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The Hartree-Fock theory is used, subject to allowance for the nonorthogonality of the wave functions of 
free and bound electrons, to obtain an expression for the dependence of the energy of the exchange 
interaction between these electrons on the various overlap integrals and on the spin state of the interacting 
particles. This expression yields, in particular, a formula for the total exchange integral in the weakly 
nonorthogonal case when the Heisenberg spin Hamiltonian can be used. Attention is drawn to the linear 
nature of the dependence of this energy on the quasimomentum of the conduction electrons in magnetic 
semiconductors. 

PACS numbers: 71.70.Gm 

The exchange interaction between the conduction elec- 
trons (holes) and localized d or f electrons governs a 
variety of physical properties of magnetic semiconduc- 
to r~ . [ ' .~ ]  The same interaction i s  responsible for a 
number of phenomena in magnetic metals and nonmag- 
netic conducting materials containing paramagnetic im- 
purities.[3-51 The interaction is described by introduc- 
ing into the Hamiltonian of the system an appropriate 
t e rm which is  usually expressed in the familiar Heisen- 
berg form: 

where & and 9, are the spin operators, and I is the con- 
stant of the investigated material. 

It i s  known that this effective Hamiltonian gives r i se  
to the same energy spectrum a s  a consistent micro- 
scopic description allowing for the Pauli principle and 
using the constant 

I=x=A' qo' (I) q,' (1') ~ ~ ( 1 ,  r') q,, (r') q,(r) drdr' (2) 

only when the wave functions of the interacting particles 
a r e  orthogonal. If the nonorthogonality i s  weak (this 
may be true, for example, in the interaction between 
electrons localized a t  different atoms), Eq. (1) gives an 
approximately correct  dependence of the energy on the 
spin state of the particles but in this case allowance for 
the nonorthogonality a l ters  drastically the results ob- 
tained. r677J 

It is quite clear that the assumption not only of the 
orthogonality of the wave functions of free and localized 
electrons but also of the smallness of the overlap inte- 
grals between them i s  not, generally, justified in des- 
cribing the interaction of such electrons. The approxi- 
mate orthogonality of their functions may be true only 
under certain specific conditions. Some of the situa- 
tions under which these conditions apply to the interac- 
tion of a conduction electron with a paramagnetic im- 
purity a r e  discussed by Vikhnin et a1.[5' Numerical cal- 
culations of the coefficient I, carried out using the 
Heisenberg Hamiltonian for rare-earth metals allowing 
for such a weak nonorthogonality, a r e  reported by 
Watson et a1. 17] 

In some cases  the nonorthogonality of the wave func- 
tions of f ree  and bound electrons i s  allowed by consid- 
ering virtual t r a n ~ i t i o n s " . ~ ~  o r  introducing-in a special 
manner-effective potentials. Cgl However, a rigorous 
derivation of the dependences of the relevant terms on 
the spin states of the interacting particles i s  difficult 
and it has not yet been carried out. 

The purpose of the present paper is to use the f i rs t  
quantum-mechanical principles in deriving an expres- 
sion for the contribution made to the energy of the 
system by the conduction and localized d o r  f electrons 
as a result of the exchange interaction between them, 
a s  a function of the spin state of these particles without 
invoking the Heisenberg Hamiltonian; moreover, atten- 
tion will be drawn to the dependence of this  energy con- 
tribution on the quasimomentum of the conduction elec- 
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trons. One can a priori hope to be able to carry out 
such calculations mainly because the problem can be 
regarded a s  of the one-particle type in the case of the 
conduction electrons. 

I. The Hamiltonian of a system composed of a con- 
duction electron and N magnetic atoms, carrying z 
electrons of the d or  f type with unpaired spins, can be 
written in the form 

Here, Go, m, and r, are,  respectively, the momentum 
operator, mass, and coordinate of the conduction elec- 
tron; V(r,) represents the Coulomb energy of the inter- 
action of this electron with all N nuclei; V(r,, r,) is the 
energy of the Coulomb interaction of a free electron 
with each of the localized electrons; r, a re  the coordi- 
nates of the localized electrons; X, is the Hamiltonian 
of the system in the absence of the conduction electrons. 
We shall take the many-particle antisy mmetric wave 
function of the problem to be the Slater determinant of 
one-particle spinor wave functions 

where i and j are  the indices of the columns and rows, 
respectively; the index "0" refers to the conduction 
electron, and 1,. . . , zN describe the localized d o r  f 
electrons. The problem i s  to find the energy 

As stressed earlier,  the important feature in our 
case is the nonorthogonality of the wave functions of the 
conduction electron and of the d (f) electrons; there- 
fore, it is  desirable to show this nonorthogonality ex- 
plicitly, i.e., in terms of the overlap integrals, and not 
in some effective way via virtual or  
effective  potential^.^^' For this reason we shall use the 
traditional Heitler - London approach, i. e., we shall 
assume that all the one-particle wave functions a re  the 
eigenfunctions of the corresponding one-particle Hamil- 
tonians and a re  nonorthogonal relative + \ one another. 
The denominator of Eq. (5) is the determinant of the 
overlap integrals L ,,[lo]: 

The following two approximations will be used in cal- 
culating the energy (5) on the basis of such wave func- 
tions. 

