
To obtain estimates, let us se t  E =  4 .  162dyn/cm2 
(sapphire), V = 1 cm3, we = 6 10lOrad/sec, Qe= 1. 101° in 
(12) and (13). Then 

(el ,",* * 1 .10-2' (7) -'", HI,,,--2.101 erg/sec . 

These estimates show that the problem of measuring h 
=lo-l8 can in principle be solved. A high frequency sta- 
bility of an electromagnetic oscillator i s  required not 
only for the gravitational experiments we have de- 
scribed. Therefore, the limiting relations may also be 
helpful for planning other high-precision physics exper- 
iments. 

Note added in proof (January 12, 1978). Equation (12) 
can be obtained on the basis of general arguments (as 
has been pointed out by Yu. I. Vorontsov): the relative 
e r r o r  Aw/w i s  equal to Al/l; for continuous measure- 
ment of the coordinate of a mechanical oscillator the 
smallest e r ro r  i s  Al,,,= (Fz/ww y)1'z(l/wm?)1/2 (where rn 
and w, a re  the mass  and frequency of the oscillator). 
Taking into account only the fundamental mode of the 
mechanical vibrations of the cavity and expressing m 
and w, in terms of E and V, we readily obtain Aw /w 
= Al / l=  (F~/Ev?)~". 
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The scale-invariant solutions in the hydrodynamic theory of multiple production are considered. The 
question of the behavior of a hadron system at points on its boundary with a vacuum is investigated. It is 
shown that the requirement of conservation of the energy and the momentum of the system indicates the 
necessity for the introduction of particle-like states at the periphery of the hadron liquid. These states are 
identified with the leading particles. The solutions to the equations of motion are found and physically 
analyzed. 

PACS numbers: 12.40.Ee 

1. INTRODUCTION ticles and their transverse- momentum distribution. . 

Recently there has been a marked increase in interest 
in the study of the space-time picture of the processes 
of multiple production. In particular, in the investiga- 
tion of high-energy hadron-nucleus collisions the ques- 
tion of the temporal evolution of the hadron systems 
turns out to be closely associated with the experiment- 
ally observable characteristics. In view of this, of 
special interest is an in-depth analysis of the hydro- 
dynamic theory of high-energy collisions-in essence 
the only model that allows a detailed space-time de- 
scription of the process of multiple production of par- 
ticles. 

One of the main achievements of the hydrodynamic 
approach is the fairly successful explanation of the ex- 
perimental data on the structure of the secondary par- 

These results, which justify the basic idea that a hydro- 
dynamic phase exists in the course of multiple genera- 
tion of particles, a r e  insensitive to the specific choice 
of the equation of state of the, hadron liquid and the in- 
itial conditions for its expansion. Let us recall that in 
the basic paper by ~ a n d a u " ]  the initial conditions were 
chosen to correspond to a homogeneous quiescent liq- 
uid in a Lorentz-contracted disk with transverse dimen- 
sions I, = 1/p  and longitudinal dimensions I,, - 1 / ~ ,  ( @  is 
the I-meson mass and Eo i s  the total energy of the col- 
liding particles in the CM system), while the equation 
of state was chosen in the form p = €/3 (p  i s  the pres- 
sure and E is the energy density). ~ h a l a t n i k o p  has ob- 
tained an exact analytic solution to the problem of the 
one-dimensional motion with Landau's initial condi- 
tions. [11 
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In the subsequent papers Landau's and Khalatnikov's 

were generalized: for an equation of state 
of the form 

by MilekhinL3] and to take account of viscosity effects 
by l?e?nberg and ~ m e l ' y a n o v . ~ ~ ]  AS to the problem of 
choosing the initial and boundary conditions in the hydro- 
dynamic theory of multiple production, i t  remains, in 
our opinion, insufficiently investigated. Moreover, 
there exist a number of physical characteristics that 
depend to a considerable degree on the form of these 
additional conditions, which separate out the required 
solution of the hydrodynamic equations. 

We can indicate several points that make the Landau 
assumption doubtful: 

a )  The existence of a global thermodynamic equili- 
brium in the entire system at  the initial moment of 
time is assumed in his paper.['] This assumption is 
quite exacting and difficult to justify. Besides, the 
classical description of the initial stage is at variance 
with the quantum-mechanical uncertainty relation .I5] 

b) EstimatesLa show that in the case of high initial 
energies the complete stopping of two colliding protons 
is impossible, since the whole energy is then spent on 
bremsstrahlung emission. 

c )  In Landau's paper the presence of leading particles 
was not taken into account. According to current ideas,17] 
it is necessary to suppose that the leading particles do not 
form a part of the hydrodynamic system, and that their 
effect on the multiple production is due only to the ex- 
istence of conservation laws, i.e., the total energy of 
the hadron liquid is E ,  = kE, (0 < k  < I ) ,  where k is the 
inelasticity coefficient. 

