
line when the absorption length is 1 m. A random mag- 
netic field simulating this effect should not exceed 
-10'4G in thallium and -l(r3G in lead. We shall con- 
clude by pointing out that the precision achieved in the 
experiments on bismuth is quite sufficient to measure 
rotation angles -lom8 rad/m. Therefore, in a situation 
when the search for parity nonconservation in  the 
strongly forbidden MI 6p, l , -7p, l ,  transition in thallium 
is already under way,t21 the proposed experimental de- 
tection of an optical activity of thallium vapor in the 
same frequency range seems realistic. 
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Optical resonators with periodic boundaries 
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Results are presented of theoretical and experimental investigations of optical resonators with periodic 
boundaries (ORPB). The natural oscillations for various periodic structures are obtained by solving a 
parabolic equation. It is shown that at definite resonator lengths there exist singular types of natural 
oscillations-periodic modes. The spatial distributions of the fields in the near and far zones are analyzed. 
Results are presented of an experimental investigation of a resonator with periodic modtikition of the 
reflection d ~ c i e n t  in a neodymium-glass laser; these results are in satisfactory agreement with the 
theory. It is shown that ORPB make possible the shaping of extremely narrow directivity patterns. 

INTRODUCTION 

Open optical resonators shape the spatial structure 
and the directivity pattern of laser  radiation. The laser  
fields a r e  natural modes of the resonator oscillations, 
and the configuration of these modes is determined by 
the resonator geometry. A resonator with plane-paral- 
lel mirrorsc1] has made it possible to obtain for the 
first  time coherent emission in the optical band. The 
mode fields of stable  resonator^^^'^] a re  concentrated in 
a limited volume, s o  that the diffractive divergence of 
the modes is determined by small  apertures 2a - (XL)lf2, 
where X is the wavelength and L is the resonator length. 
This is why multimode lasing, which affects the direc- 
tivity pattern adversely, takes place in lasers  with large 
apertures. 

From the energy point of view it is preferable to have 
large-volume laser  media, s o  that an important prob- 
lem is to generate oscillation modes whose fields occupy 

the entire exit aperture. From this point of view, de- 
finite advantages a r e  offered by unstable resonatorsc4] 
such a s  the telescopic one.c51 

A new interesting possibility is uncovered by optical 
resonators in which a t  least one of the mirrors  is a 
two-dimensional grid with periodically varying reflec- 
tion coefficient. The first  results of the investigation of 
such resonators were reported recently.c61 It was shown 
that these resonators ensure good filling of the active 
medium, and the divergences of the individual light 
spots in the f a r  zone can reach the diffraction value over 
the total aperture of the reticular mirror .  These fea- 
tures of such systems were not noted in earl ier  experi- 
ments .C7-91 

It was indicatedt8191 that the theoretical investigation 
of diffraction resonators is a complex task. This is ap- 
parently the reason why these resonators were treated 
in some papers by simplified r n e t h o d ~ . ~ ' ~ * ~ ~  One 
studyC12] enhanced the interest in the study of such sys- 
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tems, but provided no satisfactory theoretical analysis. 

We present here the results of a theoretical and ex- 
perimental investigation of open optical resonators with 
periodic boundaries (ORPB). On the basis of the solu- 
tion of the boundary-value problem of the equations of 
electrodynamics, we investigate the natural modes of 
the ORPB oscillations, and calculate the fields inside 
and outside the resonator for different periodic struc- 
tures. The conditions for the excitation of various 
ORPB modes a re  investigated experimentally and inter- 
preted. It is shown that the angular divergence of in- 
dividual lobes of the directivity pattern is close to the 
diffraction value at the exit aperture, and a method of 
controlling the radiation divergence is demonstrated. 

