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It is shown that the exchange amplitude for elastic forward scattering has an additional cut at the left 
semi-axis of the complex energy plane. The branch point is located at the binding energy of the electron 
in the atom. For scattering by hydrogen atoms, the amplitude diverges logarithmically at E = - 1 Ry and 
hence this branch point is logarithmic. On the I&-hand axis of the physical sheet, no singularities have 
been observed besides the poles corresponding to bound states of the negative ion. Although branch points 
exist at energies equal to the ionization potentials of the atomic excited states, they lie in the unphysical 
sheets and hence do not affect the dispersion relation. The position and nature of the singularity is 
completely determined by the shape of the interaction potential. The singularity also exists for shortrange 
potentials, but it is considerably separated from the physical region, whereas, in the case of Coulomb 
forces, it is close to it and plays an essential role in the dispersion relation. 

PACS numbers: 34.80.Bm 

1. INTRODUCTION 

The dispersion relation not only serves as a useful in- 
strument that enables us to reconstruct the elastic scat- 
tering amplitude from the cross  section, but also is a 
touchstone for any hypothesis on i ts  analytic structure. 
The evolution of the dispersion relation in atomic phys- 
ics begins with the work of Gerjuoy and ~ r a l l , [ ' * ~ ~  who 
proposed to write_ i t  for the amplitude of the elastic for- 
ward scattering f ,  as if the atomic-target were simply 
a potential well 

The function Jis a linear combination of the direst, f ,  
and exchange, g, amplitudes, so chosen that Im f was 
connected in the usual way with the total cross  section; 
f, is the scattering amplitude in the first  Born approxi- 
mation, E is the energy of the incoming electron, n 
enumerates the discrete levels of the compound system, 
i .e., of the negative ion, and E n  is the binding energy of 
these levels. The amplitude of the elastic forward scat- 
tering, according to (I) ,  has poles on the physical sheet 
a t  the discrete energy levels E n  and a right-hand cut 
from 0 to .o. 

A check on Eq. (1 ), based on a comparison of theo- 
retical and experimental d a t ~ i , [ ~ * ~ ]  has shown that such 
a simple dispersion relation i s  not satisfied for a num- 
ber of atoms, a t  any case in the low energy region. 
Thus, at E =0, for scattering by hydrogen, the left side 
of (1) is equal to - 2.8 and the right to - 2.1; for the 
case of helium, the corresponding figures a r e  - 1.15 
and - 0.5. A still greater discrepancy exists for scat- 
tering by neon. The dispersion relation in the colli- 
sions of positrons with atoms is written similar to (1). 
It turned out that in this case the assumption of Gerjuoy 
and Krall is ~ a l i d . [ ~ * ~ ~  The scattering of electrons dif- 
fers  from scattering of positrons in the presence of an 
exchange amplitude. Thus, the existing experimental 
data require us to explain why the relation (1) is not 
satisfied when it is necessary to take exchange into ac- 

count or,  in other words, why the analytic properties of 
the direct and exchange amplitudes differ. 

I t  was shown earlierL7 that the exchange amplitude of 
simple forward elastic scattering of the electron by the 
hydrogen atom has on the left semi-axis of the complex 
energy plane an additional cut that begins at the energy 
of the incoming electron and i s  equal to be binding ener- 
gy of the ground state of the hydrogen atom. The ques- 
tion naturally ar ises  as to what amplitude singularities 
a re  caused by the excited levels of the atom in the vir- 
tual state. I t  is shown here that no other singularities 
ar ise  on the physical sheet. Cuts exist on the left axis 
from the branch points a t  the binding energies of the 
discrete excited states, but they a re  located on the non- 
physical sheets and do not make a contribution to the 
dispersion relation. A combined analysis of both the 
discrete and continuous spectra in the intermediate 
state leads to this conclusion. The singularity of the 
amplitude on the left axis is anomalous, i.e., i t s  loca- 
tion and character a r e  determined by the interaction po- 
tential. In the case of Coulomb forces, the "left" cut is 
adjacent to the physical region, while for the short- 
range potentials i t  is far off and therefore makes little 
contribution to the dispersion relation. 

