
(function) of the noise B~,,/ak'. 

At BN,, /akl < 0, we have @, < 0 and damping of the wave 
takes place; a t  a ~ , ,  /akl >0, the sign is opposite: P,< 0 
and the wave is amplified. 

In particular, for an equilibrium spectrum we obtain 
N,, = Tw;: and 8N,,/ak1 <O fo r  all  cases in which kt in- 
creases with increase in k', s o  that the equilibrium 
noise absorbs the wave in spite of the fact that i ts  ener- 
gy spectrum turns out to be increasing in correspon- 
dence with the Rayleigh-Jeans law. 
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The possibility is considered of decreasing the electron heat flux from open traps when the emerging 
plasma stream is strongly expanded in the expansion nozzle. Allowance for weak collisions in an almost 
collisionless plasma, when the mean free path is much larger than the characteristic dimension R of the 
expansion nozzle, leads to the appearance of electrons that are trapped between the exit slit of a trap with 
mirror-configuration magnetic field and a wall with electrostatic potential (p,. An analysis of the equations 
shows that in the case of an unlimited emissivity of the wall the blocking potential is connected with the 
degree of plasma expansion by a relation from which it follows that a relatively small expansion is 
sufficient to decrease substantially the electron heat flux. This estimate of the heat loss is an upper 
bound, since no account is taken of the possibility of turbulence development in the expansion nozzle. 

PACS numbers: 52.55.Ke 

1. INTRODUCTION 

One of the main problems in the development of ther- 
monuclear reaction based on open traps (of the mi r ro r  
anti-mirror, o r  baseball type) i s  the fact that the plas- 
ma can be rapidly cooled in the trap a s  a result of the 
runaway electrons whose flux can exceed that of the 
ions by ( M / m ) ' l z  times. In fact, the time of energy ex- 
change between the electrons and the ions 

is smaller for thermonuclear temperatures T- lo4 eV 
than the Lawson time, so  that the energy lifetime i s  de- 
termined by the cooling of the electrons. 

In the analysis of open traps it is usually assumed 
that the emissivity of the walls i s  either low or  can be 
substantially decreased by using special blocking 
grids,['] so  that the electron heat flux decreases to the 
ion value because of the appearance of an ambipolar po- 
tential between the trap and the wall. In a l l  cases,  how- 
ever, it i s  desirable to expand the plasma stream 
emerging from the trap, for the purpose of reducing the 
heating of the wall, to solve the problem of directly re- 
cuperating the plasma energy by conversion to electric 
energy, etc. When such an expanding nozzle is used, 

the physical picture of the plasma flow becomes unique. 
It will be shown below that expansion of the plasma 
stream leads even on i ts  own to a considerable lowering 
of the electron heat flux from the trap, to a value on the 
order of the ion flux. 

2. QUALITATIVE APPROACH 

We assume throughout that the electron emissivity of 
the wall is large. This takes place either when it i s  im- 
possible to use blocking grids and the heating causes 
evaporation of the wall materials, o r  else through the 
use of special means of producing a plasma and ensur- 
ing i ts  stability. In these cases there i s  a cold plasma 
with unlimited emissivity near the wall. 

In the collisionless case without expansion, the elec- 
tronic heat flux was calculated a number of times (see, 
e.g., c2*31). After a time t ,  - R i  V ,  (R i s  the distance be- 
tween the trap and the wall and V ,  is the average veloci- 
ty of ion outflow of the trap), the electric potential q, 
of the trap relative to the wall decreases from a value 
cp, - ( ~ , / e  ) l n ( ~ / r , ) [ ~  (Debye radius r, << R) to cp, - T, e I3 

because of the production of a flow of cold electrons 
from the wall, and the electron heat flux becomes larg- 
e r  than the ion one by '~n)""imes. In the presence 

50 1 Sov. Phys. JETP 47(3), March 1978 0038-5646/78/03050 1 -05$02.40 O 1979 American Institute of Physics 50 1 



of expansion, o r  if we disregard completely the colli- 
sions in the expansion nozzle, the picture remains un- 
changed, since the ion and electron densities depend in 
like manner on the radius: n,,n,- (r,/r)P (r, is the 
width of the stream prior to expansion, and p = 1  o r  2 
for two- o r  three-dimensional expansion, respectively). 
Therefore the steady-state potential is constant 
throughout (equal to p,) and only near the wall does i t  
experience a jump Acp = p, - T,/e a t  a distance r,. 

