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The effect of degeneracy in the magnetic quantum number M on the saturation of the absorption of a 
homogeneously broadened l i e  is investigated. It is shown that the shape of the saturated contour depends 
on the polarization of the incident wave. The question of the limits of applicability of the approximation of 
spherical symmetry of the relaxation processes is discussed. 

PACS numbers: 32.70.J~ 

1. INTRODUCTION 

The angular-momentum selection rule causes at least 
one of the two levels between which a radiative transi- 
tion is allowed to be degenerate. Moreover, in the case 
of light absorption by a molecule, both levels are as  a 
rule strongly degenerate in the magnetic quantum num- 
ber M. Therefore elastic-collision processes accom- 
panied by reorientation of the angular momentum of an 
atom or a molecule make a discernible contribution to 
the broadening of the spectral line. The role of these 
processes in the formation of the linear-absorption line 
contour was taken into account in a large number of 
studies (see, e.g.,C151), although not fully enough in 
most cases. Usually, owing to difficulties connected 

In problems of nonlinear absorption (the so-called 
saturation effect) the role of interference of M-M' 
transitions, to our knowledge, has not been discussed at 
all. In this case it is  customary to use for the absorbed 
power the formula derived for an isolated transition by 
Karplus and Schwinger back in 1948.C61 

In this paper we wish to discuss some qualitative ef- 
fects that result from the interference of transitions 
that connect various M -components of the upper and 
lower levels. We assume here that the density of the 
perturbing particles is high enough so that the line con- 
tour can be regarded as homogeneously broadened and 
that the broadening due to the Doppler effect can be 
neglected. 

with the calculation of the collision S matrix, the shape 
of the contour was determined without taking into ac- 2. EQUATIONS FOR THE DENSITY 

count the role of the interference between the transitions MATRIX 

that connect various M-com~onents of the lower and To describe the absorption line shape we start from 
upper levels.c1v21 a system of equations for the density matrix with a 
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collisibn term in the form 

where p,j are the density-matrix elements and v is  the 
molecule velocity. 

It is known that in spectral problems, in the equa- 
tions for the density-matrix element that is not diagonal 
in ij, it is necessary to take into account in d[pjr(v)]Col/ 
dt only the contributions from the transitions a -0  
that differ in frequency from the transition i - j by an 
amount less than the homogeneous line width. Most 
frequently it is necessary to include in the sum w e r  
a - f i  only the transitions that differ from the transition 
i - j by the angular-momentum projection M. In the 
equations for the matrix elements diagonal in ij it is 
necessary to include in the sum over aS, generally 
speaking, all the elements diagonal in afi. In most 
cases, however, it can be assumed that the populations 
of the levels that do not participate directly in the pro- 
cess of the interaction with the field are weakly de- 
formed and preserve their equilibrium values. There- 
fore the contribution of these levels to the right-hand 
side of (2.1) is proportional to the Maxwellian velocity- 
distribution function, and the more complicated form of 
(2.1) must be retained only for degenerate states. We 
shall thus include in the sum over aS  only the summa- 
tion over the M -states of the degenerate level, and the 
density-matrix elements that depend on the projections 
M of the total angular momenta Jm and J ,  of the levels 
m and n will be written in the form p,,(M&,v), 

It should be noted that the dependence of the quanti- 
ties I' and A on the velocity of the molecule makes it 
impossible, generally speaking, to represent the colli- 
sion term in the simple form (2.1). Owing to this de- 
pendence, the collision term takes an integral form 
even at very high pressures. In the case of small- 
angle scattering, however (and this is precisely the 
case most frequently realized in practice), expression 
(2.1) becomes valid. 

Following [TI, we can express r and A in terms of 
the exact amplitudes d molecule scattering by per- 
turbing particles: 

Here k is  the wave vector of the molecule, n, is the 
concentration of the perturbing particles, I.L is the re- 
duced mass of the molecule and of the perturbing 
particle, pa= p/m,, p, = p/ma, ma and m, are the 
masses of the molecule and of the perturbing particle, 
W, is the distribution function of the perturbing parti- 

cles w e r  the wave vectors, fmW& q, M, A) are the 
molecule and perturbing-particle scattering amplitudes 
in the c.m.s., and f i  is Planck's constant. 