The question of the possible non-analyticity of the ex- 
change amplitude has been discussed in the literature 
from various points of  vie^.[^-'^' On the left energy 
semi-axis, poles and cuts a re  possible, the location and 
character of which do not depend on the potential of the 
interparticle interaction. These a r e  called physical 
singularities. The complete catalog of such singulari- 
ties is given in Ref. 8 for the case of three particles in- 
teracting through a potential of the Yukawa type. The 
physical singularities that a r e  applicable to atomic phys- 
ics have been discussed in Ref. 9 in the case of electron 
scattering from helium atoms. It was shown in Refs. 
10 and 11 that the exchange amplitude, in contrast with 
the direct, can have on the energy left axis additional 
singularities, located to the left of the binding energy of 
the ground state of the atom. 
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2. EXCHANGE AMPLITUDE OF ELECTRON 
SCATTERING FROM AHYDROGEN ATOM 

2A. Expression for the exchange amplitude 
in terms of the Green's function 

The scattering of an electron by hydrogen i s  the sim- 
plest case encountered in atomic physics, for which the 
presence of exchange is important. The exchange am- 
plitude of elastic scattering, by definition, describes a 
process in which the incoming electron, which is f i r s t  
located in an atom, goes to the continuous spectrum. 
Figure 1 shows the simple diagrams which describe 
such events and therefore give a contribution to the ex- 
change amplitude. The double line indicates the prop- 
agation function of the hydrogen atom, and the thick and 
thin lines represent the propagation functions of the 
proton and electron, respectively. A circle denotes the 
form factor of the vertex and the wavy lines the Cou- 
lomb interaction. 

The sum of graphs a and b is traditionally known a s  
the first  Born approximation. All the processes which 
a re  described by more complicated graphs can be rep- 
resented a s  taking place in three stages. In the first ,  
the atom virtually decays into a proton and an electron. 
The interaction of the atomic electron 2 with the nucleus 
in the initial state is completely taken into account by 
the form factor of the vertex. Therefore, immediately 
after the virtual decay of the atom, we need take into 
account only the interaction of the incoming electron 1 
with the other particles, as is shown in Fig. l c  and Id. 
In the second stage, all three particles propagate, in- 
teracting with one another in all  possible ways. In the 
final state, the electron 1 lands in the atom, i ts  binding 
with the nucleus is taken into account by the form fac- 
tor, and electron 2 departs, the "last" process being 
the interaction of the departing electron with the "re- 
maining" particles, a s  is shown in Figs. l e  and If. 

For  all but the Born diagrams, there a r e  three vir- 
tual particles in the intermediate state. Their propaga- 
tion is described by the Green's function. Therefore, 
the sum of all the diagrams, except a and b is described 
by a three-particle Green's function. We obtain a rep- 
resentation of the amplitude in terms of the Green's 
function, which will be useful in what follows. For this, 
we note that the form factor and the Fourier transform 
of the wave function of the ground state of hydrogen 
qo(q) a re  connected by the well known equation 

in which V = - l / r  is the interaction potential of the elec- 
tron with the proton (we use the atomic system of units: 
e = E =  m = 1), the matrix element (q I V 1 cp,) is the form 
factor, l q )  = e describes the electron with momentum 
q and energy c , , ~ ,  = -+ i s  the energy of the ground 
state of the hydrogen atom. 

We consider the processes shown in Figs. l c  and Id. 
The amplitude of the virtual emission of electron 2 
from the atom is equal to the form factor. The ampli- 
tude of the propagation of the virtual electron 2 and the 
real  electron 1 leads to the same energy denominator 
as in (1). Therefore, the form factor and the propaga- 
tion function together give simply the wave function of 
the ground state. The interaction of the incoming elec- 
tron with two other particles leads to a factor that is 
equal to the Fourier transform of the interaction poten- 
tial. This means that the amplitude of the transition 
probability from the initial state to the virtual state with 
the momenta of the intermediate electrons p, and p,, a s  
shown in Figs. l c  and Id,  is equal to 

where k is the momentum of the incoming electron, 4n/ 
(k- p,)' is the Fourier transform of the Coulomb poten- 
tial, while the first  and second terms in the brackets 
stem from the diagrams c and d; the signs in front of 
them correspond to the collision of electrons and the at- 
traction of the electron to the nucleus. 