A. THEORY 

1. Fundamental relations 

Consider a system consisting of two infinite plane 
mirrors whose surfaces a re  defined by the relations 
z =d, -= <x,y <+-. Let one of the mirrors (at z =-I) 
have an amplitude reflection coefficient T, = 1 - j3, that 
is independent of the coordinates, and let the second 
have a coefficient T,(x, y)  that depends on x and y. We 
assume the mirrors to be thin enough to be able to ne- 
glect the changes that take place in the fields as they 
propagate inside the mirrors. Taking the time depen- 
dence of the fields in the form exp(-iwt), where w = ck 
(k  is the wave number), we start with the scalar wave 
equation for any component W of the electromagnetic 
field. This equation, by virtue of the condition (Rek)l 
>> 1, reduces to a parabolic form whose solution is best 
represented in the formcs1 

w(S. q, E)==@,(b. q. t ) e ~ p ( 2 ~ k ~ b ) - ( - l ) ~ @ : ( E ,  q, -t)exp(-ZiklE), 
&--(k/21)"'z, q=(k/21)  "y, 6-2/22, 

where @,(5,~?,5) determines the field of the wave inci- 
dent on the mirror z =I, +,(5,q, -5) is the diffraction 
field produced by the mirror, and q is an integer. The 
boundary conditions for the transverse components of 
the electric field are  of the form 

where x =2kl- nq. Relations (1) correspond to the boun- 
dary conditions on the surface of dielectric at small 
wave incidence angles. For a factorizable reflection co- 
efficient T2(5,q) = T i([)T,b(q), the three-dimensional 
problem reduces to a two-dimensional onec131 if we put 

We shall therefore consider henceforth the equations 

with the boundary conditions 

and 

W ( E ,  t) =O,(E,  f ) exp (2 ik l f )  - ( - i ) ' @ , ( f ,  - f ) e x p ( - 2 i k l t ) .  

It is easy to obtain the integral equations 

which determine the incident and reflected fields at 
z =-2: 

The kernels of (3) and (4) a re  

where I'(5 - 5' ,  5 - I;') is the Green's function of Eq. (2), 
and the values of x should be determined as the eigen- 
values of Eqs. (3) and (4) and yield the frequency spec- 
trum of the natural oscillations of the resonator. 

2. ORPB with sinuisoidal reflection coefficient 

We consider the solution of Eqs. (3) and (4) for a 
sinusoidal grid 

Tz(E)  =I -pZ( l+m cos aE),  a = ( Z n l p )  (21/k)", (5) 

wherep is the period of the grid, O ~ ~ , c 1 / 2 , 0 ~ r n ~ l .  
We seek the solution of (4) in the form 

Then 

The roots of the equation det(A)=O (where {A) is the 
matrix of the coefficients A, of the system (6)) deter- 
mine the function ~ = Z ( ( ( Y ,  s]), i.e., the natural frequen- 
cies of the ORPB. 

At 8, = 0 we obtain A, = O(n + 0) and 

where sf is an arbitrary real number and f,([) takes the 
form of a traveling o r  standing wavec3]: 

Since B, c 1/2, the solution of (4) can be obtained by 
perturbation theory in 0,: 
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Chooshgf i0'(5) = COS(S~[), we obtain 

A'' ( E )  -A!" cos (a+st) ~ + d f : ' c o s  (a-s,) E, p,=-i/2. 

where 

A similar structure is possessed by the functions f $'I([) 

obtained in higher orders of perturbation theory>13' 
The solution of (3) is obtained in similar fashion. The 
existence of the solution (8) demonstrates that in the 
region where perturbation theory is valid natural oscil- 
lations can arise in the system at all  values of A,  p, and 
L = 21. They a re  the solutions (7) for a resonator with 
an ideally reflecting mirror  a t  z = I  plus increments due 
to the periodic modulation of T2([). 

The structure of the coefficients oi the expansion of 
fin) in terms of cos(s, * na)( shows that in the vicinities 
of the values of a and s, determined from the equations 

perturbation theory ceases to hold. We note that by vir- 
tue of the condition (~ek)E >> 1 all the quantities in (9) 
can be regarded a s  real. From (9) we have 

If a value of aZ satisfying the f i rs t  condition of (10) is 
specified, only one of the numbers n, and n, can be 
arbitrary. The corresponding values of s, will hence- 
forth be numbered by the index n,. We present expres- 
sions for the fields when (9) a r e  satisfied. Two cases 
a re  possible here: 

a) n, + n2 is odd. then 

( r  is an integer) and 

where C, is an arbitrary constant. 