1. We shall consider materials for which d: << 1 and 
we shall include only the terms -11,12; we shall ignore 
the terms - 1  1, I20(d:), where O(S) is a polynomial con- 
taining various powers of e. 

2. We shall ignore the influence of the exchange in- 
teraction of the conduction and d (f) electrons on the 
wave function of the latter electrons, i.e.," 

10 connection with the first  of these approximations 
one must point out that allowance for the finite width of 
the d-electron (or f-electron) band [terms which are,  in 
our terminology, proportional to 11 1 / 'O(d:)] on the ex- 
change between them and conduction .electrons in ferro- 
magnetic semiconductors was made by ~ a l k a r e l  and 
~iki tov.~" '  Erernin and ~ h a l i u l l i n ~ ~ '  considered a con- 
tribution made by the terms proportional to 11, ('6: to 
the exchange between the localized d ( f )  electrons in 
ferromagnetic metals. 

2. We shall use Eqs. (3)-(?), rule on determinants, 
and invariance of the total Hamiltonian (3) under trans- 
position of the coordinates of the interacting particles 
to obtain the following expression for the energy of the 
system in question: 

Here, 

a, and 1, a r e  defined above [see Eqs. (2) and (6)]; the 
angular brackets a re  used to denote the matrix ele- 
ments, for example, 

We note that neglect of the overlap integrals between 
the wave functions of the d (f)  electrons results, for 
the selected normalization, in 

For  I , =  0 the energy formula (8) clearly gives the well- 
known expression which occurs in the Hartree-Fock 
theory. The last term of the numerator in Eq. (8) does 
not contain explicitly the overlap integrals d: of the 
wave functions of the localized electrons but it i s  pro- 
portional to the first  power of these integrals, which 
readily follows from Eq. (11). 

In view of the above comments, we shall ignore this 
term." 

We now recall that one-particle wave functions a re  
spinors: 

The coefficients a,,, which determine the spin state of 
a conduction electron in the case of an inhomogeneous 
distribution of spins of the d ( f )  electrons may-in 
general-depend on the coordinate.c21 However, it is 
natural to assume that this dependence is weak com- 
pared with the dependence on r of the coordinate parts 
of the wave function cp,(r), i.e., the coefficients u,,, are  
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constant to within one unit cell and vary only from cell 
to cell. The integration ranges of a, in Eq. (2), 1, in 
Eq. (6), B,  in Eq. (lo), and { j I V, 10) a re  governed by 
the localization of the d (f) electrons, s o  that the spin 
parts of the wave functions can be taken outside the inte- 
gral  in every one of these expressions. Therefore, the 
sum in the denominator of the second term of Eq. (8) 
can be rewritten a s  follows: 

where 1, i s  still given by the integral (6) but this inte- 
gral  relates only to the coordinate wave functions. 
Next, we shall assume that, on the basis of the Bloch 
theorem, 1 1,12 i s  independent of the unit cell number, 
so  that 

where sj and so a r e  the average values of the spins of 
the d ( f )  electrons and conduction electron, respective- 
ly, and that the intraatomic Hund coupling is stronger 
than the exchange interaction of a d ( f )  electron with a 
conduction electron; consequently, instead of Eq. (13), 
we obtain 

where S,=zs,  i s  the total spin of the j -th atom, l2 is the 
average over the unit cell: 

Exactly the same procedure can be used to transform 
all the terms in the numerator of the second term in 
Eq. (8), so  that the required expression for the energy 
becomes 

where the terms in the expression for I a re  defined a s  
in Eq. (16). 

In the case when we can ignore l2 compared with unity, 
Eq. (17) gives the familiar expression which, obviously, 
can be obtained using the Heisenberg Hamiltonian with- 
out allowance for the Pauli principle and using I defined 
by Eq. (18): 

In general, when so and Sj do not have eigenvalues a t  
the same time (this is a typical situation in the inter- 
action between the conduction and localized electrons a t  
T+ 0), it is impossible to obtain a complete expression 
for E,,,, allowing for the denominator by some spin 

Xamiltonian. However, if so and S, have eigenvalues at 
the same time, then E,, can be regarded as represent- 
ing the eigenvalues of the following effective Hamil- 
tonian: 

It should be noted that the eigenvalues of the Hamil- 
tonian containing the operator so . S, (for z # 1) cannot 
be identical with E,,,,. 