Similarly, the transition amplitude of electrons with 
momenta p, and p, to the final state, as is shown in 
Figs. le and If, i s  

Therefore, i f  we denote by G(p,, p,; p,, p,,E) the Green's 
function of the electrons in the field of the nucleus, 
then, in accord with what has been said of the three 
stages of the process, we obtain the following expres- 
sion for the exchange amplitude g ( k ) :  

in whichg,(k) is the Born amplitude. 
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28. Analytical properties of the total 
amplitude 

It was shown in Ref. 3 that the Born exchange ampli- 
tude has a pole of third order a t  k2 = -1. For  the graph 
of Fig. la, this statement was made earlier in Ref. 12. 
The singularities of the Born term themselves do not 
affect the dispersion relation (I), in which the Born 
term is taken into account separately. However, the 
unusual behavior of the Born amplitude is a sign that 
the total amplitude behaves in an unusual way. 

We proceed to the study of the second term in Eq. (4). 
For this i t  is necessary to make a reasonable assump- 
tion on the properties of the Green's function, since i t  
is not known. Our first  assumption is that for the in- 
vestigation of the analytical properties of the exchange 
amplitude, the most important a r e  the collisions with 
small transfer of momentum in the first  collision, i.e., 
such events in which the momentum p, of the virtual 
electron in Figs. l c  and Id is close to the momentum of 
the incoming electron k. Subsequent calculation will 
confirm this assumption. The small momentum trans- 
fer  corresponds to a large distance from the atom of 
the incoming electron. This means that after the first  
collision, the system does not undergo any significant 
changes, and we can speak separately of the incoming 
electron and the atom. Therefore, a very simple as- 
sumption on the intermediate state of the process, 
which is described; y the function G , is that the elec- 
tron 1 (the "incoming" electron) propagates freely, 
while electron 2 (the "atomic" electron) is located in the 
field of the nucleus. It will be seen from further analy- 
sis at  what points our second assumption will be needed. 

Thus, according to the assumptions that have been 
made, in place of the exact Green's function, we shall 
use the function 

which describes the propagation of the free electron p, 
- p, and of the second electron p, - p,, interacting with 
the nucleus, which is taken into account by the Coulomb 
Green's function G,. Substituting the Green's function 
(5) in (4), we obtain the following expression for the 
second term 2 in Eq. (4) 

Equation (6) corresponds to four graphs-corre- 
sponding to the number of possible first  and subsequent 
collisions o r ,  what amounts to the same thing, to the 
number of products of the wave functions from the 
square brackets. As an example, the graph corre- 
sponding to the product of the f i rs t  terms in both brack- 
ets is shown in Fig. lg .  The double line in the inter- 
mediate state denotes the propagation function of the 
electron in the field of the nucleus with account of both 
the ground and excited states. 

We now carry out a preliminary analysis of Eq. (6), 

in order to show what singularities of the amplitude 
g(k) can be expected in principle on the left energy axis. 
For  this purpose, we write out the expansion of G, in 
the eigenfunctions of the Coulomb problem p,: 

where the index i denotes the set  of quantum numbers 
characterizing the state of both the discrete and the con- 
tinuous spectra, the energy of which is equal to E ,. We 
consider the individual term of the sum corresponding 
to the discrete level with principal quantum number n ,  
orbital 1 ,  and magnetic m.  The integrand in (6) has 
many poles, coincidence of which can lead to the singu- 
larities of g(k). We call attention to two of them: the 
poles of the wave function and of the Coulomb potential. 
The wave function of the discrete level p,,,(p4) has a 
pole at P: = -l/n2, a s  follows from i ts  explicit form, 
found by ~ o c k ; ~ ' ~ '  the Coulomb potential gives a pole a t  
(k- pa)' = 0. According to the method of ~ a n d a u , ~ ' ~ ]  their 
coincidence leads to singularities of the integral a t  k2 
=-l/n2, n=1 ,2 ,  . . . 