b) n, + n, is even. Then 

and the field in the near zone of the mirror  f =1/2 is of 
the form 

C, and C, are  arbitrary constants. The frequency spec- 
trum in both cases is determined by the relation 

The structure of the fields in the near zone becomes 
clear if the following representation is used: 
in case a) 

1 (E,x)  - c , , ~ ' ~ ( ~ - ' ~ ) ' ~  exp [-L ( ~ ~ ~ , - 2 x q ~ )  
a(i-i3z)"a 4 I - 

xcos  (sj,..E) 1 [ E - ( z n - ~ )  51 . 
"--- 

in case b) 

It follows from (13) and (14) that the field in the near 
zone of the boundary 5 = l /2 has maxima at  the points of 
inflection of the reflection coefficient (5). It is easy to 
show that the field in the near zone of the mirror  
5 =-1/2 has the same structure, but in case a )  its max- 
ima a r e  shifted by p/4 relative to the maxima at  f = 1/2. 

We consider in greater detail the conditions (9). It 
follows from them that 

Thus, in an ORPB with given L natural oscillations of 
the type (13) and (14) a r e  possible with wavelengths that 
a r e  multiples of p2/2L. At other wavelengths, oscilla- 
tions of this type a re  impossible, and the natural fields 
a re  determined in accordance with (8). 

In the cases considered above, a) n, +n, = 2 r +  1 and 
b) n, + n2 = 2r, the distances L are  respectively 

It should be noted that, a s  first  shown by Rayleigh (see, 
e.g.,C143), a t  distances equal to an integer Lo an image 
is produced of a passive diffraction grating of infinite 
length irradiated by a plane wave. Thus, the singular 
resonator properties in the cases L =L,,, a re  due to the 
reproduction of the wave front on the boundaries. This 
agrees with the resonator-system treatment presented 
in C23. 

According to (9) and (12) , 

By virtue of (Rek)l>> 1, a t  any P2, the imaginary part of 
k is negligibly small compared with the real one. It 
follows from (11) that these solutions can be regarded 
a s  fields having the following wave-vector z component 

and the x component k, = ~,,,,(k/21)'~~. The fields (13) 
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and (14) can be treated a s  waves propagating with 
"quasimomentum" k, over discrete "nodes" x, =p(2n - 1) 
/4. In particular, at s,, ,, = 0 the oscillations in these 
"nodes" a re  in phase. Expression (15) can now be re- 
presented in the form k = k, + k:/2k, i.e., a s  an expan- 
sion of k =(ka,+ #.)'I2 in the small parameter I k,/k, I .  
The indicated representation is therefore valid at 
s:,,, << nq', with q'>> 1, since (~ek)Z = I k ( 1  >> 1. This 
agrees with the introduction of a dielectric-surface re- 
flection coefficient that does not depend on 9. The pos- 
sible natural modes (13) and (14) must be identified by 
two integers q' and n,. Their quality factors a re  

3. ORPB with steplike reflection coefficient 

Let 

where 

3=p(k/21)112 is the dimensionless period, 7=r(k/21)'I2, 
and o = ( p  - T)/T is the porosity of the grid. By writing 
down the solutions of (3) and (4) in the form of a series 
in powers of b,, in analogy with (8), we can show that 
under conditions (9) the natural oscillations cease to be 
determined by this series.  

We consider next oscillations that set in when rela- 
tions (9) are  satisfied. It can be shownc131 that in this 
case the eigenvalues F a r e  determined by expressions 
(12). The possible types of natural oscillations, fre- 
quency, and Q are  determined from formula (15), in 
which it is necessary to change the interval of the pos- 
sible values of b,, namely 0 c P, < 1. The expression for 
the field on a periodic boundary is of the form 

where 

g(5) is an arbitrary function. The behavior of the per- 
iodic (with period p) amplitude part of the field on the 
mirror b = 1/2 depends on the value of s ,,,,: 

It is important that the solutions (17) exist only if n, +nz 
is even. 

It should be noted that expression (18) gives only the 
general structure of the function G([), but not its con- 
crete form. The obtained natural oscillation of an ORPB 
with L =L,, corresponding to fixed indices n, and q', 
can have a different dependence on the transverse co- 
ordinate t. The concrete form of such a mode can be 
determined by the conditions for the excitation of the 
ORPB . 

