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The influence of an electric field on the absorption of light in semiconductors is investigated with account 
taken of the Coulomb interaction of the electron and hole. The electric field is assumed to be 
quasiclassical. It is shown that the Coulomb interaction leads to the appearance of a Sommerfeld factor in 
the continuous spectrum, just as in the absence of an electric field, and alters the character of the 
oscillations of the light-absorption coefficient in an electric field in such a way that the oscillations assume 
a sawtooth form near the edge of the continuous spectrum. Expressions for the light absorption coefficient 
in the forbidden band are derived and analyzed both far from the resonances and in their immediate 
vicinity. 

PACS numbers: 78.20.Jq 

1. INTRODUCTION 

The Keldysh-Franz effect has been the subject of 
many both theoretics! and experimental studies. From 
the very outset i t  was clear that the Coulomb interaction 
between the produced electron and hole should alter the 
effect substantially. The undertaken numerical calcula- 
tions provided practically no information on the influ- 
ence of the interaction on the absorption in an electric 
field. 

Substantial progress' in this direction was made by 
Merkulov and ~ e r e l ' , ~ ' * ~ ]  who obtained the asymptotic 
light absorption coefficient at large proton-energy defi- 
cits, and investigated the change of the absorption in 
transitions of the exciton to i ts  ground state in an elec- 
t r i c  field. The principal results of these studies can be 
summarized briefly a s  follows: at large energy deficits 
the Coulomb interaction alters the pre-exponential fac- 
tor in the asymptotic expression for the Keldysh-Franz 
effect, both as a result of the change of the wave func- 
tion over short distances and as a result of the lowering 
of the potential barrier. At photon energies correspond- 
ing to exciton production in the  ground state, the ab- 
sorption has a resonant character. The width of the 
maximum is determined by the probability of ionization 
of the exciton by the electric field. However, the ques- 
tion of how the absorption varies in the continuous spec- 
trum remains open. Notice should be taken here of the 
numerical calculations made by B l o ~ s e y , ~ ~ ]  who inves- 
tigated these questions. 

In the present paper we construct a theory of exciton 
absorption in an electric field for both the continuous 
and discrete spectra; we also recalculate the results of 
Merkulw and Perel'  for large energy deficits and re-  
fine the cri teria for their applicability. Our method of 
solution differs from that of Merkulov and Perel'  and 
is close to the method used to calculate the probability 
of ionization of the hydrogen atom (e.g. ,C41). 

2. ABSORPTION OF LIGHT BY AN EXCITON IN THE 
CONTINUOUS SPECTRUM 

A) Absorption spectrzcln far fronz the threshold. AS 
usual, the light-absorption coefficient is proportional to 

the square, averaged over all possible states, of the 
modulus of the wave function of the electron-hole pair 
with coincident coordinates of the hole and electron: 

The wave function of the pair is described by the Schr6- 
dinger equation 

Here E = h - E,/2R,, F = e6ad2R0, a, is the exciton ra-  
dius, Y is the relative coordinate of the electron and 
hole expressed in units of a,, and R,  is the binding en- 
ergy of the exciton. 

It is well known that the variables in Eq. (2) separate 
in parabolic  coordinate^.^^] The light-absorption coef- 
ficient receives contributions only from states with azi- 
muthal quantum number m = 0, inasmuch as 9(0)  = 0 for 
other m. Equation (2) reduces to the two equationsc41 

Here fll+flz=l, and 

The effective potentials IT,([) and Uz(q) a r e  shown in Fig. 
1. 

FIG. 1. Effective potentials for finite and infinite motions. 

548 Sov. Phys. JETP 47(3), March 1978 0038-5646178l030548-05$02.40 O 1979 American Institute of Physics 548 



To solve Eqs. (3) we use the fact that at short dis- 
tances we can neglect the electric field and write down 
the exact wave functions in a Coulomb potential. If the 
influence of the electric field becomes substantial only 
in a region where the motion is quasiclassical, then it  
is possible, at short distances, to join together the qua- 
siclassical Coulomb function with the quasiclassical 
function in which the electric field i s  taken 'into account. 
The condition for the applicability of the quasiclassical 
approximation is of the form 

where E = k2/2. 

