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A theory is &vebpat d ph8mon-w acillstioes in the case of w&y turbulent magnetoactive p h m a  
The oscillations take place in thedrift wlocity and id the plasmon temperature. Special investigations are 
made o f  waves in a gas of MHD phsmo-ndary MHD waves having a linear dispersion law. The 
phase velocity of these depends on the relation between the speed of sound and the Alfven velocity. If the 
speed of sound is less than the Alfven velocity, then the velocity of the secondary MHD waves is close to 
that of the sound. If the inverse relation holds, then the secondary MHD wave velocity is close to the 
Alfven velocity. 

PACS numbers: 52.35.Ra, 52.35.Bj 

As shown by ~ a n d a u , ~ "  unique waves, which he called 
second-sound waves, can propagate in a quasiparticle 
gas. Subsequently waves of this kind were investigated 
in phonon and magnon  case^[^-^' as well as  in plasmon 
gas in the case of an isotropic piasrna.c6-81 

We consider in this paper oscillations in a gas of 
plasmons in an anisotropic magnetoactive plasma. This 
problem is not only of theoretical but also of practical 
interest, particularly in connection with the possibility 
of heating a turbulent plasma by alternating spatially 
inhomogeneous fields. In the case of a spatially homo- 
geneous field, the theory of this heating method was de- 
veloped in C9*'"'. When spatially inhomogeneous fields 
are  used, it is possible to excite in a plasmon gas oscil- 
lations that should increase, under resonance conditions, 
the efficiency of the heating of the turbulent plasma. 
From the character of the resonant absorption i t  is pos- 
sible to ascertain the presence of oscillations in the 
plasmon gas and, in addition, it is possible to  turbulent- 
plasma parameters on which the energy absorption de- 
pends. 

We consider specifically oscillations in a gas of mag- 
netohydrodynamic (MHD) plasmons in the case of a 
weakly turbulent plasma. We assume equilibrium, i. e., 
Planck, plasmon distributions. The waves connected 
with these oscillations will be called secondary MHD 
waves. The oscillations take place in the drift velocity 
and in the temperature of the plasmons. 

We investigate first  the natural oscillations and then 
consider the excitation of secondary MHD waves with the 
aid of space-time modulation of the external magnetic 
field. We shall show that in the frequency region 52, 
<< 1/7, where T is the average plasmon collision fre- 
quency,'"' the secondary MHD waves attenuate weakly 
and can be revealed by the resonant absorption of ener- 
gy from an external source, a modulating field. The 
drift velocity of the MHD plasmons oscillates in the 
plane made up by the vector of the external magnetic 
field and the wave vector of the secondary MHD waves. 
At low values of the level of the turbulent pulsations, 

the drift velocity of the secondary MHD waves is direc- 
ted predominantly along the vector of the external mag- 
netic field. The velocity of the secondary MHD waves in 
the limiting cases V,2 << Vi and V; >> Vj (Vs is the sound 
velocity and VA is the Alfven velocity) is respectively 
equal to 

S='/,13vS, S=7/,lB,~A. 

2. KINETIC EQUATION FOR PLASMON GAS 

To determine the dispersion and the velocity of the 
secondary waves we use the kinetic equation for the 
plasmondistributionfunction N, =N,(r, t )  (a (JJ, ,  k,), pa 
is the plasmon species and k, is its wave vector) at the 
point r and at the instant of time t: 

where w,=w,(r, t) is the perturbed plasmon frequency, 
v, =ew,/e k, is i ts  group velocity, and (N,), is the colli- 
sion integral. 

The use of the kinetic equation is legitimate, strictly 
speaking, if the average plasmon lifetime T and the 
plasmon mean free path a r e  much shorter than the os- 
cillation period and the wavelength of the secondary 
waves. In addition, the dissipative processes should not 
cause too strong a damping of the secondary waves. 

In the study of secondary waves it is customary to 
consider natural oscillations in a gas  of quasiparticles 
with unperturbed frequency. In the presence of external 
sources that lead to  modulation of the frequencies of the 
quasiparticles and to excitation of the secondary waves, 
it is necessary to take into account the dependence of 
the frequency on r and t. We represent this dependence 
in the form 

where w,, is the plasmon frequency in the absence of 
modulation, a, za,(r, t) is a parameter that character- 
izes the depth of modulation, which we assume to be 
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The secondary waves are connected with the deviation 
of the plasmon distribution function N, from the plasmon 
equilibrium distribution function for which the collision 
integral vanishes. It is therefore important to deter- 
mine the equilibrium distribution function. In the pres- 
ence of sources and damping regions of plasmons sep- 
arated by an inertial interval, the problem is very com- 
plicated and must be solved in each concrete case sep- 
arately (see e.g., [12* lS1). 

We shall assume that the number of plasmo~is is large 
enough so that their lifetime relative to plasmon inter- 
action with one another is much shorter than the liie- 
time due to the interaction between the plasmons and the 
plasma particles. (In the case of MHD plasmons the 
corresponding inequalities were derived in [lo].) 