Allowance for the weak collisions inside the expansion 
nozzle leads to qualitative changes of the character of 
the plasma outflow. We assume that the particle mean 
free path in the expansion tube is h >>R. Then pfter a 
time t >>T, (the Coulomb collision time of the electrons) 
electrons accumulate in the expansion nozzle and a re  
trapped between the magnetic mirror  and the electric 
potential barrier of the wall. Thus, a t  t > 7, the expan- 
sion nozzle contains four types of electron: a) un- 
trapped, which leave the trap and strike the wall direct- 
ly, overcoming the potential barrier; b) returning elec- 
trons, reflected by the barr ier  and returning directly to 
the trap, c) emitted by the walls, d) trapped. We shall 
henceforth consider for simplicity the case R / X  
<< (r,/R)@, when the collisions a re  s o  ra re  that in first- 
order approximation we can neglect the capture of the 
returning and emitted electrons in one pass through the 
expansion notzle. 

The exchange between the subsystems of the trapped 
and untrapped particles is weak (relative to the param- 
e ter  R/A << 1). This situation i s  similar to that consid- 
ered inc4*51, when the subsystems a r e  weakly coupled 
but nevertheless allowance for the weak collisions in- 
fluences strongly the general properties of the system 
(for example, the influence on the diffusion in the neo- 
classical theory[41), in our case the value of cp,. 

If we assume that the potential c ~ ,  is large enough, so  
that exp(-ep,/T,) << 1, then the electrons in the region 
c q > T, can be assumed to have a Boltzmann distribution 

where no is the density prior to the expansion. Then, 
neglecting the density of the emitted electrons (this is 
obviously valid at large cp), the quasineutrality condi- 
tion 

yields 

We see that the potential barrier for the electrons is 
in fact large at r >> r,, thus justifying the assumption 
concerning the value of p,. Of course, cp, can not ex- 
ceed the ambipolar potential, but this upper bound can 
be obtained only in the region of small (ecp <T,) values 
of the potential, where formula (1) is not valid. From 
qualitative considerations, the form of the electron dis- 
tribution function f, in this region is difficult to deter- 
mine. It can only be assumed that in phase space, in 
view of the continuity off, on the boundary between the 

trapped and untrapped electrons, the characteristic 
form off, turns out to be 

(mv2/2 cerp <T, for  trapped and returning electrons). It 
follows from (4) that in the region erp < T, we have 

We see therefore that p ( r )  will differ strongly from a 
logarithmic function. However, to find the actual form 
of this dependence, as well as the behavior of cp,(R), we 
must find the form off, from the rigorous kinetic prob- 
lem. 

The appropriate analysis is contained in Secs. 3 and 4 
of this paper, and the main result is given by formula 
(26). 

3. FORMULATION OF THE KINETIC PROBLEM 

The principal small parameter is the ratio ro/R << 1. 

Assuming that the plasma confinement time in the 
trap is much longer than the time of establishment of 
dynamic equilibrium between the trapped and untrapped 
electrons, we can regard the electron distribution func- 
tion a s  stationary. To simplify the problem we neglect 
the drift of the plasma due to the curvature of the mag- 
netic force lines, a s  well a s  the thermal spread of the 
ion velocities, and assume that a t  r =r, the ion flux is 
monochromatic and is directed radially: v,= OI, 
P ( ~ T , / M ) ' / ~  (allowance for the ion tempersttupe influ- 
ences weakly the final result). 

For the electrons in the drift approximation, the fol- 
lowing kinetic equation is validL6] 

0,-+--- v -- I VL at. " ' ( r2 VA$)- lTz=  
ar m dr v 

where v,=v cosl?, v,=v sine. 

Since in our case R/h << 1, we can neglect the colli- 
sions in first-order approximation and write down di- 
rectly the solution of the kinematic equation in the form 
of a function of the integrals of the motionc7': f, 
= f (E , p),  where E = mv2/2 - e cp is the energy and p 
=mv:P/2 is the adiabatic invariant. The distribution 
function of the untrapped electrons can then be found by 
starting from the specified boundary conditions at r = r, 
(untrapped and returning electrons) and a t  r = R  (elec- 
trons emitted by the wall). As to the trapped electrons, 
to determine their distribution function we must take 
the weak collisions into account. 