It is seen from (3) that the influence of the field can 
be neglected if  

It will be shown below that the significant values are 
P2 - k. Then (5) and (6) lead to the following condition 
for the applicability of the solution method described 
above : 

k 3 / F > i .  (7 

This inequality is the only restriction of our theory. It 
requires that the external field be quasiclassical and 
imposes no limitations on the Coulomb energy. 

The normalization conditions for the functions of the 
infinite and finite motion x,(q, P2) and x,([, PI) are 

Under the condition (6) we have 

f, ( q ,  p,) =fa (0, pl)e-''n ' F ( ' l , f  i&/k ,  1, ikq). (10) 

If furthermore kq >> 1, then 

where 6(2 )  = argr(Q+ iz). 

In the region q >  (k/F)lI2 it i s  necessary to take into 
account the field term, so that the function (11) goes 
over continuously into the quasiclassical function in an 
electric field. The normalization condition (8) yields 
directly 

It is seen from (12) that I f2(0,&) I does not depend at all 
on the electric field, for owing to the smallness of the 
above-barrier reflection the function of the infinite mo- 
tion can be normalized by calculating the probability 
flux at any point where the quasiclassical condition (5) 
is satisfied, including a point in which the electric field 
is no longer of significance. 

For the finite motion, the conditions (5) and (6) also 
lead to the inequality (7). Therefore, acting in analogy 
with the preceding case, we can represent f,([,&) in the 
region 1 <<kt; << (kS/~)'I2 in the form 

where 

and k(5) = (V/4+@,/[ - F[/4)Il2, with an arbitrary 
value of [ from the interval l /k  << 5 << (k/F)'12. 

The condition for quantization in the potential U,([) i s  
of the form 

s(t3 - (Z+'fJ n. (1 5) 

where [, = k2/F i s  the right-hand classical turning point. 

Far from the edge, as we shall show, an important 
role i s  also played in the action S([,) by values flImk. 
Then (14) and (15) yield 

We shall need henceforth the quasiclassical state den- 
sity 

(17) 
where 

To calculate f,2(0,,9,) we use the normalization condi- 
tion (9), and break up the entire region 0 a [ a [,, of in- 
tegration with respect to [ into two regions: 1) 0 -( 5 GZ 
and 2) F G [ G 5,. In the integration over the first re- 
gion it i s  necessary, by virtue of the condition (6), to 
use the exact Coulomb function, while in the second re-  
gion it i s  necessary to use the quasiclassical function in 
the electric and Coulomb fields. As a result of simple 
calculations, using expression (17) for v(P,), we obtain 

-We note that expression (18), or more accurately its 
connection with the state density, would be trivial i f  
only the quasiclassical regions were to contribute to the 
normalization integral and to the action. In our case, 
however, the quasiclassical region also makes a sub- 
stantial contribution [the second term in (17)] 
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To calculate the sum we use the Poisson formula 

The integration in (20) is carried out not from the end 
point of the spectrum BY)= -k4/16f, but from -a, since 
allowance for the fact that Oj0) is finite leads to a cor- 
rection on the order of exp(-k3/F), which is smaller 
than the e r ro r  in the quasiclassical approach. 

Substituting in (20) the explicit expressions (12), (18), 
@ (ls), we obtain after simple transformations 

Going around the point 0 in the upper half of the complex 
t-plane along a semicircle of radius 1 <<R << k3/F and 
neglecting, relative to  the parameter (k3/F)", both the 
integral along this semicircle and the residues of aH 
the poles of the integrand that lie inside the contour, 
except the one closest to the real  axis, we obtain 

We have neglected all m > 1 relative to the same pa- 
rameter (k3/F)-l. In dimensional variables we have 

where 

B) Absorption near  the threshold. We now consider 
the light absorption spectrum at k<< 1. We assume, a s  
before, that k3/F is large and show that in this region 
the principal parameter is the quantity k4/F, so  that at 
k4/F >> 1 the results  obtained for k 2 1 can be joined to- 
gether with the results  obtained for k << 1. 