Thus, as a result of the simplified treatment ignoring 
the continuous spectrum in the function G,, we find that 
the amplitude g(k) has singularities a t  the energies of 
the incoming electron, equal to the binding energies in 
the ground and excited states of the hydrogen atom. I t  
will be seen that these singularities, a r e  connected with 
cuts running along the entire left axis. Analytic contin- 
uation of the amplitude from the upper halfpine into the 
lower, which is important for obtaining the dispersion 
relation, turns out to be impossible in this case. How- 
ever, a s  will be shown next, the account of the contin- 
uous spectrum leads to the result that only one singu- 
larity is present on the physical sheet, corresponding 
to the binding energy in the ground state of the hydrogen 
atom, while the singularities k2= - l /n2,  n z 2 go over 
to the nonphysical sheet and do not affect the dispersion 
relation. The proof will be carried out in several 
stages. 

1. Using the results of ~ c h w i n g e r , ~ ' ~ ~  we write out the 
expansion for the Coulomb Green's function in the form 
of a sum over the discrete states only; the continuous 
spectrum is taken into account here by the form of the 
terms: 

(7) 
In this expression p, is determined,by the equality 

The quantity Y,,, is a four-dimensional spherical func- 
tion whose argument &2(at) depends on the quantities 
p2(p4) and p,. The explicit expressions for the Y,,, will 
be insignificant. They a r e  only important in that they 
do not cause singularities in the expression G, a t  other 
points besides those determined by the zeroes of the 
denominator in (7). Substituting (7) in (6) we represent 
g ( k )  in the form of a sum, each term of which is de- 
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termined by the corresponding t e rm of the sum (7): with the first  assumption that was made. However, for 
the onset of a singularity, the region of small trans- 

g ( k ) - - E  gmlm(k) .  ferred momenta of the departing electron in the last 

2. We now investigate the analytical properties of the 
amplitude gn,m(k) and show that i ts  singularities on the 
left axis are located only a t  k2 =-1 and a t  k2 = -l/n2. 
The details a re  shown in Appendix I. We note only the 
general course of the discussions. According to the 
Landau method,[14] we need, for the study of the analytic 
properties of the integral, to put together a linear com- 
bination of all the denominators of the integrand, and to 
equate to zero their derivatives with respect to the in- 
tegration variables. In the case considered, poles of the 
Coulomb potential, wave functions of the ground state, 
and poles of the component with indices nlm in formula 
(7) enter into this Wear combination. The variables of 
integration in (6) a re  the three vectors and we obtain 
correspondingly three Landau vector equations. It is 
necessary to solve them simultaneously with the equa- 
tions that determine the zeros of the denominator in the 
integrand of (6). As a result of the solution of this set  
of equations, we find that the singularities on the left 
axis can be located a t  k2 =-1 and k2 =-i/n2. 

We now show that the amplitade gn,,(k) is regular-in 
some region on the real  axis. According to Item 2, 
the singularities of gn,,(k) on the left axis can be locat- 
ed a t  k2= -1, k2= -l/n2. These points can generally be 
branch points. The singularities of the integrand for 
gnIm(k) a r e  such that they cannot intersect and "pinch" 

' 

the multi-dimensional contour of integration over 
p1,p2, p4 a t  k2> - l/n2. Therefore, g,,,(k) is  regular 
a t  least in the . region - - l/n2< k2 < 0. 

4. From the regularity of the studied function on the 
segment of the real  k2 axis i t  follows that the boundaries 
of i t s  analycity on the physical sheet a r e  established by 
the Landau equations, in which the coefficients of the 
linear dependence should necessarily be non-negative. 
The derivation of this situation is contained, for exam- 
ple, in the book of Eden et ~ l . ~ ' ~ '  It is shown in Appen- 
dix I that the singularity of the amplitude at k2 = -1 sat- 
isfies this condition and consequently is present on the 
physical sheet, while the other singularities can appear 
only on the nonphysical sheets. Therefore the amplitude 
gn,,(k) on the left axis has a solitary singularity a t  the 
point k2 = -1 and is analytic in the region - 1 < k2 < 0. We 
shall assume a sufficiently rapid convergence of the 
ser ies  for 

such that the analytic properties of the sum a r e  de- 
termined by the properties of the components. There- 
fore, the basic conclusion from the given analysis is 
the following: the amplitude of g(k) has a singularity a t  
kZ=-1 and is regular a t  - 1<k2<0.  

