. 

It is of interest also to consider the optical orienta- 
tion in the case when the tunnel splitting of the excited 
level exceeds the width of the absorption line I v,, I 
>> ro, c',l, >> I v*',, 1 .  If a transition to a nondegenerate 
(for simplicity) tunnel level takes place under the in- 
fluence of resonant light, then immediately after the 
absorption the center can be with equal probability in 
any of the cells. Starting from (9), we can show that in 
weak fields the kinetics of the ROO is described by 
formulas (16) and (18), where 
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(it is assumed that the rate of establishment of equilib- 
rium within the tunnel multiplet is low, y$ << r) .  For- 
mulas (16), (18), and (18a), with allowance for some 
renormalization of the parameters, a r e  valid also in 
the case when the excited level is above the barr ier  
(the tunnel splitting Vml does not enter in (18a). Thus, 
the field dependence of the ROO in the region of weak 
fields i s  the same for large and small tunnel splitting 
of the excited level. 

4. SELF-INDUCED ROTATION OF THE RADIATION 
POLARIZATION IN RESONANT OPTICAL 
ORIENTATION 

Optical orientation of tunnel centers by linearly po- 
larized resonant radiation makes the impurity cubic 
center anisotropic. This anisotropy can be revealed, 
for example by the absorption of the additional weak 
light, but i t  influences substantially also the propaga- 
tion of the orienting radiation itself, by rotating its po- 
larization plane. Self-induced resonant rotation of the 

polarization was considered inc14' in the saturation of 
the absorption by the impurity dipole transition A, - TI,, and also in saturation of the absorption by two- 
level tunnel centers. The tunnel-center model inc14' i s  
analogous to that of the present paper, but it was as-  
sumed there that the radiation pulse duration is short 
in comparison with the tunneling time, and the latter 
was not taken into account a t  all. In the case of long 
pulses, the principal anisotropy mechanism, a s  shown 
below, can be precisely the reorientation of the centers. 

The nonlinear polarizability of an impurity crystal a t  
low tunnel splitting (13) and a t  a slowly varying field 
amplitude can be represented by using (15), accurate 
to terms -?/ruB, in the form 

where E i s  the dielectric constant of the host crystal; 
c, is the impurity concentration and is assumed to be 
quite small; d,, is the projection of the dipole moment 
in the well n on the direction of x (at p, = 1 / ~  and h2 = 0 
Eq. (22) coincides with formula (13) of[14'). Maxwell's 
equations and the material equations (22) and (16) de- 
scribe in self-consistent fashion the propagation of the 
resonant radiation in the crystal. 

The anisotropy of the polarizability x,, i s  due to the 
field dependence of p, and of the denominator in (22). 
If (17) i s  satisfied, then strong nonlinear effects can be 
observed in relatively weak fields, 1 d~ 1 ' << IT,, when 
the field dependence of the denominator i s  negligible. 
The nonlinearity of the polarizability sets in this case 
after a time -(A + B  If 1 ')'I. The stationary polarizabil- 
ity in a monochromatic field a t  w = w, in the case of tun- 
nel centers with [loo] orientation can be obtained from 
formulas (22) and (21): 

Expression (23) is valid for arbitrary values of a21~12, 
but formally (23) can be regarded a s  an expansion of 
the susceptibility up to fourth order in the field, with 
the nonlinear and linear components of the polarizabil- 
ity tensor dependent on the field via the invariants of 
the group 0, [the denominator in (23)I.'' It is of interest 
to note that X-:, depends only on the squares of the 
moduli of the field components. This means that, for 
example, the expression for the absorped power aver- 
aged over the period contains the invariant 

but not the invariant 

In the phenomenological approach with expansion of the 
polarization in the real  field, the absorbed power would 
contain both invariants, and the coefficient of the first, 
without allowance for the time dispersion, would by 
twice a s  large as the coefficient of the second. The in- 
crease in the number of the independent components of 
the polarizability tensor i s  due in this case to the reso- 
nant character of the absorption. 