If we disregard in (2.2) the degeneracy in the magne- 
tic quantum number, i.e., we put M =Mt=O, then I' and 
A become functions of only the modulus of the molecule 
velocity.c71 In the presence of degeneracy, as  seen 
from (2.2), the quantities I' and A become functions of 
not only the magnitude but also of the direction of the 
velocity v ,  and only in the limiting case of very light 
perturbing particles p, - 0 does this dependence vanish. 

It will be convenient henceforth, besides the repre- 
sentation pm,(Mflnv), to change w e r  to the irreduc- 
ible representationc8] 

where (J,J~LNIJ,$~,J~M,) is a Clebsch-Gordan coef- 
ficient. In this representation the collision term for 
the density matrix takes the form 

The functions I? and A are transformed in accordance 
with the usual formulas for the transformation of tensor 
quantities : 

The convenience of changing over to the representation 
(2.3) consists in the following. If the quantities I' and A 
do not depend on the direction of the vector v or 
generally do not depend on v (as is, e.g., the case for 
perturbation by light particles p, - O), the equations 
for the density matrix with the collision term (2.4) 
should be invariant to rotations of the coordinate 
system, from which it follows that the constants I' and 
A have in this case a diagonal form and do not depend 
on N C8~93 

We shall hereafter assume, except in the last section, 
that r and A are independent of the direction of v ,  so 
that Eq. (2.4a) holds in the irreducible representation. 

We consider the interaction between the degenerate 
transition m -n with natural frequency and the field of 
a traveling monochromatic wave E = E, exp(ip R - iwt ) 
+ c.c., when the homogeneous line width I? >> Aw,, so  
that the Doppler broadening can be neglected. We write 
down the equations for the density matrix with the col- 
lision term (2.1) in the form 
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Here p,(M@,v) is the part of the density matrix inde- 
pendent of the time, p,(M,Icl,v,t) = ~ , , ( h f ~ M ~ v ) e ~ ~ ~ ,  
a,= z, - z,, a, and z, are the equilibrium populations of 
the individual M components of levels 1 and 2 in the 
absence of the field, A~~,(MM'v) = p,,(MM'v) -ef6,,, W 
(v), W (v) is the Maxwellian velocity distribution f unc- 
tion, and d,,(M,, M,) is the matrix element of the di- 
pole moment of the JIM, - J ,  M, transition. 

The absorbed power is expressed in terms of the 
density -matrix elements p,,(M $ 4 , ~ )  in the following 
manner: 

In the irreducible representation (2.3), Eqs. (2.6)-(2.8) 
take the formclO1 

i Eo" dm 
[ i ( o - o o + A l z ( L )  ) +r , z (L)  ~p: i . (v)=-zoW(v)-  

fi 6'1 
A 

Here 

A : N , ~ * , . = ( - ~ ) J * + J ~ + ~ [  (2L+l )  (2L t+ l )  lzh{  ' '' ] (LL'lIILNL'h"). 
I* J2 Jl 

El are spherical contravariant components of the field 
vectofinl: 

d,, is the reduced matrix element of the 1 - 2 transition: 

dl are spherical contravariant components of the vector 
doll: d, = (-l)'dl, and {* * }  is the Wigner 6j-symbol. 

3. SHAPE OF ABSORPTION CONTOUR 

We start the analysis with the simplest case of linear 
absorption of the traveling-wave field. The linear-ab- 
sorption contour can be easily found by using the equa- 
tion for the irreducible representation of the density 
matrix (2.10) and retaining in its right-hand side only 
the term linear in the field 

Substituting (3.1) in (2.9) and (3.13) we get 

Formula (3.2) duplicates the well-known result actually 
obtained already by ~ n d e r s o n [ ~ I  and subsequently 
formulated in the language of irreducible representa- 
tions in a number of papers (see, e.g., I4s5I). It 
follows from (3.2) that the linear-absorption contour 
has a Lorentz profile with width l?,,(l) and shift A,,(l). 

We proceed to consider the nonlinear problem. The 
system (2.10)-(2.12) is a chain of equations that inter- 
connect density-matrix elements with neighboring in- 
dices L and L' such that I L  - L' I s 1. As the first step, 
we break this chain of equations in the following 
manner: We assume that the only nonvanishing matrix 
elements p g  are those with L = 1, and the only non- 
zero elements ~ p &  are those with L = 0. The physical 
meaning of this approximation will be discussed later. 
The truncated system of equations (2.10)-(2.12) takes 
the formc101 

Substituting P;;(v) from (3.3b) and (3.3~) in (3.3a), 
multiplying the left- and right-hand sides of the resul- 
tant equation by (E,X)*, and summing over N we obtain 
an equation for 
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Solving this equation and substituting the result in (2.13) 
we obtain for the absorbed power 

(3.4) 
Expression (3.4) coincides with the well-known result 
of Karplus and ~ c h w i n g e r ~ ~ ~  for  the saturation of the 
absorption of an isolated transition. We note that this 
agreement can take place only if the truncated system 
(3.3) is used. 