It is seen from (17) that the fields in the near zone of 
a periodic mirror  differ from zero in those places 
("holes") where T,(5) has minima, and conversely a re  
equal to zero on those section where T,(5) is maximal. 
It is easy to show that there exist natural oscillations 
with opposite field structure in the near zone: 

i 

TT (E, +) - - '1)"' exp [- (s:.,, - 2nqr)cos ( s , , m , ; ) ~ ( g ( ,  
(1 - 

) ,  n, - even. 
Xcm(sl,n'i) ' { (i + n / a ) ,  n, - odd . (2Ob) 

Here 

fb=$:( l -7) ,  (n,+nz' - even, 

0, if I g - n p l 4 i I 2 ,  

) =  ( if r i 2  < g - np < jj - i / 2 .  

and the eigenvalues jS are  given by 

On the mirror  z = -1 the distributions of the fields with 
odd n, a r e  displaced by p/2 relative to the distributions 
of the fields with even n,; there is no such displacement 
on the periodic mirror.  The maxima of the intensity on 
the periodic mirrors  occur in the sections with large 
values of the reflection coefficient. The quality factors 
of the natural oscillations (20) 

exceed those of the oscillations (17). The modes (17) 
and (20) will hereafter be called periodic modes. 

The general case of ORPB with arbitrary periodic 
T,(5) is considered in I. 

To treat the three-dimensional case it suffices to note 
that if T,(x) and T,(y) a r e  defined by the same relation 
of the form (16), then at L = L, a complete identification 
of the modes calls for  the specification of three num- 
bers q', n,, and m,, with k,= ~ ~ , , , ( k / 2 1 ) ' ~ ~ ,  where 

s,',,,, = ~ ( r n ,  - rn2)'/4(rn, + rn,), m, - 21L/p2 - rn, (rn, + mr = n, + n,) .  

If the periods T,(x) and T,(y) a re  different and equal to 
p, and p,, then the system has periodic modes a t  
L =p:(n, +n2)/2X, and n, +n, = (p,/p,)2(ml + m,), where 

m, + m, is even. 

It should be noted that the method of treating the 
ORPB a s  a natural-mode problem is a p p r o ~ i m a t e . ~ ~ ]  

458 Sov. Phys. JETP 47(3), March 1978 Marchenko et a/. 458 



The method is more accurate the larger the Q of the 
oscillations. The approximation manifests itself mathe- 
matically in that the fact that k is imaginary is  ne- 
glected in the conditions (9). 

4. Field in far zone 

If the wave front a t  z =1 is bounded by an aperture 
I X  19 a,  then the in the far  zone is determined in the 
Fraunhofer approximation by the usual formula 

(21) 
where W(x,, 1) is the field in the near zone. Expression 
(21) describes the diffraction picture a t  y = O .  The two- 
dimensional picture in the case of a one-dimensional 
grid T,(x,y) = T,(x)  is obtained by multiplying (21) by 
sinc(by/hz), where sincu =sin(~u)/.rru and (-b, b) is the 
width of the aperture along the y axis. In the case of a 
two-dimensional grid, the total diffraction picture is ob- 
tained by multiplying (21) by 

where W(y, I) is the field in the near zone, obtained by 
solving the two-dimensional problem with T, = T,(y). 
Bearing in mind this transition to the three-dimensional 
case, we confine ourselves below to calculation of the 
diffraction field at y = 0. 

In the case of a sinusoidal coefficient (5), the prin- 
cipal intensity maxima a r e  of equal height and a r e  lo- 
cated at the angles 

Consider the case of an ORPB with a steplike reflec- 
tion coefficient (16) upon excitation of the periodic mode 
(20). Assuming for the sake of argument that G ( x )  i s  an 
even function, 

we obtain for  the radiation intensity I =  I ~ ( x , z )  l 2  under 
the condition p << a 

The diffraction pattern constitutes a consequence of in- 
tensity maxima fanning out in the directions 