It is seen from (23) that the optical orientation leads 
to bleaching of the impurity crystal. If, e.g., E , ,  =0, 
then 

The field dependence of the absorption coincides in this 
case with x"(E) dependence upon saturation of the ab- 
sorption by a nondegenerate two-level system, but the 
character of the bleaching is different: the tunnel cen- 
t e r s  leave those wells in which they a r e  excited by the 
field, and cease to absorb the latter. If several field 
components differ from zero, then the components that 
a r e  more weakly absorbed will be those whose ampli- 
tude is larger. This will change the propagation direc- 
tion and the plane of polarization of the light. 

In the case when the radiation propagates along the 
a axis (this propagation direction i s  stable) and is lin- 
early polarized, Maxwell's equations with (23) taken 
into account reduce to the system 

dlEXl2 31E.I' l+a'lE.,IZ 4xo0 codz 
= - -  I - '  - -  

dz 1, 3+2a'lEl2+a'lE&,I' CE"* ro ' 

which has one simple integral 

It is seen from (24a) that if E,(O)/E,(O)> 1 then the ratio 
E,(z)/E,(~) increases with crystal thickness, but if 
E,(O)/E,(O)< 1, this ratio decreases. Thus, the plane 
of polarization rotates towards the nearest of the type 
[loo] axes. This i s  understandable, since the larger 
field component depletes i t s  wells more strongly and is 
absorbed less. The limiting direction of the polariza- 
tion depends exponentially on the field intensity: 
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FIG. 1. Dependence of the angle of the self-induced rotation of 
the polarization plane on the intensity of the incident resonant 
radiation for tunnel centers with orientation [loo]. The radia- 
tion propagates along the [001] axis, and the initial angle be- 
tween the vedor E and the [I001 axis is 30". Curves 1-7 corre- 
spond to crystal thicknesses 1/10=0.2, 0.6, 1, 2, 3, 4, 5 (1, is 
the weak-field absorption line). 

The field dependence of the angle of rotation of the 
polarization has a peculiar character for crystals of 
finite thickness. This dependence i s  shown in Fig. 1 
[the multiple reflection was not taken into account in the 
course of the solution of (24)]. The maxima on the 
ha! (E)  curves i s  due to the bleaching of the crystal in 
the strong fields. It can be clearly observed if the di- 
rection of propagation of the radiation coincides with 
the orientation of one of the wells (in this case, with 
the [001] well). Owing to the preferred filling of this 
well, a decrease takes place in both the absorption co- 
efficients of the individual field components and in their 
difference, which in fact causes the rotation of the po- 
lar ization, 

at a2 I E 1 >> 1. The position of the maximum ACT (E) 
shifts towards larger fields with increasing crystal 
thickness I ;  for thin plates (1/1, <<I) the value of ACY is 
maximal a t  a 2 1 ~ , 1 2 = 3 1 / 2 1 ~ ~ ~ , l  . 

In the case of tunnel centers with [ill] orientation 
and resonant radiation propagating along a ([001]) the 
wells [(-1),(-1)~* 11 are  equivalent a t  a = p  o r  a # fi 
(a,@ =O.l), and the system reduces to a two-well one 
with effective-well orientations [110] and   TO]. Solving 
a t  SZ= 0 the system of equations similar to (24) 

we obtain 

The function v determines the rotation of the plane of 

polarization of the radiation. It is seen from (25) and 
(25a) that as it propagates in the crystal the vector E 
rotates towards the nearest of the directions [110] o r  
[iiol: 

The angle of rotation of the polarization depends mono- 
tonically both on the crystal thickness and on the inten- 
sity of the incident radiation. 

In contrast to the centers [loo] and [lll], for centers 
with orientation [110] not only the velocity but also the 
direction of the rotation of the polarization plane, prop- 
agating along the [001] axis, depend on the parameters 
of the concrete center and on the field intensity. There- 
fore in a sufficiently thick crystal, owing to the de- 
crease of the radiation intensity with thickness, the di- 
rection of rotation can be different in different sections. 