We now show that the assumptions made are satisfied 
in those cases when the relaxation constants I',((l), 
r,,(2), . . . , are much larger at L 3 1 than the relaxa- 
tion constants r,,(O), i.e., the scattering accompanied 
by angular momentum reorientation proceeds much 
more intensively than the scattering accompanied by in- 
elastic departure of the molecules from the levels in 
question to all other levels. In fact, the right-hand 
sides of (2.11) and (2.12) are of the same order at L=O 
and at L= 1 or 2. Therefore pi',-[I',,(L)]" and conse- 
quently p::, pi;<< p;. As a result we need retain in the 
right-hand side of (2 .lo) at L = 1 only p$, after which 
the equations take the form (3.3a)-(3.3~). We shall 
henceforth consider the case of transitions for which 
the inelastic scattering is much less than the elastic 
scattering, and consequently the assumptions made 
here are satisfied. 

We consider now another limiting case, when the in- 
elastic-scattering cross section is much larger than 
that of elastic scattering. Expression (3.4) for the ab- 
sorbed power is then radically altered. To obtain this 
expression it is convenient to use the equations for the 
density matrix in the usual representation (2.6)-(2.8). 
In accordance with (2.1), the term (dp/dt)=' is of the 
form 

The first term in the right-hand side of (3.5) reflects 
the role of the departure from the considered levels 
JmMm and JJ4, to all the remaining levels, while the 
remaining terms included in the sum reflect the role of 
the transitions from the levels M' to M. The departure 
term includes all the inelastic transitions, and there- 
fore this term makes the main contribution to the right- 
hand side of (3.5). The arrival terms are proportional 
to the cross section for the reorientation of the angular 
momentum without a change of the system energy 
(elastic channel of the reaction), and can be neglected 
in accord with the assumptions made. Next, using the 
spherical symmetry of the relaxation processes, we can 
show that all the relaxation constants r,, do not depend 
on M, i.e., they are equal to one another. In fact, it 
follows from (2.4a) and (2.5) that 

Recognizing that the foregoing implies T,, 
=6,,:, 6,,;, we multiply the left- and right-hand 
sides of (3.6) by 

and um over ML and Mi. This yields 

which proves the statement, since L, is arbitrary. 

Let us find the shape of the absorption contour of a 
linearly polarized wave. We direct the atom quantiza- 
tion axis along the field polarization. Equations (2.6) 
-(2.9) take the form 

From (3.7) we readily obtain an expression for the ab- 
sorbed power: 

From (3.8), as  well as  from (3.7), it is  seen that all the 
M-M transitions are saturated independently, as  if they 
were isolated. In each M-M transition the power ab- 
sorbed is  described by an expression of the Karplus- 
Schwinger type (3.4). The field broadening is propor- 
tional to the dipole moment and, in accord with (2.14), 
with changing M is changes from zero to a value on the 
order of ti-' 1 d,,E, 1 I? :i2(BJ)-1/2. Thus, instead of one 
Lorentz contour of the line (3.4) we obtain in this case 
a superposition of Lorentz contours, each of which has 
its own field-induced width. 

At large values of J we can change in (3.8) from sum- 
mation to integration. A s  a result, for the two cases 
J, = J, and I J, - J, I = 1 we obtain respectively (J ,  = J, = J )  

where X is the saturation parameter. 

In the case of circular magnetization of the light 
wave, the only nonvanishii matrix elements are 
d,(M, M + 1) (the quantization axis is  best chosen in 
this case along the vector p). Therefore Eqs. (3.7) re- 
tain the same form apart from the substitutions 
p,,(MMv) - p1,(Mfl* 1, v), &,(MMv) - paw* 1, 
M* l,v), ~,(MM)-~~,(M,M* 1). As a result, the ab- 
sorbed power also retains the form (3.8), with the sub- 
stitution dl,(MM) - dl,(M,M* 1). At large J we can 
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again go over to integration with respect to M, as  a 
result of which we obtain expression (3.10) for the case 
Jl=J2, and formula (3.9) for the case Jl=J2*1. Thus, 
if the inelastic-collision cross sections exceed greatly 
the elastic ones, the fields with linear and circular 
polarizations are absorbed in different manners. 

