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An investigation is reported of asymmetric distributions of steady-state parametrically excited waves in the 
case when the equations of motion have spatial symmetry, for example, rotational or axial. It is shown 
that the symmetric and almost all the asymmetric distributions are frequently characterized by instabilities 
whose growth produces the lowest-symmetry distributions. These results are used to analyze the 
distributions of parametrically excited spin waves in ferromagnets and antiferromagnets, for which stable 
asymmetric distributions with several pairs of excited waves are found. Consequences of the theory and 
experimental data are discussed. 

PACS numbers: 03.40.Kf. 75.30.D~ 

INTRODUCTION 

The theory of parametrically excited waves in con- 
tinuous media, particularly magnetic materials and 
plasma, has recently received a considerable impetus 
(see, for example, recent rev ie~s[ '*~3.  One of the 
most important questions is the nature of the states of 
motion established as  a result of growth of parametric 
instabilities. The present paper reports an investiga- 
tion of steady-state distributions of waves excited 
parametrically under the following conditions: 

a) the initial equations of motion have some spatial 
symmetry in particular, they are symmetric relative 
to rotation or  turning about some axis; 

b) only the four-wave interactions of parametrically 
excited waves are important so  that the equations of 
motion have the form (1 .I). 

We shall concentrate on parametrically excited spin 
waves in magnetically ordered crystals but the results 
will be applicable also to parametrically excited waves 
of other types to the extent that equations of the (1.1) 
type are satisfied. 

If the equations of motion are invariant under certain 
spatial transformations, then asymptotically stable 
solutions, describing the steady states of motion, are 
either invariant under these transformations or nonin- 
variant. The noninvariant solutions form sets such that 
the application of a spatial transformation which leaves 
the equations invariant transforms noninvariant solu- 
tion into some other solution in the same set.') 

Symmetric solutions of the system (1) in the case of 
parametric excitation of spin waves in magnetic mate- 
rials under rotational symmetry conditions were in- 
vestigated by Zakharov, L'vov, and   tar obi nets.^'^ The 
present paper is concerned with asymmetric solu- 
t i o n ~ . ~ )  We shall find sets of asymmetric solutions 
and consider instabilities whose growth lowers the 
symmetry of the solutions. We shall use the results to 
analyze the distribution of parametrically excited spin 
waves in ferromagnets and antiferromagnets (Sec. 3). 
We shall show that stable states of motion, in which two 
pairs of waves are excited, can exist in a parallel- 

pumped easy-axis ferromagnet. Study of the similar 
process in cubic antiferromagnets shows that sym- 
metric distributions are always unstable and stable 
states of motion may be those in which one or  two wave 
pairs are excited. We shall conclude (Sec. 4) with a 
discussion of the results obtained, some consequences, 
and experimental data. 

1. PROPERTIES OF STEADY STATES 
OF MOTION 

We shall use the reduced equations of motion which 
allow only for the interaction of pairs of waves (with 
the wave vectors k and -k) with one another and with an 
alternating pump field:3' 

L r i t = n t  -yk+hl'ksin $t + S k t ~ ( l - 6 ~ ~ f )  (l-b-t,.)~io(rl.~-lTI ) , 
2 I C t' I 

Here, n, are the squares of the moduli of the ampli- 
tudes a,; JI, is the sum of the phases of a pair of waves; 
w, are the frequencies and y, the damping coefficients 
of the waves; wo and h are the frequency and amplitude 
of the pump field; V, is the coefficient of the interaction 
of a pair with the pump field; T, and St,, are relatedby 
simple expressions to the four-wave interaction coef - 
ficients Tkltzt34: 

which give the symmetry properties of the coefficients: 

We shall be interested in asymptotically stable solu- 
tions of the system (1.1), describing states of motion 
which become steady as a result of growth of a para- 
metric instability. We can identify three classes of 
such solutions: stationary, conditionally periodic, and 
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stochastic. The stationary solutions describe a set of 
waves with constant amplitudes and phases, which are 
defined by the equations 

The existence of stable solutions of this type may be ex- 
pected for a small excess of the pump amplitude above 
the threshold. 