5. CONCLUSION 

From (161, (181, (18a) and the Appendix i t  is seen 
that the kinetics of the weak-field ROO for  both &ong 
and weak coupling is described by the balance equations. 
This is evidence that the duration of the reorientation act 
is short, T,,, <<C:,. The last inequality is the criterion 
for the localization of the tunnel center in the wells. In 
the nonequilibrium case i t  is equivalent to the inequality 

"LR << 1 a t  m +n. In the considered models we have I P ~ ~ I  
T , ~ "  I v,,('~. We note that in the case of strong cou- 
pling we have I Fmn0 1 " >> C;: and for weak coupling 

1 vmm 1 -I- T,",", << c;;. 
The most stringent requirement that limits the ap- 

plicability of the results a t  low temperatures in the 
case of weak coupling (for strong coupling we have con- 
sidered only the region of relatively high temperatures) 
can be the condition 1 f,,) << in (13), since en 
" (T/W,)~ a t  T <<urn. When (13) is violated, the local- 
ization can be due to random fields if the mean squared 
level splitting is a >> 1 vo l a .  Since the parameter V, is 
usually small,C161 weak random fields a r e  sufficient for 
the localization. At ( vmna I << ( ct + i ( ~ ,  - A,,) / (A, 
i s  the shift of the level a in the well m) the quasista- 
tionary approximation is applicable, and in (15) i t  is 
necessary to replace SZ by SZ, = &2 + A,, - A,,, while in 
(14) r"$ must be  replaced by P2+i (A, - A,J (the re- 
laxation due to transitions between wells with participa- 
tion of a phonon of frequency o, = A,, - A,, is not taken 
into account). The second of the criteria (17) i s  re- 
placed by an inequality of the type 

which can be much less stringent a t  T <c om. Although 
the general character of the optical orientation does not 
change, the averaging over the random field in equa- 
tions (14)-(16) a t  arbitrary 1 xl/r:: i s  a relatively easy 
matter only if the number of wells is small. 

In the experiments, Turner et ~ 1 . l ~ ~  and Blume et uE.[~' 
measured the quantum yield q of the ROO--the probabil- 
ity of reorientation of the center as a result of photon 
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absorption. It is seen from (16) and (18) (see also the 
Appendix) that this quantity is determined by the ratio 
B,,/(P(~) a t  strong coupling and by B,(G + na) / ro  a t  
weak coupling. For strong coupling in the case r>> r,, 
we have 

Such an activation dependence of 17 was indeed observed 
inCS*'' for strongly coupled M and F A  centers. At I?,, 
>> I'>> r, the quantum yield turned out to be indepen- 
dent of temperature, B,,,/~(H) = 2 / ~  [this expression is 
obtained also in the case of weak coupling for a tunnel- 
ing excited level, see (18a)l. If (13) and (17) a r e  satis- 
fied then, according to (18), 17 decreases with increas- 
ing both on account of the decrease of f,,,,, and because 
of the increase of the relaxation parameters. We note 
that the stationary nonequilibrium distribution of the 
tunnel centers is determined by the parameter B,,/A,,, 
which does not have the same temperature dependences 
as 17. 

When holograms were recorded by the ROO method 
inc6], no account was taken of the self-induced rotation 
of the polarization plane of the resonant radiation which 
is quite large and limits the possibility of recording 
images in thick crystals. At h1* 0 both the ratio of the 
field components and the dephasing change with changing 
distance, and this also decreases the possibilities of 
using ROO for three-dimensional holography. 

The authors thank V. S. Vikhnin for a discussion of 
the results. 

APPENDIX 

Consider the optical orientation of a weakly coupled 
tunnel center. The Hamiltonian H',': in (3) is in the case 
of strong coupling 

We shall assume that for all  {ia) # Go) 

As already noted, in the absence of a field the prob- 
lem of the strongly coupled tunnel center is close to the 
small-polaron problem. It is known that a t  
sufficiently high temperatures the main mechanism of 
the polaron mobility a re  the hops between the localized 
states. It i s  easy to show that the probability of hopping 
of a tunnel center from a well i into a well j in the state 
a a t  sufficiently small Vila is 

For strongly coupled tunnel centers in alkali-halide 
crystals there exists apparently a sufficiently wide 

temperature interval where, besides (A.3) the relation 
T <<P is satisfied. By virtue of the latter inequality, 
the Stokes shift 2 P  greatly exceeds the line width 6 of 
the optical absorption, where (cf .C181) 

P-x (Vr,q-V,oq)2wq-1, 2  q - n q 2 +  P B 6 .  
I 0 

(A.4) 
Therefore the resonantly absorbed radiation 

causes in practice no induced transitions from the ex- 
cited to the ground state. If (A.3) and (A.4) a r e  satis- 
fied, the kinetic equation for the density matrix p(t) 
takes a t  t >> w';: the form3' 

-q (6) 2 1 f" ( t )  1 2  (ano+anop+ pamo+ano-2am+am~am+a-*) 

Here 2 r  is the probability of a decay transition from 
the excited state to the ground state (e.g., with emis- 
sion of a photon), and i t  is assumed that I' << om, dr/dwo 
<< r/p. 