Now, in order to transfei- this result to the exact am- 
plitude g(k), we shall trace out how the conditions which 
were discussed a t  the beginning of Sec. 2B a r e  satisfied. 
It is shown in the Appendix I that the region of small 
transferred momenta of the incoming electron in the 
first  stage of the scattering makes a contribution to the 
singularity of the amplitude (Fig. lc,d),  and this agrees 

- 
scattering stage i s  also important, (Figs le , f ) .  But the 
small momentum transfer in the last collision corre- 
sponds to large distances from the atom of the departing 
electron 2 and before the last collision it should be 
free,  while electron 1 should be situated in the Coulomb 
field of the nucleus. This contradicts the second as- 
sumption that was made. The small momenta trans- 
ferred in the latter collisions leads to the necessity of 
taking into account the interaction with the nucleus of 
electron 2 after the first  collision and of electron 1 be- 
fore the last, a s  is shown in Fig. lh .  We limit our- 
selves to only this class of diagrams, including graph g. 
The sum of the entire "ladder" of such diagrams g(k) 
has the form 

Analysis of the analytic structure of the integral (8) 
differs in no way, in principle, from the corresponding 
study of the integral (6); we therefore give only the final 
result. 

The amplitude g(k): there is a singularity a t  k2 = -1 
and it is regular in the region - 1 <k2<0.  Here, a s  is 
shown in Appendix 11, the basic role in the formation of 
the singularity on the left axis is played by the region of 
small momentum transfers by the incoming and outgoing 
electrons. According to the discussions that have been 
given, the function z ( k )  in this region is a good repre- 
sentation for the exact amplitude g(k) and therefore can 
be stated that g(k) also has a singularity on the left E 
axis in the case of the binding energy of the electron in 
the hydrogen atom. It was also shown in Appendix I1 
that the amplitude diverges logarithmically a t  the point 
k2 = -1. which is therefore a logarithmic branch point. 

As has already been discussed, the cut can go only to 
the left and, since there a re  no other singularities on 
the left, i t  extends to k2= -00.  The logarithmic singu- 
larity of the amplitude is due to the coincidence of the 
three singularities of the integrand in (8): the poles of 
the Coulomb integraction in the f i rs t  and last collisions 
and the pole that is present in both Coulomb Green's 
functions. It then follows that the appearance of this 
singularity, as well as of the multiple pole of the Born 
amplitude, is connected with the long-range character 
of the potential of the inter-particle interaction, which 
appears a t  large distances from the atom of electrons 
in the virtual state. The pole of the amplitude which de- 
scribes the discrete state of the negative hydrogen ion 
is connected with the atomic distances a t  which all 
three particles interact simultaneously. This region is 
poorly taken into account in the function z ( k ) ;  therefore, 
we must consider the pole separately. 

We now turn to the dispersion relation (1). The mero- 
morphism of the amplitude on the segment - 1 <P < 0 of 
the real  axis allows us to apply Cauchy's theorem to the 
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contour that encloses all the singularities of the arnpli- 
tude, including the left cut. As a result, the dispersion 
relation takes the form 

where E ,  is the binding energy of the electron in the 
(9) 

negative hydrogen ion, E, is the electron energy in the 
hydrogen ground state. The q u a n t i t y j ( ~ ) ,  in accord 
with Ref. 1, is connected with the direct f-amplitude and 
the exchange g-amplitude by the equation 

Here we must note that the imaginary part of the ampli- 
tude on the right is a measurable quantity. It is con- 
nected with the total scattering cross section of the . 

electron by the atom, while I m g  on the left cut is not 
measurable. 

3. SlNGULARlTlES OF THE FORWARD 
SCATTERING AMPLITUDE I N  THE CASE 
OF A SHORT-RANGE POTENTIAL 

We shall show that in the case of a short-range inter- 
action potential, the exchange amplitude also has a sin- 
gularity on the left axis. For this we consider hypothet- 
ical particles-an "electron" and a "proton, " which a re  
attracted to one another by a potential of the Yukawa 
type: 

I 

V ( r )  -- Sc-'"g(p') dp'. 
P 

The electrons repelled from one another by the potential 
- V(r). We shall assume that there exists a bound state 
of electron and proton, which we shall call "hydrogen." 
We consider the exchange amplitude of the scattering of 
an electron by hydrogen. In lower orders of perturba- 
tion theory, it is depicted by the diagrams a and b of 
Figs. 1 and 2, on which the wavy line now denotes the 
potential (10). 