Let us make a more detailed comparison of (3.4) with 
formulas (3.8)-(3 .lo). We note first that at small 
values of the saturation parameter X, when the field 
term in the denominator can be neglected, all the ex- 
pressions, (3.4) and (3.8)-(3.10), lead to the same re- 
sult, in full agreement with (3.2). The same statement 
remains valid also at large values of the parameter of 
the saturation in the line wing-in the line wing the ab- 
sorption is always linear. Near the line center, for- 
mulas (3.4) and (3.8)-(3 .lo) lead in general to different 
results. The only exception is the case of total satura- 
tion at Jl = J,, i.e., the immediate vicinity d the line 
center, when the f ield-induced broadening is large: 
(w - q,+ A,)2<< X21?(l)/@. A numerical comparison of 
(3.4) with the exact expressions (3.8) and (3.11) is  made 
difficult by the presence of the summation over M, al- 
though their qualitative difference is obvious. The com- 
parison is much smaller at large J, for which it is con- 
venient to rewrite (3.4) in the notation of (3.10): 

Figure 1 shows the absorbed power P(w)  as  a function 
of the parameter ~w/ r , , ( l )  at different values of the 
saturation parameter A ,  plotted from the formulas 
(3.4a), (3.9), and (3.10). It is seen from the figure that 
in this case, when the inelastic scattering greatly ex- 
ceeds the elastic one (formulas (3.9) and (3.10)), the de- 
pendence of the absorbed power on the polarization of 
the light wave is quite discernible. This makes it pos- 
sible to deduce, from the observation of such a depen- 
dence, which of the relaxation mechanism prevails. If 
the absorbed power is practically independent of the 
polarization of the wave, then it can be stated that the 
main contribution to the relaxation of the system is 
made by elastic-scattering processes. In this case, 
vigorous relaxation over the M components leads to 
equalization 'of their populations, so that the entire 
transition can be regarded as nondegenerate with a 
single saturation parameter X, in full agreement with 
formula (3.4a). 

The question of the possibility of neglecting degen- 
eracy for molecular transitions with large J has been 
discussed in the literature in connection with the prob- 
lem of the propagation of coherent 277 pulses. It was 
assumed in C'23 that vigorous relaxation in M takes place 
in the system but makes no contribution to the broaden- 
ing of the transition, so that the total transition relaxa- 
tion time l/r may turn out to be less than the duration 
of the light pulse. At the same time, the populations of 
all M components manage to become equalized during 
the pulse, and the transition can be regarded as non- 
degenerate with a transition dipole-moment matrix 
element averaged over M. We wish to make a few 
stipulations in this connection. 

FIG. 1. Dependence of the absorbed power, in units of 
2hwoPJzo on the parameter Aw/r lz ( l )  at different values of the 
saturation parameter A. The solid lines show the absorption- 
contour shape described by formula (3.4a); dashed-by formula 
(3.10); dotted-by formula (33). Curves 1, 2, and 3 were 
plotted for saturation-parameter values A = 3; curves 3, 5 ,  and 
6-for A = l ;  8 and 9 for A=0.6. 

The possibility of describing a transition that is de- 
generate in M as nondegenerate is entirely connected 
with the neglect, in the right-hand side of (2.10), of the 
matrix elements pi; at L 2 1. In the case of a stationary 
field it suffices for this purpose to satisfy the condition 
rrf (O)<< rif (L), L 2 1. In the case of propagation of a 
short light pulse it is seen from a system of equations 
such as  (2.10)-(2.12), but in which the time derivatives 
6 are retained, that to be able to neglect these matrix 
elements it is necessary also to satisfy the condition 
r,(l)<<r,,(L), L 2 1. By suitably choosing the pulse 
duration T it is possible to satisfy the conditions 

The conditions (3.12) are the complete set of conditions 
that must be satisfied in order to regard the transition 
as  nondegenerate. We find it difficult, however, to cite 
a concrete example wherein the condition r1,(l) 
<< rr i ( l ) ,  rri(2), which is needed for the inequalities 
(3.12) to be compatible, is satisfied. 