Equation (A.5) differs substantially from the kinetic 
equation (9); in the case of strong coupling the diagonal 
and off-diagonal elements a r e  not entangled and the off- 
diagonal elements decay within a time "rfna I?-'(if the 
transformation S i s  not performed, then the interwell 
elements turn out to be "I?,,,/ I V,ja 1 << 1); in the case 
of weak coupling the resonance field plays with respect 
to the transitions between levels the same role as reso- 
nant tunneling does with respect to interwell transi- 
tions, and in the case of strong coupling the field pro- 
duces transitions only to  an excited level; we note also 
that in the case of strong coupling there is no interfer- 
ence between the decay processes in the different wells, 
and from among the terms proportional to I?,, in (9), 
there remain in (A.5) only the diagonal ones. 

Since Eil, < E,  as a result of the increase of the 
overlap integrals in the excited state, i t  is of interest 
to consider the case rill >> rtj,, when the optical orien- 
tation of the tunnel centers proceeds in relatively weak 
fields cp(hl)IfIa<<r (if 1>>p(H)If12/r>exp(-~/~), then 
the impurity crystal can amplify the light a t  the fre- 
quency w, -P,[191 but Eq. ( ~ . 5 )  is violated only in the 
case when the probability of the induced transitions 
from the excited state to the ground state becomes com- 
parable with the probability of the spontaneous ones). 

At r > >  r,,,, r,,, the intrawell equilibrium i s  estab- 
lished more rapidly than the interwell equilibrium, the 
quasistationary approximation is valid, and we can ob- 
tain from (A.5) the equation (16Lfor the well popula- 
tions. If r,,, >> r,,, and r>> p(C2) Ifla, then the coeffi- 
cients C ,  in this equation reduce to the sum of the 
probabilities of the reorientations in the ground and ex- 
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cited states and a r e  described by formula (18), where 
A ,  = 2rn,, , B, = 2rmn,q2 (6)/r. The ROO kinetics, the 
stationary distribution, as well a s  the self-induced ro- 
tation of the plane of polarization of the radiation a r e  
described under these conditions by formulas (19)-(25). 
In (22) the factor 

must be replaced by the coefficient 

Since the time of energy relaxation a t  w,>> w, is quite 
large (I?" 10'-lo8 sec" for the F center in KC1 accord- 
ing to the estimates ofCl93, the following relation may 
hold in a definite temperature interval 

In this case the fastest process is the equalization of 
the populations of the excited states in different wells, 
and the problem is similar to the case considered in 
Sec. 3, that of large tunnel splitting of the excited 
level. The kinetic equation for slowly varying well 
populations a t  I'>>fp(fi)lfl2 takes the form (16), (18a), 
where A,= 2r,, and B,, = 2q1 ($/N. We note that i t  
does not contain the parameters of the tunneling in the 
excited state or the energy relaxation parameter r. 

 or many tunnel centers the change of the static dipole mo- 
ment upon reorientation i s  p << eao (ao is the lattice constant), 
and at any rate the polarization interaction is less than for a 
small polaron. 

2 ' ~ h e  authors are grateful to M. I. ~Yakonov and 6. I. Rashba 
for pointing out this property of the susceptibility. It can be 
shown that for centers with orientations [I111 and [I101 the 
structure of the numerator and the denominator in the ex- 
pressions for the polarizability is analogous to the structure 
(23), but they are  polymonials of sixth and tenth degree in the 
field, respectively. 

3 ' ~ h e  canonical transformation that relates P with the total den- 
sity matrix is analogous to that used in Sec. 2, but now 
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