The nominally periodic solutions describe sets of 
waves with conditionally periodic variations of the am- 
plitudes and phases. These solutions can be found by 
substituting, in the equations of motion, the values of 
a,@) in the form of Fourier-series expansions in which 
the expansion coefficients and frequencies are unknown. 
This produces a system of algebraic equations for the 
frequencies and expansion coefficients [a  special case 
of such a system is  (1.3)], which describes the condi- 
tionally periodic solutions. The existence of stable 
solutions of this class may also be expected for a small 
excess of the pump amplitude above the threshold. 

We may find that among these stationary and condi- 
tionally periodic solutions there are none which are 
asymptotically stable. Then, clearly, the solutions are 
stochastic. The existence of stochastic solutions may 
be expected for a considerable excess of the pump am- 
plitude above the threshold. It should be noted that the 
existence of such states of motion in dynamic systems 
of the general kind demonstrated by Ruelle and 
~ a k e n s [ ~ ]  and discovered, in particular, for systems 
of interacting  wave^.[^*^^ 

A s  pointed out earlier, if the equations are spatially 
symmetric, we can have symmetric or asymmetric 
asymptotically stable solutions. Let us consider a 
simple example. We shall assume that there is a pre- 
ferred axis, for example, one coinciding with the 
direction of the pump field, and the coefficients de- 
scribing the interaction of waves with one another and 
the pump field are independent of the angle cp associated 
with this axis. We shall assume that there is sym- 
metry of rotations about the axis. There may exist a 
solution which is invariant under these rotations. For 
example, the solution may be such that the ends of the 
wave vectors fill a ring or other geometric figure in- 
variant relative to rotations and the amplitudes of all 
the waves are equal (Fig. la). There may also be 
solutions in each of which only the amplitudes of one 
pair of waves do not vanish (these are represented 
schematically in Fig. lb). The orientation of the wave 
vectors relative to rp is arbitrary, i.e., there is an in- 

FIG. 1. In addition to the symmetric states of motion in which 
waves have equal amplitudes and wave vectors filling a ring 
(a), there may be asymmetric states in each of which one pair 
of waves is excited (b). 

finite number of asymmetric states of motion differing 
only in respect of the orientations of the wave vectors 
relative to cp . 

The problem is to find and investigate the stability of 
asymmetric steady-state solutions of the system (1.1). 

2. SYMMETRIC AND ASYMMETRIC 
STATES OF MOTION 

We shall assume that the problem has symmetry rela- 
tive to rotations through angles which are a multiple of 
Acp = n/R (R is an integer) and the rotation takes place 
about a certain axis H,. Considering hV,/y, as a func- 
tion of the polar and azimuthal angles (0, and (p& linked 
with the H, axis, we shall use f2,={0:, cp$ to denote the 
set of angles at which the ratio hV,/y, has maxima. The 
waves whose wave vectors belong to the set f2, are ex- 
cited first and there is a symmetric s ~ l u t i o n ~ ' * ~ ~  such 
that 

for 0, and q, belonging to the selected set of angles a,, 
and 

for all other orientations of the wave vectors. 

The value of I k 1 in Eq. (2.la) is found from the con- 
dition of stability of the solution (2.la) relative to vari- 
ations of the amplitudes whose stationary values vanish 
(in the terminology of Z akharov et a1 ., [I1 this repre- 
sents an "external instability"), which gives the rela- 
t ionship 

In addition to the symmetric solutions [ ~ q s .  (2.1) and 
(2.2)], there can be asymmetric stationary solutions. 
We shall draw attention to one property of the relation- 
ship (2 .la) which governs the stationary amplitudes: it 
includes the sum over all the wave vectors in the set 
a,, i.e., in the final analysis it includes the quantity 
St, independent of the angles. Consequently, in addi- 
tion to Eqs. (2.1) and (2.2), there may be solutions of 
lower symmetry. We shall show when this is possible. 
Let us assume that R is not a prime and r is a factor 
which is an integer so that R = mr. Then, the set 0, can 
be split into m subsets of the wave vectors at), where 
s =  1, 2,. . . , m, in each of which there are 27 values of 
the angles cp, the differences between which are multi- 
ples of m Acp. It may then happen that the average value 
of the coefficient S,' over a subset 51:' is equal to its 
average value over the set a,, i.e., 
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We can easily show that then, in addition to the sym- 
metric solution of Eqs. (2.1) and (2.2), there a re  m 
asymmetric solutions and in every one of these the only 
wave amplitudes that do not vanish a re  those whose 
wave vectors belong to one of the subsets 511.''. These 
solutions are  of the following form: 