The angle between the neighboring maxima is h/p, and 
their width, determined from the first  zeroes of sincu, 
equals 68 =X/a. The dependence of the relative intensity 

on ~ = p x / h z  i s  a function that has sharp maxima at 

Z.=nSpsl,,, (n i l )  -"/2, 

and its values a t  K =f,  a r e  b f  , i.e ., b: is the envelope of 
these maxima. Since lim b,= 0 a s  n--, the envelope 
distinguishes a certain number of maxima n* near the 
zeroth one. The extent to which this distinction is ef- 
fective depends on p ,  o, and the concrete form of z(x). 
It is easily seen that the narrowest radiation corre- 
sponds to excitation of a periodic mode g(x) = const, 
when b, is determined by the porosity of the grid: 

It can be assumed that b,/b, < 1 a t  Ina/(l + a )  12 1, i.e., 
for In 12 [1 + a-'1 (the symbol [. . . ] denotes the integer 
part of the number). Thus, n*=2[l+a"]- 1 if l+u- l  
-[l+o-']<<I andn*=2[1+04]+1 if l+a- '-[ l+u- '1 is not 
too small. The number n* = 1 a t  a>> 1, and the effective 
angular divergence 60 of the radiation is determined by 
the diffraction on the aperture: 60 - X/a; the directivity 
pattern of the ORPB radiation consists of a single nar- 
row lobe. 

B. EXPERIMENT 

1. Field in near zone 

The excitation of the ORPB was investigated experi- 
mentally with the aid of aneodymium-glass laser. The 
ORPB was made up of two flat dielectric mirrors,  one 
solid and the other reticular. The two-dimensional 
reticular mirrors  with porosity a = 1 were prepared by 
vacuum sputtering on a glass substrate through masks 
produced by photolithography. The mirror  reflection 
coefficients ranged from 0.7 to 0.99. The characteristic 
distances between the mirrors ,  L,, which satisfy the 
condition for the reproduction of the field on the mirror  
grid, a r e  given by the formula 

where L, is given by (19) and the second term takes into 
account the change introduced in the optical path by the 
rod of length I' and refractive index n'. At h = 1.06 pm, 
p = l  mm, Z1=320mm, n1=1.52 a n d r = l  we have 
L, =I05  cm. 

The distribution of the laser-intensity distribution in 
the near and far  zones was investigated by the method 
of burning through the target (see Figs. 1, 2 ,  5, and 6) 
and by a photographic method (Fig. 4). 

The experimental criterion for the excitation of per- 
iodic modes was assumed to be the appearance of lasing 
with a characteristic periodic distribution of the radia- 
tion intensity in the near zone of the reticular and solid 
mirrors  (see, e.g., Figs. 1 (1 and 2). The directions 
of the x and y axes of the resonator a re  shown above the 
figures). 
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FIG. 1. Distribution of the emission intensity of a laser with ORPB in the near zone of a reticular (1) and solid (2) mir- 
rors and in the far zone (3) of the focal plane of an objective with focal length 1 m. The linear scale on frames 1, 2, 
and 3 is the same. The grid period is 1 mm. 

Given the distance L, between the mirrors ,  the inten- mirror ,  when the mirrors  a r e  adjusted to be parallel 
sity distribution in the near zone of the reticular mir- with accuracy better than lo", usually takes the form of 
ror  is a replica of the mirror  grid. This corresponds grids with period p, shifted relative to each other by 
to excitation of modes (20) with high Q and with fields p/2 along the coordinates x o r  y, o r  along both x and y, 
localized on the mirror  meshes. The form of the dis- i.e., in a diagonal direction (Fig. 1 and 2). This  inten- 
tribution depends little on the parallelism of the mir- sity distribution agrees with expression (20b) for fields 
rors.  on a solid mirror.  To identify the modes it is conven- 

ient to introduce next the transverse indices no =n, - 1 
The intensity distribution in the near zone of the solid 

and m, = m, - 1. Then Fig. 1 (2) illustrates excitation - - 
of modes-with all  possible combinations of no and m, in 
parity. Misalignment of the mi r ro r s  by an amount up 
to 30" leads to an appreciable change of the intensity 
distribution in the near zone of the solid mirror  (Fig. 
2). 