In addition, we shall assume that the intensity of the 
plasmon sources is small enough. In this case the only 
terms of importance in the collision integral &,), will 
be those due to the interaction of the plasmons with one 
another. The presence of damping region can manifest 
itself in the calculation of the damping coefficient of the 
secondary waves. 

If these assumptions are  satisfied, the collision inte- 
gral vanishes for a local equilibrium Planck distribution 
function 

[ ( o~~;~Iu -i I-' 
N,.=Nlo(r ,  t ) =  exp - 

where T* =T*(r,t) and u=u(r,  t) are  the temperature 
field and the plasmon drift-velocity field* In the case of 
total statistical equilibrium we have u=O, and T* i s  in- 
dependent of r or t. We assume the drift velocity to be 
small and the temperature oscillations to be small: T* 
= T*,(l +a), where 9 = 9(r, t) i s  a small relative incre- 
ment of the temperature T$ ( 1  91 << 1). The full-equili- 
b r i m  distribution function is of the form R, = [exp(w,,/ 
T2)-13'. At small perturbations, the functions N,, and 
R, differ little from each other. Expanding N,, in a 
series in the small quantities a,, 8, and k,.u/w,,, we 
obtain 

We seek the solution of the kinetic equation (1) in the 
form N, = N,,+ 6Nl, where 6N1 is a small deviation from 
N,, and is proportional, as will be shown later, to the 
product of two small quantities (a, - 9 - klu/wl,)52,r, 
where 52, i s  the frequency of the oscillations of the sec- 
ondary waves. Therefore in the first-order approxima- 
tion we can neglect in the left-hand side of the kinetic 
equation (1) the derivatives of 6Nl with respect to the 
coordinates and the time. These terms must, however, 
be taken into account in the investigation of the problem 
of absorption of secondary waves. 

Neglecting the damping, we represent the kinetic e- 
quation in first-order approximation in the form 

3. EQUATIONS FOR THE OSCILLATIONS OF THE 
PLASMON TEMPERATURE AND THE PLASMON DRIFT 
VELOCITY 

" 

Using the kinetic equation (5) and the laws of energy 
and momentum conservation in plasmon interaction [the 
number of plasmons is not conserved, since the decay 
and coalescence of the plasmons are taken into-account 
in we obtain equations that describe the changes 
of 9 and u: 

where (...) denotes averaging over the phase space of 
the plasmons: 

The summation is carried out here over the wave vec- 
tors and the species of the plasmons. 

Equations (6) describe the natural oscillations of the 
secondary waves at (a) = 0 and the forced oscillations at 
(a)# 0 without allowance for dissipation. Allowance for 
dissipation leads to a small damping proportional to the 
ratio of the plasmon lifetime to the period of the oscilla- 
tions of the secondary waves. This estimate of the 
damping will be made later on with secondary MHD 
waves as an example. 

Let us examine in greater detail an anisotropic axi- 
ally symmetrical medium with a symmetry axis along 
the unit vector b. In this case it is convenient to repre- 
sent the wave vector k, in the form k, = k, + k,,,b, where 
k,lb. The frequency w,, is  then a function of k, and 
I k,,, I ,  so that the group velocity can be represented in 
the form 

Using these relations, we get 

Substituting these expressions in the system (6) we 
have for the axially symmetric case with allowance for 
the fact that terms of the type (k,a/w,) vanish on account 
of the averaging over the phase space, 

where u=u,+ul,b,r=r,+r,,b,V=V,+b8/8r,l. 
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We consider the natural ocsillations of the plasmons. 
We seek the solution of Eqs. (8) in the form of plane 
waves 

(u, +)-(up, ifcl) exp [ i (qr-Qt)  I 

with a wave vector q and a frequency G?. From the con- 
dition that these equations have a solution, we obtain the 
dispersion equation for the secondary waves 

where q =q, + q,,b and the quantities S,, and S,, which have 
the dimension of velocity, a r e  equal to 

The plasmons oscillate in the direction of the unit 
vector e lying in the plane of the vectors q and b:  

The drift velocities u,,, and u,, can be easily expressed 
in terms of the relative change of the temperature: 

We calculate the momentum density of the plasmon gas 

Using the expansion of N,  accurate to t e rms  linear in u, 
we get 

p,=m,,hj, (14) 

where m*,, is the tensor of the effective mass per unit 
volume of the plasmon gas 

1 
m,;=W(k,kj/o,'), W = - ~ ~ l , ' f l l  (ffl+l). 

To' 

In the case of the Rayleigh-Jeans distribution, Wis equal 
to the energy density of the turbulent pulsations: 

In the axially-symmetrical case 

The secondary-wave energy density averaged over 
time o r  space can be represented in the form 

where the bar denotes averaging. From this expression 
we obtain, accurate to terms quadratic in u, 

In the axially symmetrical case 

Using the expression (12) for the drift velocity and the 
definition (16) of the mass tensor, we get from (19) 

We see  that the energy density of the secondary waves 
is smaller by a factor 2/ 1 9 1 than the plasmon energy 
density. 