and n,=O if k does not belong to  a:'. 
Combining an arbitrary number of the wave-vector 

subsets $2:' we obtain subsets whose average coeffi- 
cients S,,, a re  identical with 3, on the basis of Eq. (2.3). 
We shall use a::' to denote the i-th combination of this 
kind consisting of l(19 1 G m) subsets $2:'. By analogy 
with Eq. (2.4), we can construct stationary solutions of 
the system (1.1) in each of which the only nonvanishing 
and equal wave amplitudes a re  those with the wave vec- 
tors  belonging to a::'. Then, the stationary value 
$,=I), %=tz , , ,  and also the value of (kl a r e  given by the 
relationships (2.4) where r is replaced with l r .  We can 
easily see that for I =  m [i.e., when r i s  replaced with 
R in Eq. (2.4)], the solution (2.4) is identical with the 
symmetric solution of Eqs. (2.1) and (2.2). 

We shall now investigate the stability of the above 
solutions in the presence of variations of amplitudes 
and phases of the excited waves (in the terminology of 
Zakharov et al.,cll this corresponds to an "internal 
instability" ). 

We shall f irst  consider the stability of the resultant 
solutions in the presence of homogeneous perturbations 
of amplitudes and phases. Let 

be one of the stationary solutions and assume that per- 
turbations of all the amplitudes and phases of the ex- 
cited waves a re  equal, s o  that 

We shall substitute Eq. (2.6) in the equations of mo- 
tion (1.1) linearizing them with respect to a,,,  cp,, and 
we shall seek solutions of the resultant equations in 
the form cp ,, e x p ( ~ ( ~ ~ ) t ) .  The characteristic exponents 
a re  given by the expression 

from which we obtain the criterion of stability of the 
stationary solution (2.5) in the presence of homogeneous 
perturbations: 

We shall now consider perturbations of the following 
kind which affect one of the states of motion in which 

lr pairs of waves described by Eq. (2.5) a re  excited: 
we shall assume that only the amplitudes of the waves 
of two of the subsets SZ:' occurring in a re  per- 
turbed, for  example the amplitudes of the subsets S2:' 
and SZr' s o  that 

Let us assume that a - = a:' - a:' and cp - = cpy' - cp:'. 
It is the growth of instabilities in the presence of per- 
turbations of this kind that reduces the symmetry of 
the solution and, in particular, establishes the state of 
motion described by the relationships (2.4). A standard 
investigation of the stability of the solutions (2.5) in the 
presence of perturbations a- and q -  readily yields the 
following expression for the characteristic exponents: 

and the stability criterion 

It is clear from Eq. (2.9) that for I =  2 one of the char- 
acteristic exponents vanishes and, consequently, this 
case requires additional study. 

For  1=2  the equations for a:', a?', and cp- can be 
described with high accuracy by 

which shows that the symmetric solution is unstable if 

The instability increment is then proportional to the 
magnitude of the perturbation. 

A comparison of Eqs. (2.10) and (2.12) shows that the 
stability criterion of interest to us is independent of 1. 
Thus, if the condition (2.12) is satisfied, only an asym- 
metric distribution of parametrically excited waves 
(2.4) may be realized in this system. I t  is necessary 
to investigate also the stability of this state in the 
presence of perturbations of the amplitudes of the 
waves which occur in this state. 

The symmetry relative to rotation through finite 
angles is the special case of the rotation symmetry and 
it reduces to the latter in the limit A cp- 0. The above 
stability cri teria a re  applicable in the limit i f  we find 
discrete se ts  of angles such that the average values 
of the coefficients St,, a r e  identical with the values 
averaged over all the angles q .  If the rotations a re  
symmetrical, S, depend only on the difference between 
the azimuthal angles S,, = S(cp, - cp, ) and can be repre- 
sented by the expansion 

In view of the parity of S(q) only the even values of m 
occur in Eq. (2.13). 