In the case of infinite motion, expression (12) was 
obtained by us without restrictions on the value of k. 
For finite motion, the form of formula (18) is likewise 
preserved. All that changes is expression (17) for the 
state density v(Pl). In fact, the quantization condition 
(16) was derived under the condition Pl - k, which was 
verified in the course of the integration in (21). On the 
other hand, in the case k << 1, the important values in 
the integration are  Pl - 1, s o  that the quantization condi- 
tion must be derived anew. 

At 5 << Pl/k2, (j31/~)1'2, the wave function in the Cou- 
lomb field is 

If furthermore 5 B 1/&, then we can write the asympto- 
tic form of (23): 

It is seen that (23a) is the quasiclassical wave function 
with 

Proceeding further to values of 5 where the electric 
field comes into play, and matching (23a) with the qua- 
siclassical iuacticm i n  this region, we  find thaf 

6 

S (1) = j (k'/4+p1/Et-Fpf/4) " d5,'. (24) 
0 

The quantization condition takes the form 

where 

is the right-hand turning point. After simple calcula- 
tions we obtain for S(tl) 

here 

K(z )  and E(z) a re  complete elliptic integrals of the first  
and second kind, respectively. 

The state density is of the form 

The condition 8, >> k is equivalent to the condition xy  
>> 1. By direct calculation we can again verify that the 
normalization integral, as before, is proportional to 
v(Pl), and therefore, in accordance with (21), 

where cp ( x )  = (3F/k3)S(t1). At x << 1 we have 

Therefore in the upper half-plane the integrand in (27) 
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attenuates exponentially, and in the calculation of the 
integral we can close the contour in the upper half- 
plane. It turns out that there are  two se ts  of poles inc 
side the contour: 

The residues of the poles of the first  set  a re  small  
in the parameter k << 1 in comparison with the corre- 
sponding residues of the second set, and can be ne- 
glected if k << 1, so  that the expression under the sum- 
mation sign with respect to m takes the form 

At small k, the expression in the exponential can be ex- 
panded in the form: 

(30) 
Substituting (30) and (29) in (27) and changing the or-  

der of the summation, we obtain 

where 

We consider f irst  the case xo = 16F/k4 << 1. Using 
asymptotic expressions for the complete elliptic inte- 
grals, we obtain 

Since q>> 1, it suffices to retain in the sum (29) only the 
term with n = 0, and the remaining terms will be small 
in terms of the parameter F/4k4 << 1. Moreover, using 
the asymptotic expression for I'(l - i/k) in (29), we ver- 
ify that the asymptotic forms of (31) at xo << 1 and of (22) 
at k << 1 coincide. Thus, expression (22) describes the 
absorption of light at arbitrary k under the condition 
k4/F>> 1. 

If xo >> 1, then q << 1, therefore the sum over n can be 
replaced by an integral. As a result we have 

If 0 -n(2j+1)>>1, then 

but if 8 - r ( 2 j + l ) s q < < l ,  j=0,1,2,. .. , then 

Here [ z ]  is the non-integer part of z. Thus, at small k 
the oscillations in the Keldysh-Franz effect, with allow- 
ance for the Coulomb interaction, a re  transformed into 
a sawtooth curve. 

C) Absorption in the forbidden band. If the photon 
frequency is less  than the width of the forbidden band, 
then if no account is taken of the Coulomb interaction 
the absorption edge becomes smeared out, because of the 
possibility of electron-hole pair tunneling. The change 
of the absorption in an electric field, with account taken 
of the Coulomb interaction of the electron and the hole, 
was investigated by Merkulov and Perel"" at large 
photon-energy deficits (E, - &)/e&a, and by Merkulwczl 
near resonance with the ground level of the exciton. 