We use for this purpose the method described inca1. 
We represent the solution in the form 

We then arrive a t  the following expression for f ,: 
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where the integration is along the trajectory of the mo- 
tion of the trapped particle. From the condition that f, 
be single valued after going repeatedly around the 
closed trajectory, we get an equation for f: 

An analogous procedure for finding the distribution func- 
tion of trapped particles was used also inc4n51. Equation 
(9) together with the conditions that follow from the con- 
tinuity on the boundaries of the region of the trapped 
particles determines completely their distribution func- 
tion. 

The region of the trapped particles is determined by 
the inequalities 

The equation <(yo) = 0 defines the surface that separates 
the regions of the trapped and returning electrons in 
( E ,  p) space, and it follows therefore from the contin- 
uity off that a t  Y$(E + e 9,) = p we have 

The equation v:(R) = 0 defines the boundary between the 
region of trapped particles and the empty region of the 
(E, p)  space at R << h. A particle landing in this region 
should proceed unopposed to the wall. Therefore, just 
a s  inre1, we can assume that a t  RPE = p we have 

At a distance of several  Debye radii from the wall, 
the potential satisfies the quasineutrality equation 

where nu,,,, n,,, n, and n, a r e  respectively the densi- 
ties of the untrapped, returning, and emitted electrons 
and of the ions: 

Y vo: 

where Z(cp)=E+ecp- pr-*. 

It is convenient to express the collision term in (9) in 
the form[lol 

where 

ing and untrapped electrons 

We have used here the notation 

Equations (9)-(15) form a closed system that describes 
the motion of the particles and the electric field at r, 
<VCR.  

4. EQUATIONS I N  THE REGION r >>r, 

We consider the main region of the expansion nozzle, 
in which R > r  >>yo. For the densities of the untrapped 
and returning electrons we get 

Changing over to dimensionless variables 

where w is a certain constant, we rewrite the system 
(13)-(15) in the form 

where 

g(v) = j f (v') Iv-vfldv'i(R/r)PC(lv-Vi I 

The value of n,, is determined from the condition of 
quasineutrality at the point r,, which yields q =  1 at  u, 
> 1. The boundary conditions at Y >> Y, simplify and take 
a t  uZ - u/zuZ = V;(Y/R)* the form 

and at v: = 0 

f=esp (u-v'w2). 

In the analysis of the system (16)-(18) we make the fol- 
lowing assumptions: 

1. At a sufficiently large ratio R/Y, the resultant val- 
ue of 24, is SO large that exp(-zc,) << 1. 

2. The potential jump a t  the wall i s  u, << 1, so  that there 
exists in the expansion nozzle a region in which u << 1. 
These assumptions will be verified later. Then in the 
region zc << 1, where it i s  possible to neglect the un- 
trapped and returning electrons, the quasineutrality 
condition takes the form 

f(v') takes account also of the contribution of the return- (19) 
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We see that (19) has no solution u = O .  Therefore when 
the wall is approached there must exist a region with n, 
#n,, where it is necessary to solve the Poisson equa- 
tion. Since the approximation r , = O  is used, this means 
that the solution u(r)  of Eq. (19) should have a singulari- 
ty a t  the point r = R .  The necessary condition for the 
singularity of the solution is that all the terms of Eq. 
(19) a re  of the same order of magnitude a t  r = R ,  since 
neglect of any term leads to a solution that is regular a t  
the point R. This leads to an expression for the poten- 
tial jump at  the wall 

where a is a constant of the order of unity. The small- 
ness of u, follows from the large value of u,. 

We put now 

and change over to the new variables r /R  -r and u/wa 
-u. Then 

and the system takes the form 

$$[ - - 2 ~ - B + + 8 ~ ! ~  "f azg a/ -tr = o ,  
ac, do, U L I , ~ ~ ,  au, rPlv-V,I1 1 (24) 

where 

The boundary conditions a t  v2 - u = $4 a r e  

and a t  v, 

f = l .  