The usually employed one-particle schr;;dinger equa- 
tion for a conduction electron i s  obtained from Eq. (19) 
by the standard Hartree-Fock procedure. The corres- 
ponding Euler-Lagrange equation is 

In principle, the above equation can be used to find 
&(r, o) and, in particular, the most interesting coordi- 
nate dependence of the direction of the conduction elec- 
tron spin. We shall not be interested in this problem; 
for some special cases (specific distributions of S,), 
it i s  considered by a variety of methods in published 
 paper^.^'^-'^^ We must draw attention to just one c i r -  
cumstance. In those cases when the second term on the 
left-hand side of Eq. (21) can be regarded a s  a pertur- 
bation, the zeroth-approximation wave function i s  the 
eigenfunction of the Hartree operator and, in the f i rs t  
order, the expression for I given by Eq. (18) reduces 
to the very simple form 

~ = a - I S ,  (22) 

which resembles the well-known expression for the ex- 
change constant of the hydrogen molecule. The second 
term in the above equation naturally differs from the 
corresponding t e rm for the hydrogen molecule because 
the zeroth-approximation is the Hartree Hamiltonian 
rather than the atomic one. The criterion of validity 
of the perturbation theory in the case of Eq. (21) and 
an arbitrary distribution of Sj  requires a separate dis- 
cussion. However, in the case of a homogeneous dis- 
tribution, this criterion is 

where W is the allowed band width. 

3. The coefficient I of Eq. (18) and the overlap inte- 
gral  1 of Eq. (6) contain the wave function of a conduc- 
tion electron, which depends on i ts  quasimomentum k 
and, therefore, the exchange potential energy should 
depend on k. In the case of ferromagnetic metals, this 
dependence has been investigated numerically [I1 and 
observed e~perimentally.~'~'  It i s  not possible to obtain 
some analytic expression for this dependence. 

In the case of semiconductors, we can assume ap- 
proximately that the dependence E,,,(k) is linear be- 
cause the range of integration for I of Eq. (6) and I of 
Eq. (18) is, in fact, governed by the size of the locali- 
zation region d ( f )  electrons, which is of the order of 
the lattice constant a,  s o  that throughout this region we 

534 Sov. Phys. JETP 47(3), March 1978 A. N. Zaitsev 534 



find that k r<< 1 f o r  the filled states in the conduction 
band. Making allowance f o r  th i s  point, we can obvious- 
ly write the  one-particle spec t rum of the conduction 
electron in a wide-gap magnetic semiconductor  with 1' 
<< 1 in  the f o r m  

where I,, and I, are the coefficients of the expansion of 
I of Eq. (18) in terms of ak. For real ferromagnet ic  
semiconductors  the  total energy of the  exchange inter- 
action of a carrier with the  d ( f )  electrons r e p r e s e n t s  
a few tenths and may even approach 1 eV. T h i s  is 
probably proved most direct ly  by the  published 

e ~ p e r i m e n t s , ~ " ~ ' ~ ~  so that a typical value of the quan- 
tity ak I, should r e p r e s e n t  a few hundreds of degrees ,  
which-for nondegenerate semiconductors-is consid- 
erably g r e a t e r  than the  kinetic energy of the conduction 
electrons and, therefore,  th i s  t e r m  should have a 
strong influence on the behavior of the o ther  t e r m s .  
For example, it  is clear that allowance f o r  th i s  t e r m  
cardinally alters the nature of cer tain t ranspor t  effects  
in these materials. 

"1n principle, this influence can be allowed for in the appro- 
priate one-particle Hartree-Fock equation using the pertur- 
bation theory, which in this case should work well because 
usually the localized-electron spectrum depends weakly on 
the degree of magnetic ordering of a crystal. 

''1t should be noted that this term differs slightly from that con- 
sidered by Eremin and Khaliullin c91 although it is of the same 
order of magnitude; Eremin and Khaliullin consider (in our 
notation) terms of the &a= &(O, j 1 V(r, f.l) I j ,  0) type Icom- 
pare with Eqs. (8) and ( l l ) ) ,  which cannot appear in our 

treatment because we have assumed right from the beginning 
that djl- 0. 
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It is shown that the well-known PooleFrenkel formula, describing the dependence of the thermal 
ionization coefficient f l  on the electric field $in a semiconductor, should be modified. In addition to the 
exponential dependence of f l  on g, which appears because of the reduction in the ionization energy of an 
impurity in the applied field, allowance should be made for the electric-field dependence of the 
preexponential factor, associated with the change in the rate of diffusion of electrons over highly excited 
impurity states in the presence of the field. The ~itaevskii method is used to obtain an expression for the 
coefficient of thermal ionization from a Coulomb impurity center in an electric field in the specific case 
when the ionization is due to the interaction of electrons with acoustic phonons. 

PACS numbers: 71.55.-i, 71.38.+i 

1. The  probability of thermal  ionization of a n  impurity conducitvity of a n  insulator  i n  the prebreakdown statec1' 
cen te r  in s t rong e lec t r ic  f ie lds  is known to rise expo- and Frenke l  explained th i s  effect t h e o r e t i ~ a l l y . ~ ~ ~  

nentially with the  field intensity. T h i s  is known as the 
Poole-Frenkel effect, named in this way because Poole 
w a s  the f i r s t  to  observe a n  exponential inc rease  in  the The Frenkel  idea w a s  that the application of a n  elec- 
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