Usually the coefficients S(q) a re  polynomials of finite 
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amplitude consisting of trigonometric functions of the 
angle cp and Eq. (2.13) contains a finite number (2N+ 1) 
of such terms. We can show (see Appendix) that in this 
case the sets 51:' contain a finite number of the angles 
v : 

where 2 r =  2'" and 2 is an integer such that 

A us.efu1 example is the case when S(q) and T(q) a re  
independent of cp. Since the Fourier expansion contains 
only one term, it follows that r = 1 and, consequently, 
a:' contains only two angles cp, and cp,+ n. The criteria 
of stability of the symmetric solution obtained from 
Eqs. (2.8) and (2.10) have the form 

These conditions a re  incompatible. If the first  is dis- 
obeyed, then all the asymmetric solutions appear si- 
multaneously with the symmetric unstable solution. The 
system then has no stable stationary solutions and it is 
necessary to consider conditionally periodic o r  sto- 
chastic solutions. If the first  condition is obeyed but 
not the second, then the stable state of motion is the one 
in which only one pair of waves is excited. 

3. ASYMMETRIC DISTRIBUTIONS OF 
PARAMETRICALLY EXCITED SPIN WAVES 
IN  FERROMAGNETS AND ANTIFERROMAGNETS 

The coefficient S(q) for a cubic ferromagnet was 
calculated by L'vov et aZ.['' They showed that the ex- 
pansion of this coefficient a s  a Fourier series consists 
of only zeroth and second harmonics, given by the 
following expressions 

where 

N ,  is the demagnetization factor; w,/g is the crystallo- 
graphic anistropy field; we, is the exchange frequency; 
a is the lattice constant. 

Typical numerical values of these parameters a r e  
a s  follows: w o =  101° sec", w, = 5 x sec-l, o, 
=0.25 x lo9 sec", we, = kT, N,= 1/3. 

Since S(cp) contains only the zeroth and second har- 
monics, it follows that r=  2 and, consequently, 51:' 
contains two mutually perpendicular pairs of vectors 
forming a cross  and the corresponding asymmetric 
solution is a quartet of waves of equal amplitudes. 

Thus, in addition to  the symmetric (independent of cp) 
distribution of parametrically excited spin waves, there 
a re  also asymmetric distributions containing only two 
pairs of waves. We shall find which of these solutions 
is realized by applying the stability cri teria (2.8) and 
(2.10). Moreover, in addition to S(q), we have to know 
also ?? and T(0). As far  a s  the coefficients T(cp) a re  
concerned, only the expressions for To and T, are  
given in the earlier treatments[1v41: 

whereas the expression for the coefficients T, a re  not 
given; however, the knowledge of To and T, is suf- 
ficient for  our purpose. The definitions of the coef- 
ficients S(q) and T(q) lead to the relationship S(0) 
= T(n), which allows us to find the sum of the coeffi- 
cients TI+ T, and to reconstruct T(0). In fact, 

s o  that 

and, consequently, 

The following stability cri teria of the symmetric (inde- 
pendent of cp) distribution a re  obtained from Eqs. (2.8), 
(2.10), and (3.3): 

It follows from Eqs. (3.1) and (3.2) that the stability 
condition (3.4) is disobeyed for the (111) orientation and, 
consequently, there a re  no stable symmetric or  asym- 
metric stationary solutions and we may expect condi- 
tionally periodic o r  stochastic oscillations in a system 
of parametrically excited spin waves. This has been 
established and it accounts for the experi- 
mentally observed appearance of strong self-modulation 
of parametrically excited spin waves along the (111) 
orientations. 

The stability criterion (3.4) is satisfied by the (100) 
orientation but it follows from Eqs. (3.1) and (3.4) that 
the condition (3.5) is not obeyed and, therefore, the 
symmetric distribution is unstable and only the asym- 
metric distribution in the form of a quartet of waves 
can be stable. 