In (23) and (24) we have assumed for simplicity that 9, 
i s  not too high, so that we can neglect the term 
2nlJ2ye"/qk(l +uo) compared with unity. Atthe same 
time, V,<< v. We see that we have obtained a system of 
equations, (23)-(25), which contains not even a single 
parameter (qr = 0.3) and having an eigenvalue C We can 
therefore assume that C- 1. In fact, if C >> 1 o r  C<< 1 
in (24), then we can either cancel it. or  neglect it. Then 
the solution of (24) is a function f such that f - 1 in the 
region of untrapped particles. This yields if dv -u312, 
but then a t  r=  l(u(1)-1) i t  follows from the condition for 
the existence of the singularity that C-1. The obtained 
contradiction proves in fact that C-1. Obviously, all  
the conclusions remain in force also a t  large p,, when 
v,>v. 

W e  thus obtain the universal expression 

(C i s  a constant on the order of unity), which makes i t  
possible to determine from the dimension of the expan- 
sion nozzle the value of the blocking potential. In the 
determination of u, the constant turns out to be under a 
logarithm sign, so  that i t s  actual value i s  immaterial. 
From (26) it is seen that a t  sufficiently large R/r, we 
obtain exp(-u,) << 1, but then the assumptions 1 and 2 of 
the present section a r e  satisfied. 

Thus, the behavior of V(Y) has the following charac- 
ter. With increasing r, the decrease of the potential 
from the value cp, is initially logarithmic, until a value 
eq0-T, is reached. After this, in that region of the ex- 
pansion nozzle, where the contribution of the emitted 
electrons can still be neglected, i t  follows from (24) 
that S f  dv -u312, i.e., u ( Y ) - v ~ * / ~  a t  epo<Te.  In the 
principal volume of the expansion nozzle the contribu- 
tion of the emitted electrons must of course be taken 
into account, therefore the potential variation is faster 
than given by a power law and becomes singular a t  r 
= R (i.e., i t  leads, a s  indicated above, to appearance of 
a potential jump a t  the wall). 

5. HEAT FLUX FROM THE TRAP 

The total flux of kinetic energy Q from the trap con- 
s is ts  of the thermal fluxes q,, q,, and q, of the ions and 
of the untrapped electrons and those emitted by the 
wall: 

The escape of trapped electrons a t  R / A C  1 can be ne- 
glected. In the calculation of q ,  we assume for simpli- 
city that the ion distribution function is Maxwellian a t  
v,O. At r=r ,  we have 

where rz ,  is determined from the condition j, = j , 
. . - juntr; I,, I,, and juntr a r e  respectively the fluxes of the 

ions and the emitted and untrapped electrons. From 
this we get 

The heat flux i s  equal to 

At T, = T, = T this formula takes the simpler form 

since q =  1. 
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It is seen that a t  uo=0.5 the heat flux exceeds the ion 
flux by (M/m)'12, and a t  u, = 4 we have Q = 6q,, i.e., the 
use of the expansion nozzle decreases the heat flux 
from the trap by approximately one order of magnitude. 

6. DISCUSSION OF RESULTS 

The results a r e  valid if the particle mean free path 
is X >>R. The additional restriction R/X<< (r,/R)# in- 
dicated in the Introduction is merely a simplification, 
since it obviates the need of considering the structure 
of the boundary layer between the trapped and returning 
electrons. Obviously, even if all  the returning elec- 
trons become trapped after one pass through the expan- 
sion tube (i.e,, R/x> (Y,,/R)~), then a t  R << X the bound- 
ary conditions (25) do not change radically. The puan- 
tity entering here is the mean free path in the region u 
<< 1, where the trapped electrons make the decisive 
contribution to the electron density. The electron den- 
sity coincides with the ion density: n , ~  n , ( r , /~ )~ /  
(1 +ud2)lI2. The characteristic energy of the trapped 
electrons is determined by the value of u,: 

Then the Coulomb mean free path in this region is 

where X, is the mean free path in the trap. Consequent- 
ly, it follows from Xo>R that X >>R, and therefore the 
criterion for the applicability of the results (26) can be 
taken to be the condition )b> R .  

The model considered in the present paper is laminar 
in i ts  character, i.e., it does not take into account the 
possible development of two-stream 

o r  instabilities connected with the anisotropy of the dis- 
tribution function of the trapped electrons, It must be 
noted, however, that all  turbulent processes introduce 
additional friction for the electron flow and will contrib- 
ute to further decrease of the heat flux from the 
trap.t11.121 Therefore the heat flux (28) calculated with 
the aid of (26) is an upper bound of the expected heat 
loss. 

In conclusion, the authors thank Yu. A. Dreizin for a 
useful discussion of the work. 
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