The diagram a was considered by Chew and ~ o w [ ' ~ l  in 
connection with nuclear scattering. I ts  contribution 
g,,,, determined according to the rule given in Sec. 2A, 

C 

FIG. 2. 

is equal to 

where V is the potential (lo), cp, and E, a r e  the wave 
function and the energy of the ground state of the hydro- 
gen. The function g,, ,(k) has a pole a t  k2 = -% ', X 

= (2 I E ,  which corresponds to the virtual state 
shown by the dash-dot curves in Fig. 2a. 

The other singularities of g , , , ( k )  a r e  connected with 
the form factor 

The singularities of the Fourier transform a r e  deter- 
mined by i ts  asymptote in the coordinate representation. 
The quantity p(r)  falls off exponentially a s  a function of 
the bound state: 

cpa ( r )  +a ( r )  e-=', r+m; 

i t  follows from (10) that 

a(r) and P(r) a r e  the factors of the exponentials. Sub- 
stituting the asymptotic forms of po(r) and V(r) in ( l l ) ,  
we find that the form factor (k (V Ip,) has a singularity 
a t  k2 = -(^A + p)'. According to (lo),  the potential V(r) 
can contain terms that fall off a s  exp(- p'r), p' > p.  
They lead to a singularity of the form factor at k2 
=-(%+ p')', i.e., ( ~ I v / @ J , )  and alsog,,,(k) have a cut 
running from k2 = - (X + p)2 to k2 = -m . 

We show that this singularity i s  connected with the 
triangular diagram. For this purpose, we note that the 
form factor contains all the interaction of the electron 
with the proton. If one of the scattering acts of these 
particles is considered separately, then the form factor 
is shown by the diagram of Fig. 2c. It is expressed in 
terms of the integral over the transferred momentum q .  
The integrand has singularities a t  (k- q)2 + x 2 = 0  and q2 
+ p2=0 ,  connected with the virtual state and denoted by 
the dash-dot line, and with the singularity of the Fouri- 
e r  transform of the potential (10). The coincidence of 
these singularities also leads to the branch point of the 
form factor a t  k2=-(X+ p)', which i s  thus connected 
with all  three virtual "particles" in Fig. 2c. A char- 
acteristic property of the given singularity is the fact 
that it is not connected with the creation of real parti- 
cles, in other words, the diagram of Fig. 2c does not 
have a cross section for which the energy denominator 
would vanish a t  the branch point. Such singularities a r e  
known as anomalous. 

Similar consideration shows that the diagram of Fig. 
2b also has an anomalous cut a t  k2 = - (x + /.I)'. 

We thus see  that the scattering amplitude in the first  
Born approximation has a pole a t  k2= -x2 and a cut to 
the left from k2 = - (%+ P ) ~ .  AS p decreases, the cut 
approaches the physical region and transforms into a 
multiple pole for the Coulomb potential. More compli- 
cated diagrams can also have anomalous singularities. 
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But, for short-range potentials, when p >> .>x , it i s  usu- 
ally assumed that the anomalous thresholds of the com- 
plex graphs exist far  from the physical region, just a s  
for the Born amplitude and do not make a contribution 
to the dispersion relation. For example, the graph of 
Fig. 2d has an anomalous singularity a t  k2 = - [2 y + (2p2 
+x  2)'/2]2, connected with the pole of the observed vir- 
tual state and the poles of the potential. For the Cou- 
lomb potential, a s  shown in Sec. 2, the situation is dif- 
ferent: the left cut adjoins the physical region. 