4. SlNGULARlTlES OF BROADENING OF 
VIBRATIONAL~ROTATIONAL TRANSITIONS 
IN  MOLECULES 

We consider first the question of the applicability of 
the results expressed by formulas (3.4), (3.9) and 
(3.10) to real molecular transitions. We recall that 
formulas (3.4), (3.9), and (3.10) describe only two 
limiting cases: when the inelastic-scattering cross 
section is much larger than the elastic-scattering cross 
section, and the converse condition. In most real 
molecular transitions the intermediate case seems to be 
realized, wherein the inelastic- and elastic-scattering 
cross sections are of the same order. We can point, 
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however, to molecular transitions to which the ap- 
proximations considered in the preceding section are 
applicable with good approximation. 

We point first to vibrational-rotational transitions in 
diatomic molecules containing light atoms such as HCl, 
HBr, and others. The energy spacing between the rota- 
tional levels of these molecules is relatively large, so 
that the channel of inelastic departure is suppressed to 
a considerable degree, and with increasing angular 
momentum of the molecule J the probability of the in- 
elastic departure decreases. In this case we can state 
that the main contribution to the broadening is made by 
the reorientation of the angular momentum, i.e., 
~ir(0)<<r,,(l) ,  ri,(2). Formulas (3.4) and (3.4a) are  
therefore valid. 

As a second example, we consider the broadening of 
vibrational-rotational transitions in molecules of the 
spherical-top type, such as  CI&, SF,, etc. The 
Coriolis interaction leads to a relatively small splitting 
of the rotational components of such molecules, so that 
inelastic transitions between such components remain 
practically unchanged with increasing J. At small 
values of the angular momentum, the cross section of 
the inelastic transition with reorientation of the angular 
momentum are generally speaking of the same order. 
It can however be stated that with increasing angular 
momentum the contribution made to the broadening by 
collisions with spin flip decreases. To explain this 
circumstance we note that the Van der Wads constant 
depends little on J, a s  a result of which the value of the 
angular momentum transferred in the collision remains 
bounded at AM - ( I -  10)E with increasing J. Therefore 
the relaxation constant rmn(MmMn, MkM;) at large J is 
a sharp function of Mi-M;, a s  compared with the 
smooth dependence of p,,(M;~;v) on M ;. As a result, 
the matrix pmn(A4:M;v) can be taken outside the summa- 
tion sign at M; =M ,. After this, the relaxation term 
takes the form 

This form of the relaxation term denotes in fact neglect 
of the arrival terms in the equation for the density 
matrix, i.e., a transition to the approximation (3.7). As 
shown in the preceding section, in this approximation 
the sum in (4.1) is independent of M, or  M,. At first 
glance, this statement seems quite strange, and we 
shall therefore dwell on it in somewhat greater detail. 

It follows from (3.6) that the constant 1: differs from 
zero only when M, -Mn=M:-Mi. Therefore the sum 
in the right-hand side of (4.1) takes for the diagonal 
density-matrix element p,,(MM) the form 

i.e., it i s  equal to the total probability of inelastic de- 
parture from the level i. Thus, in the case of a diagonal 
matrix element collisions with spin flip make no con- 
tribution to the right-hand side of (4.1). 

In the case of the off-diagonal matrix element 
p,(MlM2v) we consider the sum 

On going w e r  from the left-hand side of (4.2) to the 
right one we have used the smoothness of the depen- 
dence d the Clebsch-Gordan coefficient on Mf and Mi, 
and have taken it outside the summation sign. Using 
now Eq. (3.6), we can easily show that the sum (4.2) is 
equal to (J11J.$Z,(~JV11~)I'12(1), i.e., the sum in the 
right-hand side of (4.1) is equal to rl,(l) and actually 
does not depend on Ml and M,. 

We can now make more precise the meaning of the 
approximation made on changing w e r  to Eqs. (7). In 
the example considered here there i$ no need to state 
that the inelastic scattering i s  much larger than the 
elastic one. Since elastic scattering is accompanied 
only by transitions to neighboring M components, it 
follaws that at sufficiently large J it ceases to contri- 
bute to the broadening. 

I t  is interesting to estimate the accuracy with which 
relation (4.1) is satisfied. To this end we subtract 
from (4.1) the exact expression for the relaxation term, 
and making use of the fact that at large J the quantities 
I"l,(MIM,, M>%Z:) are even functions of the difference 
Ml -M,=M; -M:, we obtain 

Thus, the accuracy of the approximation increases with 
increasing J. The same estimate is applicable also to 
diatomic molecules. Therefore in those cases when the 
inelastic scattering channel plays no role, and there i s  
no randomization of the phase (the Van der Waals con- 
stants for the upper and lower level8 a re  elose to one 
another), it can be stated that the line width of the vi- 
brational-rotational transition decreases with increas- 
ing J in proportion to (LM/J)~. 