Figure 2 (1 , l )  (the f i rs t  and second indices in the 
parentheses denote the numbers of the frames in the x 
and y directions) demonstrates the excitation of modes 
that a re  even-even and odd-odd in no and m,. The inten- 
sity distributions of these modes take the form of grids 
shifted relative to each other along the x and y axes. 
The intensity distribution of the odd-odd modes (Fig. 
2 (1,2)) is a single grid shifted by p/2 along x and y 
relative to the reticular mirror.  It is seen from Fig. 2 
(1,3) that the intensity distribution of the even-odd and 
odd-even modes a r e  shifted by p/2 respectively rela- 
tive to the distribution of the odd-odd modes. 

The experiments have shown that the least sensitive 
to misalignment a r e  the odd-odd modes. The intensity 
distribution in the near zone was independent of the 
mirror  reflection coefficient. 

2. Field in far zone 

The directivity pattern of a laser  with ORPB was in- 
vestigated by determining the distribution of the inten- 
sity in the f a r  zone-in the focal plane of a lens with 
focal length lm. The intensity distribution a t  al l  pump 

I 
- 

.? levels, starting with the threshold value, has a multi- 

FIG. 2. Influence of misalignment of mirrors on the distribu- lobe character, as seen the drawings' 

tion of the intensity of a laser with ORPB in the far zone of a It follows from (22), the angular spectrum of an in- 
solid mirror (1,1) ,(1,2) ,(1,3)  and in the far zone (2,1),(2,2), 
(2,3). The scale is the same as in Fig. The first index in dividual modes depends on the concrete form of g(x). In 
the ~arentheses numbers the frame alonc the x axis. and the the particular case of constant g(x), the one-dimension- " 
second along the y axis. a1 angular spectrum, according to (22) and (23), is 
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FIG. 3. Angle spectrum of the relative intensity I of the ORPB 
modes with q, = 0 to 3 at the porosity of reticular mirror 1. 
The separation of the harmonics of mode no = 1 is shown only 
for illustration. 

given by the following expression for the relative inten- 
sity: 

where the prime at the summation sign means n t  0. 
For  no = O  to 3, the main components of the angle spec- 
trum a r e  shown in Fig. 3 (the splitting at €J =kk/p for the 
mode no = 1 is shown only for illustration, and the inten- 
sity is equal to the sum of the split components). 

The experimentally observed two-dimensional angle 
spectrum is discrete, and the smallest angles between 
the lobes along the x and y axes a r e  equal to k/2p, cor- 
responding to excitation of modes with a l  possible com- 
binations of transverse indices no and ?no, and agrees 
with Eq. (25)-see Fig. l(3) and Fig. 3. 

The angle spectrum depends on the departure of the 
mirrors  from parallelism and correlates with the inten- 
sity distribution in the near zone of the reticular mir- 
ro r  (Fig. 2). The angle spectrum constitutes two-di- 
mensional grids. As seen from Fig. 2 (2 , l )  and Fig. 2 

I 1 1 I l l  I I 

5 h --- f 5  0 f L  - 5 - 5 8 
Z P  -7p rji Z P  

FIG. 4. Microphotogram of the distribution of the emission in- 
tensity of a laser with ORPB in the far zone along the x axis 
following excitation of odd-odd modes (A0 is the angle width of 
the emission lobe at half-intensity level). 

(2,2), the excited even-even modes have a central lobe 
directed along the z axis, a s  well as side lobes, sepa- 
rated from the central one by angles that a r e  multiples 
of k/p (see Fig. 3, n,=0,2). The lobes of the odd-odd 
modes a r e  also separated by k/p from one another and 
are inclined by an angle k/2p to the lobes of the even- 
evenmodes (cf.Fig. 3, n,=0,2 andno=1,3).  The lobes 
of the even-odd and odd-even modes a re  inclined a t  an 
angle ~ / 2 p  to the lobes of the odd-odd modes (Fig. 2 
(2.4)). 

It follows from (22) that the angular divergence of the 
mode lobes should be determined by the exit aperture 
on which the lasing takes place. Figure 4 shows a one- 
dimensional microphotogram of the emission intensity 
in the f a r  zone of odd-odd modes at a near-threshold 
pump level. The asymmetry of the lobe intensity rela- 
tive to the resonator axis is apparently due to inclini- 
ation of the mirrors.  Photometry of individual spots 
in the fa r  zone shows that the obtained lobe divergence 
exceeds the diffraction value by several times. 