4. CONCLUSlON 

We have shown that the exchange amplitude of elastic 
forward scattering of the electron by hydrogen has an 
additional cut on the left energy axis from k2 = -.o to k2 
= -1. It i s  regular on the interval - l <  k <0,  excluding 
the pole corresponding to the negative hydrogen ion. 
The latter conclusion is identical with the result of 
~ i p . ~ l l ]  In addition to the singularity a t  k2=-1,  there 
a re  singularities a t  k2 = -l/n2, n = 2,3, . . . . 

However, all the singular points corresponding to the 
excited states lie on the nonphysical sheets and there- 
fore do not contribute to the dispersion relation. This 
is confirmed indirectly by the fact that the difference 
between the left and right sides of ( I ) ,  according to Hutt 
et  ~ 2 , ~ ~ ~  does not have a fine structure and the scale of 
its change corresponds to the ionization potential of the 
atom. It i s  shown that a s  k2 --I, the amplitude diverg- 
e s  logarithmically; therefore, the contribution of the 
left cut cannot be regarded as a small quantity. With 
this account, the dispersion relation takes on the form 
(9). However, analysis of such an equation, based on 
experimental data, becomes impossible, since the 
imaginary part of the amplitude on the left cut is im- 
measurable. There a r e  no numerical calculations of the 
contribution of this singularity a t  the present time. 

The considered singularity of the amplitude on the 
left axis is connected with the long-range character of 
the Coulomb forces, which appears in the region of dis- 
tances from the nucleus of electrons in the intermediate 
state, distances that a re  large in comparison with the 
Bohr radius. One of the electrons is assumed to be 
much further from the nucleus than the other. In the 
scattering of the electron by a complex atom, purely 
Coulomb forces also operate on the complex atom in a 
similar region. We can therefore assume that in scat- 
tering from a complex atom, the exchange amplitude 
has a singularity on the left axis at the energy of the in- 
coming electron, equal to the binding energy of the 
atom. Other, so called physical singularities of the 
amplitude were considered in Ref. 9. 

The demonstrated singularity of the amplitude can al- 
so appear in an important equation-the Levinson theo- 
rem. Actually, i t s  proof i s  based on the analytical 
properties of the partial amplitudes, but is natural to 
assume that the singularity of the forward scattering 
amplitude also appears in the partial amplitudes. 

In conclusion, the authors express their gratitude to 
V. G. Gorshkov and Yu. N. Demkov for constructive re- 

marks and interest in the work, and to G. M. Shklyarev- 
skii for many useful discussions. 

APPENDIX I 

SINGULARITIES OF THE AMPLITUDE 
OF gn 1, 

The singularity of the integrand expression for the 
amplitude of g,,,, a s  follows from Eqs. (6) and (7), a r e  
determined by the poles of the functions S f ,  which a r e  
equal to 

S , = ( k - p , ) ' ,  S?= (k -p , ) ' ,  S1= ( p , + p , - k ) 2 + l ,  

S , = ( p , + p 2 -  k ) '+J ,  S , = p , z - k z + l - l / n z ,  (1.1) 
S,=p,2+p,2-kZ+1,  Si=p,Z+pZZ-k'+l .  

(We consider the product of only the first  terms of each 
of the square brackets in (6).) 

According to the general Landau method,[14] to find 
the singularities of the integral, it is necessary to 
solve the equations 

together with the Landau equations 

in which 

is a linear combination of S t  with the coefficients of. 

We first  consider the equation (1.3c), with which the 
p4-dependent functions S2,S, ,S, a r e  connected. We de- 
note 

In this notation, Eq. (1 .3~)  has the form 

whence i t  follows that 

det (q+q,) =O. (1.4) 

Expressing q,' q j  in terms of k and p, from (1.2), and 
substituting in (I.4), we get 

Similarly, (I.3b) jointly with (1.2) leads to the equation 

The functions S, and S, take into account a l l  the singula- 
r i t ies of the amplitude of g, , , (k) ,  which ar ise  from the 
zeros of the functions S2,S,,S,,S,, S,. Therefore the 
singularities of the amplitude stem from the simultane- 
ous vanishing of the function S, ,S,, S,,S,, which depend 
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on the single variable p , .  The functions S,,S, a r e  anal- 
ogous to functions which lead to the singularities of the 
Born a m p l i t ~ d e . ~ ~  The coincidence of their zeros  leads 
to a singularity of the function g,,,(k) located a t  k2=-1. 
Another singularity occurs from the simultaneous van- 
ishing of the three functions: S, =S, =S, = O .  