5. DEVIATIONS FROM SPHERICAL SYMMETRY 

Let us examine the applicability of the spherical- 
symmetry approximation of relaxation processes. As 
already noted, the assumption of spherical symmetry 
holds well in the case of broadening by light particles 
(e.g., electrons). In other situations, such as, for ex- 
ample, broadening by intrinsic pressure, this question 
calls for a more detailed examination. By way of ex- 
ample we consider the contour of the linear absorption 
of the transition Jl = 0 - J, = 1 at an arbitrary ratio of 
the masses of the investigated and perturbing particles. 
In this case the collision term in (2.10) no longer has 
the diagonal form (2.4a) (the relaxation constants 
r ::+ i A  :r differ from zero at N #N'). Therefore the 
problem reduces to a system of three coupled equations 
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for the quantities pz(N = 0,*1). It is possible, how- 
ever, to simplify the problem by a special choice of 
the quantization axis. We direct the a axis along the 
velocity of the investigated molecule. It is then obvious 
from axial-symmetry considerations that only the 
relaxation constants r;; + i~:; = r N +  iAN differ from 
zero, with r, + iA, = r, + iA,, and all the constants 
depend only on the modulus of the velocity." 

The equations for the density matrix take the form 

From (5.1) we obtain an expression for the absorbed 
pawer: 

With the aid of the rotation matrices we express 
in terms of the components of the vector E, in an 

immobile coordinate system: 

IEoN12- EOiE,'D,,(a, B, 0)4, , '(a,  a, 0). 
I 

where B = 6, a = cp- r/2, and 6 and cp are the angles of 
the vector v in the immobile coordinate system. Sub- 
stituting this expression in (5.2) and integrating with 
respect to do,, we obtain 

It is seen from this formula that there are two reasons 
why the absorption line contour differs from a Lorent- 
zian: the dependence of the relaxation constants on v, 
and the presence, at a given v ,  of two contours with 
different relaxation constants. The first of these 
causes is not connected with degeneracy in the magnetic 
number M and has already been noted in an investiga- 
tionc7] of the broadening of a nondegenerate transition. 
The second sets in only when account is  taken of the 
degeneracy and is connected with the deviation of the 
relaxation processes from spherical symmetry. It is 
easily seen that these two causes are closely related. 
At v = 0 we have spherical symmetry, and therefore 
r,(v)= rl(0). If the relaxation constants do not depend 
on v, or if the dependence is  very weak, then this 
equality remains in force for all v, so that both causes 
cease to play a role simultaneously, and the line con- 
tour becomes Lorentzian. These arguments, a s  well as 
a concrete calculation of the constants I?, and I',, 
carried out in [I4], show that the difference between 
r,(v) and rl(v) is of the same order as the difference 

between r,(v) and r,(0). The dependence of To on v 
changes little with changing form of the interaction. In 
the case of a Van der Waals interaction we can describe 
the r(v) dependence by using the result of C51: 

Here @ is a confluent hypergeometric function and v, is  
the mean thermal velocity of the molecule. 

At small values of y we can use the expansion r (  y) 
= r(0) (1 + 0.2y2), which can be used with good accuracy 
up to values y =Z 1. At ma=mp (broadening by intrinsic 
pressure), r(v) changes by only 2% when v changes 
from zero to v,, so that the effect of deviation from 
spherical symmetry can hardly be noted. This indicates 
that a substantial difference between the contour (5.3) 
and a Lorentzian takes place only if mp/ma>> 1; if 
mp/ma c 1 the effects of deviation from spherical sym- 
metry are of little importance. If the case of an arbi- 
trary J ,  - J, transition, and also for nonlinear absorp- 
tion, the arguments presented above become somewhat 
more complicated, but the result remains qualitatively 
the same as before. 

We thank T. L. Andreev, I. I. Sobel'man, and E. A. 
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')1n the usual MM' representation this statement is  equivalent 
to asserting that the density-matrix elements p Mi Mz and 
p (Mf , M$), for which MI - M2 = Mf - M s .  are connected with 
the relaxation. 
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