We shall now consider the internal stability of a 
quartet of waves, i.e., the stability in the presence of 
perturbations of amplitudes of each pair of waves. We 
shall assign the indices 1 and 2 to the pairs of waves 
with mutually perpendicular wave vectors and we shall 
use a,,, = n,,, - n,, and cp,, =cp,,, - cp. An investigation 
of the equations of motion which follow from the sys- 
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tem (1.1) for a-=a1 -az  and cp-=q1-cp,: 

1/2a-=-8sn2q-, s=S,-S(0) , 
lI?(P-=-lk'P-- [ Z T  (n /2)  +ZT (-x/2)  i 2 S ( n / 2 )  -2T ( n )  -T ( 0 )  la-, 

(3.6) 
shows that the two pairs are  stable if 

Since 

i t  follows that the condition (3.7) can be rewritten in the 
form 

It is useful to identify the ranges of the wave vectors 
in which the condition (3.8) is satisfied. It is clear 
from Eqs. (3.1) and (3.2) that only i, depends on k, and 
that S, changes most on increase of k.  Using the ap- 
proximate values of the parameters given above, we 
readily find from Eqs. (3.8), (3.1), and (3.2) that the 
cross is unstable for 0.75 5Rbz 5 1.5. Noting that for k 
= O  we have fi l ,  -0.45, we find that the cross is unstable 
for small and large wave vectors, with the exception of 
the interval just given. Experimental evidence shows 
indeed self-modulation of a system of parametrically 
excited spin waves in approximately this range (see 
Zakharov et al.[ll). The review of Zakharov et al.[ll 
gives the results of a numerical integration of a system 
of parametrically excited spin waves concentrated in 
two rays in the wave space (i.e., of a system corre- 
sponding to a wave quartet) in the presence of an in- 
stability similar to that defined by the criterion (3.8). 
I t  is reported there that the growth of this instability 
results in oscillations of the amplitudes of parametric- 
ally excited spin waves, i.e., it produces the condition- 
ally periodic (or stochastic) regime. 

We shall now consider the steady states of motion of 
parametrically excited spin waves in cubic antiferro- 
magnets. It is shown by L'vov and ~ h i r o k o v [ ~ ~  that the 
coefficients S,,, T , ,  and y, and quadratic polynomials 
inX, andX,,, where X,=sin20,sin 2q,, 6, and cp, are  
the polar and azimuthal angles in a spherical system of 
coordinates oriented along the magnetic field H which 
lies in the easy plane of the antiferromagnet. The 
steady states of motion found by ~ ' v o v  and ~ h i r o k o v [ ~ l  
represent symmetric distributions of n, along the lines 
Xk=Xc and X,= Hc, where Xc is some value which de- 
pends on the pump intensity and tends to zero when this 
intensity approaches the threshold value. In view of 
these properties of the coefficients Sea, T ,  , and y,, 
they a re  constant on the X,= i X c  lines and equal to, 
respectively, S ,  = S(kXc) and T,, = T(*Xc). The ap- 
plication of the results of Sec. 2 shows that the sym- 
metric distributions a re  unstable. Stable states of 
motion a re  those for which only one pair of waves is 
excited along the X,= &X, lines. 

4. DISCUSSION 

The nature of a steady-state distribution of para- 
metrically excited waves can be determined quite 
simply if direct methods for the observation of waves 
a re  available. There a re  relatively simple techniques 
for observing plasma and elastic oscillations and in 
their case the conclusions of the theory can easily be 
checked whenever the process in question is described 
by equations of the (1 .l) type. In the case of spin waves, 
direct observations may be provided by the diffraction 
of light on parametrically excited spin waves (see, for 
example, the work of Bakai and sergeevacgl). The main 
experimental difficulty in the diffraction of light on spin 
waves is the smallness of the photon-magnon inter- 
action but the process is sensitive to the nature of the 
distribution of parametrically excited spin waves. 
Light is scattered resonantly on spin waves whose wave 
vectors k make an angle O,, with the wave vector of the 
incident light q, s o  that 