Solving these equations, we find the position of the 
singularity: k2 =- l/n2. However, the Landau equation 

leads to the equality 

which is unsolvable a t  positive a,, a,, or,. Reviewing the 
other possibilities such as the vanishing of some or, in 
Eqs. (1.2) o r  the product of the other factors from the 
square brackets in (6), we verify that the amplitude 
g,,,(k) does not have singularities a t  other points on the 
left axis. 

APPENDIX II 

LOGARITHMIC SINGULARITY OF glk) 

The proof that shows that the integral (8) has a singu- 
larity only a t  k2=-1, is s imi lar  to that given for  (6). 
We shall show that the simultaneous vanishing of the 
three functions 

leads to a logarithmic divergence of z(k)  a t  k2 = -1. For  
this purpose, we note that a s  S, - 0 the singularities of 
the function G,(p,, p,, E, +Eo - t,,) a r e  similar  to the 
singularities of the function 

where 

From (II.2), we find the estimate 

G,(P,, P,, ek+E.-~,.) + 

f (PSI for p,: p,', k2+-1. 
(plg+pi-kz+l)'(k'-pi)'" 

(11.3) 

Similarly, we find for  the second Green's function 

We substitute (II.3), (11.4) in the integral (8) and make 
the change of variables 

I k-P, 1 =q, I k - p ~  I =qr. 

We obtain the result  that g ( k ) ,  as k2 --1 diverges a s  

g(k)-C j A- C h q .  q-0. 
'J 

which a lso  indicates a logarithmic singularity. 

'E. Gerjuoy, Wys. Rev. 109, 1806 (1958). 
2 ~ .  Gerjuoy and N. A. Krall, Phys. Rev. 119, 705 (1960). 
3 ~ .  W. Byron. Jr., F. J. de Heer and C. J. Jochain, Phys. Rev. 

Lett. 35, 1147 (1975). 
4 ~ .  K. Hutt, M. M. Islam, A. Rabheru and M. R. C. McDowell, 

J. Phys. B: Atom. Molec. Phys. 9. 2447 (1976); F. J. de 
Heer, M. R. C. McDowell and R. W. Wagenaar, J. Phys. B: 
Atom. Molec. Phys. 10, 1945 (1977). 

5 ~ .  H. Bransden and P. K. Hutt, J. Phys. B: Atom. Molec. 
Phys. 8, 603 (1975). 

6 ~ .  G. Coleman, T. C. Griffith, R. R. Heyland and T. L. Kil- 
leen, Electron and Photon Interactions with Atoms; H. Klein- 
poppen and M. R. C. McDowell,Eds., New York, 1976, p. 181. 

'M. Ya. Amus'ya and M. Yu. Kuchiev, ZhTF Pis. Red. 3. 440 
(1977) [Sov. Phys. Tech. Phys. Lett. 3, 178 (1977)l. 

'M. N. Rubin, R. L. Sugar and G. Tiktopoulos, Phys. Rev. 162, 
1555 (1967). 

'R. D. Peccei and R. D. Violier, Ann. Phys. 103, 29 (1977). 
''A. Tip, J. Phys. B: Atom. Molec. Phys. 10, L11 (1977). 
"A. Tip, J. Phys. B: Atom. Molec. Phys. 10, L295 (1977). 
"v. G. Gorshkov and S. G. Sherman, ZhETF Pis. Red. 17, 519 

(1973) [JETP Lett. 17, 374 (1973)l. 
'%. Fock, Z. Physik 98, 145 (1935). 
"L. D. Landau, Nuclear Phys. 13, 181 (1959). 
1 5 ~ .  Schwinger, J. Math. Phys. 5, 1606 (1959). 
1 6 ~ .  J. Eden, P. V. Landshoff, D. I. Olive, H. C. Polkinghorne, 

The Analytic S Matrix, Cambridge, England, 1966, p. 66. 
"G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959). 

Translated by R. T. Beyer 

490 Sov. Phys. JETP 47(3), March 1978 M. Ya. Amus'ya and M. Yu. Kuchiev 490 