We consider now the excitation of secondary waves by 
an external wave modulation of frequency G? and wave 
vector q. Solving the system of inhomogeneous equa- 
tions (8) with respect to 9 and u, we get 

Q2 if=- 
QZ-Q,t '"" 

Q k ' -'I, 
ull = -(3) GI,I(~). 

e = pat w ~ .  
(Q2-Q;) = 

It is easily seen that when the resonance conditions 
G?= a, a r e  satisfied small density perturbations lead to 
large values of 9 and u. This in turn increases the en- 
ergy density of the secondary waves to values limited by 
their damping. 

4. SECONDARY MHD WAVES 

We consider now concretely secondary waves in a 
magnetoactive weakly turbulent plasma in which low- 
frequency MHD waves of three types a re  excited: Alf- 
ven (a), and fast (fi and slow (s) magnetosonic. The 
dispersion of these waves without allowance for the non- 
linear interactions between them is determined by the 
known expressions 

where VA = B ~ / G  is the ALfven velocity, Vs = (Bp/@p), 
is the speed of sound, x,,  = k,,, b = WB,, B, is the external 
magnetic field, and p is the gas-kinetic pressure of the 
plasma. The group velocity of these waves can be re- 
presented in the form 

We note that, independently of the ratio of V, to V,, 
the frequencies w, and w, vanish at k,, = 0. This leads to 
a divergence in the expression for(kf/wi), so that S, and 
ua, vanish When account is taken of the nonlinear dis- 
persion laws of the MHD waves,c141 these quantities dif- 
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fer from zero and depend on the level of the turbulent 
pulsations. At low turbulent pulsation levels, W/p V i  
<< 1, they a r e  small, but they must be taken into account 
in the case of secondary MHD waves that propagate 
transversely to the magnetic field, q, >> I q,, I . 

Let us examine in detail the limiting case of an MHD 
plasma with Vg << V: the main quantities that character - 
ize the secondary MHD waves, calculated with allow- 
ance for the modified dispersion laws,c141 a r e  

We see from these expressions that the secondary 
MHD waves in a plasma with low gaskinetic pressure 
(Vi << Vi) propagate with a velocity on the order of that 
of sound in the direction of the magnetic field, the pro- 
pagation velocity transverse to the magnetic field is 
much less  than the sound velocity, and the transverse 
density mf of the plasmon mass is much larger than 
their longitudinal density m;r. The plasmons oscillate 
predominantly in the direction of the magnetic field. 

All these conclusions a re  valid also in the other lim- 
iting case V: >> Vi, except that the numerical coeffi- 
cients in (24) a re  different, and the sound velocity Vs is 
replaced by the Alfven velocity V,. We present the cal- 
culation results in this limiting case for secondary MHD 
waves propagating at an angle to the magnetic field not 
close to v/2, when the nonlinear MHD wave dispersion 
laws a r e  insignificant: 

The energy density 7, in the two limiting cases is de- 
termined by (20). 

We investigate now the secondary MHD-wave damping 
due to plasmon interaction with one another. To esti- 
mate the damping we retain in the left-hand side of the 
kinetic equation the term (8/8t+ (v1V))6Nl, and linearize 
the collision integral (kl), relative to 6N1. As a result 
of the linearization the collision integral takes the form 

where 1 / ~ ~  is the frequency of the plasmon collisions 
with one another (7, is the plasmon relaxation time), 
and L,{~N) is a linear functional of 6N. As an estimate 
we can put (i+l)c = -7;16N1. If the conditions SZT, << 1 and 

1 q. v 1 T~ << 1 are  satisfied, we have 

Taking into account this term in the system (8) of the 
equations that define 9, and u,, we obtain from the sol- 
vability condition a dispersion equation for the complex 
frequency Ck = a,+ iy,, of the secondary MHD waves, 
where y, is the damping coefficient. In order of magni- 
tude it is equal at V: << Vj  to the product of the square 
of the frequency of the secondary MHD waves by the 
time 7, of relaxation of the plasmons of the slow mag- 
netosonic waves,c111 a time longer than the relaxation 
times of the plasmons of the other types: 

The same estimate can be obtained in a different man- 
ner, namely, by using the formula 

where S* is the entropy density of the plasmon gas and 
was obtained in C9*101. According to [lo] we have T*& - ~,T,W 181 '; taking into account also the expression for 
7,,r201 we obtain ~,-SZ,T,. Using the results  of '"I, we 
obtain the damping coefficient, whose order of magni- 
tude is 

(w ,  is the ion cyclotron frequency). For weakly damped 
secondary MHD waves i t  is necessary to satisfy the in- 
equality 
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The term discarded in the kinetic equation (5) then turns 
out to  equal 
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