Since the wave vectors of parametrically excited spin 
waves all lie in the same plane, the condition (4.1) de- 
fines two resonance orientations of the wave vectors of 
pairs. The sum of the squares of the amplitudes of 
parametrically excited spin waves depends weakly on 
their number r [see Eq. (2.4)] and this is why the am- 
plitudes n, a s  well a s  the intensity of scattered light 
decrease on increase of r .  However, if only a few 
pairs a r e  excited in the steady regime, we have a 
situation favorable for the investigation of parametri- 
cally excited spin waves by the diffraction of light. The 
circumstance that the orientations of pairs of para- 
metrically excited spin waves a re  not fixed (only the 
differences between the polar angles of the wave vectors 
are  fixed) makes it difficult to select the orientation of 
the wave vector of the incident light. This difficulty can 
be avoided by disturbing the symmetry of the problem 
by external means so  as to fix the directions of the wave 
vectors of parametrically excited spin waves. 

There are  several indirect manifestations of the 
nature of distribution of parametrically excited spin 
waves but these can be interpreted in two ways because 
measurements usually yield integrated quantities, 
whose behavior is not distinguished in any way for dif- 
ferent types of distribution of parametrically excited 
spin waves. We shall now consider some of them. 

According to the current  idea^,['^*'^^ the hard para- 
metric excitation of spin waves i s  associated with the 
saturation of the wave absorption channels. This i s  
manifested by the presence of a negative nonlinear 
correction to the damping coefficient: 

where yO, is the linear damping coefficient. 

If the wave dissipation channels with different orien- 
tations of the wave vectors a re  different, we may as- 
sume that y,, - 6,, and 
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It i s  clear from Eq. (4.2) that for high values of r the 
nonlinear correction and the hard excitation effect a re  
not significant so  that the very discovery of this effect 
in ferri tes and a n t i f e r r ~ m a ~ n e t s ~ ~ ~ ~ ~ ~ ~ ' ~ ~  may be regard- 
ed a s  supporting the asymmetry of the steady-state 
distributions of parametrically excited spin waves. In 
the hard excitation of such waves there is a consider- 
able time interval between the moment of application of 
a microwave field and a jump in the absorption of this 
field (indicating wave excitation), which may be re- 
garded as the time needed for the transformationsf a 
largely symmetric distribution of spin waves created 
from noise fluctuations into an asymmetric distribution. 
The increments representing the rate of this process 
are  small, a s  indicated by Eq. (2.9). It is worth noting 
that a preliminary excitation of an asymmetric 
"priming" wave of finite amplitude reduces strongly 
this time interval.['41 

Another important phenomenon closely associated 
with the nature of the distribution of parametrically 
excited spin waves is the appearance of collective 
oscillations. It is clear from Eq. (2.5) that the fre- 
quency of homogeneous collective oscillations a,= Im 1 
depends very weakly on the number of pairs of excited 
waves. For example, the ratio of the frequencies of 
collective oscillations in symmetric and asymmetric 
distributions, the latter being characterized by the ex- 
citation of just one pair,4' is equal to ao,/52,, =q as  
easily deduced from Eq. (2.7). In an experimental 
check of this quantitative difference it is necessary to 
determine independently the coefficient sk. 

Self-modulation in a system of parametrically excited 
spin waves corresponds to a transition from stationary 
to conditionally periodic and stochastic states of mo- 
tion. The stability criterion of a symmetric distribu- 
tion['] is 

differs considerably from the corresponding criterion 
of an asymmetric (3.8) distribution of waves in a ferro- 
magnet and be checked experimentally. As pointed out 
in the preceding section, the available experimental 
results a re  not in conflict with the conclusions which 
follow from Eq. (3.8) but they a re  insufficient for a de- 
tailed comparison with Eqs. (4.3) and (3.8). 

I n  the case of a discrete distribution of parametric- 
ally excited spin waves the processes of the interaction 
of these waves with nonparametric waves, ignored in 
the system (1.1), become important. The latter waves 
include, in particular, the processes of coalescence 
discussed above and resulting in a change in y,, the 
processes of decay investigated earlier[16*'71 

a s  well a s  the decay involving acoustic waves. All of 
them alter the distributions of parametrically excited 
spin waves and of nonparametric waves. 