In the present section we obtain these results  anew by 
our method, and also investigate the absorption near 
resonances with excited states of the exciton in an elec- 
t r ic  field. 

When finite motion is considered at sufficiently large 
energy deficits x3/F >> 1 and far from resonance, we 
can neglect the electric field completely and use the 
wave function of the electron in an unperturbed Coulomb 
potential: 

The quantum number is 8, = x(n,+ i), where x2/2 = -E. 
The normalization condition yields 

In the region g << (pz/F)1/2 we can neglect the electric 
field also for infinite motion, and then the wave func- 
tion takes the form 

f2(11) = f : ( 0 ) c - L n  ZF(-tIZ+,32~~,  1, xil). (36) 
at x g  >> 1 we have 

and the motion in this region is quasiclassical. Just a s  
in the preceding section, the wave function (37) can be 
joined together with the quasiclassical function in the 
region where the electric field comes into play. This 
quasiclassical function is, as usual, of the form 

The complete "below the barrier" action up to the right- 
hand turning point is equal to 

where 11, =xZ/F is the right-hand turning point and 7 is 
chosen such that 1 but FV/4 <<fl,/w, x2/4. 

To the right of the turning point we obtain the follow- 
ing quasiclassical function: 

f2(0) esp(S(11,)) 2 cos S(11) 
I=(*')= r(Il2 - pJx) I,;(t1) 

but according to  the flux normalization condition the co- 
efficient of I k(g) 1 '112~os~(g) should be equal to l/n. 
Therefore 
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Thus, using (35), (38), and (39), we find that 

In our approximation F/4x3 ,  we retain in the sum in 
(41) only one term with n, = 1). The result is 

The last expression coincides with the result of Mer- 
kulov and Perel', which they obtain by another method 
under the assumption X2/F >> 1. 

Expression (42) is incorrect when the photon fre- 
quency is very close to the energy of a transition into 
any bound state of the exciton. Near resonance it is 
necessary, first, to take into account the Stark effect, 
and, second, one cannot neglect the damped exponential 
in the quasiclassical Coulomb wave function, since the 
coefficient of the growing exponential vanishes at reson- 
ance. Indeed, although the wave function of the-Cinite 
motion remains the same a s  before and is described by 
expressions (34) and (35), while the wave function in the 
Coulomb region f,(qj is described as  before by expres- 
sion (36), the form of f2(q) changes near resonance at 
qx.>>l: 

where y =p2 - x(n, + )) and 4, i s  the perturbation-theo- 
r y  correction on account of the Stark effect.c41 

The quasiclassical asymptotic form of the Coulomb 
function (43) can be drawn together with the quasiclas- 
sical function in an electric field first under the barri- 
e r ,  and the latter-with the function to the right of the 
right-hand turning point. Once matched, the wave func- 
tion in this region takes the form 

where S(q,) is determined from expression (38). Using 
the normalization condition, we obtain 

FIG. 2. The schematic form of the absorption spectrum in the 
forbidden baad 

Thus, the absorption coefficient has a Lorentz shape 
with a width equal to the ionization probability of the 
given level. Near the resonances, expression (45) must 
also be transformed by substituting the explicit expres- 
sion for 4, and by using the connection between the 
parabolic quantum numbers and the radial quantum num- 
ber N: 

After simple transformations, we ultimately obtain 

Figure 2 shows the schematic form of the spectrum. 
It is seen that the linewidth increases with increasing 
number of the level in the given multiplet. The latter is 
natural, inasmuch a s  for large values of the parabolic 
quantum number n, the wave functions a re  shifted rela- 
tive to the field, and their tunneling probability is there- 
fore larger. At N =  1, expression (47) coincides with 
the corresponding expression for the light absorption 
coefficient in Merkulov's paper. 
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