The divergence of the mode lobes increases with in- 
creasing pump, but not a s  rapidly a s  the divergeace of 
the modes of a resonator with solid mirrors.  Figure 5 
shows the case when the mi r ro r  grid was deposited 
only on the central part of the substrate. The f i rs t  to 
be excited a r e  periodic modes, and the characteristic 
periodic distribution of the intensity in the near zone 

FIG. 5. Emission intensity distribution versus pump of a 
laser with ORPB having a transverse dimension equal to one- 
third the diameter of the exit aperture, in the near zone of the 
reticular mirror (1,1), (1,2), (1,3) and in the far zone (2,1), 
(2,2), (2,3). The upper frames correspond to 8% above thres- 
hold, the middle ones to 15%, and the lower to 35%. The scale 
and notation are the same as in Fig. 2. 
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FIG. 6. Distribution of emission intensity of laser  with ORPB 
in the far zone. Porosity of reticular mirror 50. The scale 
i s  magnified 1.8 times compared with Fig. 2. 

extends beyond the grid. It is determined apparently by 
the field of the diffraction losses of the periodic modes, 
which is enhanced in the resonator. With increasing 
pump, lasing of the modes of the resonator with solid 
mirrors  se ts  in on the periphery of the mirrors.  It is 
obvious that with increasing pump the mode divergence 
of the resonator with the solid mirrors  increases much 
more rapidly (multirnode lasing) than the divergence of 
the lobes of the periodic modes (cf. Fig. 5, (2, I) ,  (2,2), 
(2,3)). The bright spot at the center is due to lasing on 
the periphery of the mirrors.  

An important role in the shaping of narrow directivity 
patterns is played by the dependence of the field of the 
periodic modes on the porosity a of the reticular mir- 
ror. With increasing a ,  the envelope of b, in (22) 
shrinks and at a>> 1 practically all the mode energy 
(-80%) should be concentrated in a single lobe for the 
mode with no=O and m0=O, in two lobes a t  no=O,mo+O 
o r  no#O,mo=O, and in four a t  no+O,mo+O. 

The intensity distribution in the f a r  zone a t  a=50 ,  at 
a pump 15% above threshold, is shown in Fig. 6. The 
angle spectrum corresponds to excitation of one mode. 

The angle divergence of the lobes of the periodic 
modes is  apparently influenced by the nonmonochro- 
maticity of the neodymium-laser emission and by the 
scattering of its optical inhomogeneities. The lobe 
width exceeds the diffraction value by several times 
and increases with increasing pump. In addition, a 
pedestal grows under the entire diagram. A similar 
situation obtains in lasers  with stable resonatorsc151 
and is ascribed to scattering of the radiation a s  a result 
of thermo-optical distortions of the active medium. 

We note that the wavelength dependence of the distance 
a t  which the periodic structure is reproduced makes it 
possible to tune the lasing frequency when the resonator 
length is  varied. 

CONCLUSION 

The theoretical and experimental investigations show 
that a resonator with a mirror  in the form of a two-di- 

mentional grid with a period p has singular oscillation 
modes-periodic modes whose fields fill the entire exit 
aperture. At a resonator length L these modes will be 
oscillations with wavelengths that a r e  multiples of 
p2/2L. 

Comparison of experiment with theory shows that the 
role of the finite dimensions of the mi r ro r s  is not so  
important. The field distribution and the spectral com- 
position of the natural modes a re  determined with suf- 
ficient accuracy within the framework of the problem 
with infinite mirrors .  A similar situation obtains in 
the case of reproduction of a passive 

The ORPB shapes a radiation directivity pattern that 
is determined by the parameters of the grid (dimension, 
period, porosity). The directivity pattern of a laser  
with an ORPB is of the many-lobe type, and the diver- 
gence of a single lobe should be determined by the dif- 
fraction by the total aperture. The ORPB make i t  pos- 
sible to vary the character of the spatial distribution of 
the radiation and, in particular, make i t  possible to ob- 
tain extremely narrow single-lobe directivity patterns. 
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