It is necessary to point out one other feature of the 
asymmetric distributions of parametrically excited 
spin waves found above. In addition to a discrete set of 
excited waves, there is a continuum of waves whose 
damping is compensated by the action of the pump 
field 

and which satisfy the resonance condition 

The amplitudes of these waves a r e  negligible only if we 
ignore thermal fluctuations. At finite temperatures the 
level of fluctuations of these amplitudes is very high 
and it differs considerably from the equilibrium fluc- 
tuations. 

APPENDIX 

Let us assume that S(cp) is a periodic function (period 
2n) and 

S (q) = Cs,eik? 
L 

We can easily see that the Fourier-series expansion of 
the function 

contains only the terms with even numbers, and the 
average value Sl(cp) is identical with the average S(cp), 
i.e., it is equal to So. Similarly, in the case of the 
function 

where r =  2', and 1 is a positive integer, the only non- 
vanishing Fourier coefficients a re  those with numbers 
which a re  multiples of 2"' and the average value of the 
function S,(cp) is So. 

Therefore, if the only nonvanishing coefficients in 
Eq. (A.l) a re  those with numbers k not exceeding the 
modulus of N, the average value S(q) in the interval 
[0,2n] is identical with the average value of the sequence 

where 

r=Z1("', ln(NI2)lln 2<1(.1') <In Nlln 2. 

It fotlows that the sequences (A.4) a re  the required 
sets  61:). We can see that N< 2 r  2N. 

"1n other words, the invariant solutions form spaces which 
transform in accordance with the representation of the group 
of given spatial transformations. 

2 ) ~ e  shall call the solutions asymmetric if they have symmetry 
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lower than that of the equation in question. 
3 ' ~ h e  derivation and analysis of the equations can be found in 

the work of Zakharov et al.  
4 ) ~ h i s  case corresponds to Tu,= S ,  = 3, and it occurs, for ex- 

ample, in the case of a cubic antiferrornagnet with the easy- 
plane anisotropy. 
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Splitting of ENDOR lines by a strong microwave field 
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The first experiments on the splitting of ENDOR lines in a solid by a strong microwave field are reported. 
The experiment was performed on F centers in KCl. The splitting was registered at ENDOR sum lines 
from the C13' and C1" nuclei of coordination sphere I1 at T = 300 K. The dependence of the effect on the 
microwave and RF field powers, on the detuning of the stationary magnetic field, and on the temperature 
is investigated. The maximum microwave field intensity attained in the experiment reached 0.14 Oe and 
corresponded to a splitting of 380 kHz. A theoretical explanation is offered for the magnitude of the 
splitting, for the dependence of H,, and for intensity ratio of the split component, as well as for the 
independence of the splitting of the magnetic-field detuning. 

PACS numbers: 76.70.D~ 

INTRODUCTION 

The study of various types of double magnetic reso-  
nances in s t rong  al ternat ing f ie lds  that lead to  coherent 
motion of the spins is of considerable interest ,  s ince 
it permi t s  observation of qualitatively new effects  that 
yield additional information on the investigated objects.  
Up to now, these resonances were investigated mainly 
in  liquids and were  used most  extensively f o r  nuclear- 
nuclear double r e s o n a n ~ e . ~ ' * ~ ~  In electron-nuclear  
double resonance (ENDOR), the manifestation of s t rong  
al ternat ing f ie lds  (which can  b e  in  ei ther  t h e  microwave 
o r  the R F  band) has  been investigated relatively 
little,C2-61 and notice should b e  taken of the contradictory 
charac te r  of a number of these s t ~ d i e s . ~ ~ * ~ ~  The  phe- 

nomena connected with a s t rong  microwave field in sol- 
utions of organic compounds were  considered by F r e e d  
et al.t31 However, both the observed effects  and the  
theoret ical  ana lys i s  f o r  liquids, as is well known, have 
fea tures  that great ly encumber the i r  interpretation; it 
is of therefore of in te res t  to investigate such phenomena 
in solids, where the ENDQR had been m o s t  extensively 
used. 

We have reg is te red ,  f o r  the f i r s t  t i m e  ever ,  effects  
connected with the manifestation of a s t rong  microwave 
field in  ENDOR of solids, studied these  effects,  and 
deduced a theoret ical  interpretat ion that  explains the 
most  significant aspec t s  of the phenomenon. 
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