We wish to draw attention to the fact that the role of 
the leading particles may turn out within the framework 
of the hydrodynamic approach to be much more import- 
ant than is customarily assumed. Although by their very 
meaning the leading particles a re  separated from the 
hydrodynamic system, apparently there occurs in the 
course of the separation energy and momentum exchange 
between the hadron liquid and the leading particles. In 
this case the boundary conditions for the expanding had- 
ron liquid change significantly in comparison with the 
usual problem of expansion into a vacuum. 

Summing up the above-discussed theoretical and ex- 
perimental data on the processes of multiple production, 
we can draw the following conclusions. The idea that a 
hydrodynamic expansion phase exists prior to the ap- 
pearance of real  hadrons is quite fruitful and in accord 
with experiment. The question of the choice of the initial 
and boundary conditions, however, remains open. The 
hydrodynamic expansion apparently begins when the ele- 
ments of the hadron liquid possess some nontrivial vel- 
ocity distribution that arose in the nonhydrodynamic 
phase. The complete theoretical solution of this problem 
requires an analysis that takes account of the quantum 
effects, which, of course, falls outside the limits of the 
hydrodynamic model. 
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In the present paper we proceed in the following man- 
ner. We do not prescribe any boundary conditions; in- 
stead, we require scaling invariance. In the region of 
pionization, corresponding in the hydrodynamic ap- 
proach to the particles produced from the hadron liq- 
uid, the scaling requirement for the inclusive spectra 
can be formulated in terms of a varying rapiditycn: the 
rapidity distribution of the secondary hadrons should be 
flat with a height that does not depend on the initial ener- 
gy. This property of inclusive spectra obtains in the 
multiperipheral and parton models (the leading particles 
o r  their excited states make a contribution to the frag- 
mentation region). 

In order to fulfill the scaling-invariance requirement, 
we use in our analysis a special class of solutions, re- 
cently investigated intensively by several authors,c8s91 
to the equations of relativistic hydrodynamics. There, 
however, lies in this approach one important difficulty: 
the impossibility of fulfilling for these solutions in their 
standard formulation the laws of conservation of energy 
and momentum. This question is not investigated in 
Refs. 8 and 9. An analysis of the requirement of con- 
servation of the total 4-momentum of the system leads 
to a new result: the possibility of the appearance of 
particle-like states a t  the boundary of the hadron liquid 
with a vacuum. We associate these states with the lead- 
ing particles. 

The model that is developed leads to a number of in- 
teresting physical consequences. In particular, it turns 
out that in the course of the expansion new elements of 
the liquid a re  produced and, consequently, the entropy 
of the liquid increases. 

2. SCALE-INVARIANT SOLUTIONS OF 
THE HYDRODYNAMIC EQUATIONS 

As i s  well known, the equations of motion of an ideal 
relativistic liquid can be written in the form 

gi* is the diagonal tensor (1, -1, -1, -1). The liquid be- 
ing studied by us occupies in coordinate space a cylinder 
whose axis (the x axis) coincides with the collision axis 
for the primary particles. As time goes on, the length 
of the cylinder increases, but we shall assume that the 
transverse cross  section, which i s  a circle of radius 
l / p ,  does not change (u2 =u3 = 0). We shall discuss the 
validity of this one-dimensional approximation later. 

From the requirement that the chemical potential of 
the system be equal to zero, i.e., that t - Ts + p  = 0 (T 
is the temperature and s is the entropy density), and 
the second law of thermodynamics, da = Tds, we can 
find with the aid of (1) all the thermodynamic rela- 
tions: 



a r e  a solution to Eqs. (5) and (6) inside the liquid for 
any cg. The difference between our model and the 
Landau modelc'] lies not in the change in the equation 
of state, but in the new initial conditions. It is con- 
venient to prescribe them on the curve (t2 - x2)'/' = T,, 

in (x,t)-space in the form v =x/t ,  s ( rO)  =so  = const. It 
is clear that the liquid occupies a finite region in x 
space, in view of the finiteness of the energy of the 
system. 

where X is the constant of integration, T * t  p is the crit- 
ical temperature corresponding to the breakup of the 
liquid into the individual hadrons. 

In the one-dimensional approximation, the equations 
(2) can be rewritten in the following form: 

The solutions thus constructed lead to scaling-invari- 
ant behavior of the inclusive spectra of the secondary 
hadrons. The secondary particles appear when the ele- 
ments of the liquid attain the critical temperature T*. 
The transverse momenta, p,, a r e  then determined by 
the thermal motion with temperature T*, while the long- 
itudinal momenta, p,, ,  a r e  determined by the purely hy- 
drodynamic motion (in the case of high initial energies 
the thermal motion in the longitudinal direction does not 
play a significant role). 

Let us introduce the variables 

To separate out a single solution of Eqs. (5) and (6), we 
must specify additional conditions. As these conditions, 
Chiu e t  ~ 1 . ~ ~ '  have introduced the requirement of non- 
dependence of the motion of the liquid on the choice 
of the Lorentz frame of reference (i.e., a frame inde- 
pendence symmetry), which they regard a s  some new 
principle in high-energy hadron collisions that leads 
to the fulfillment of the scaling requirement. 

In our arrangement there exist the vector xu = (t,x) 
and the scalar T = (xFxfi)'" = (t2 - x ~ ) ' ' ~ .  The require- 
ment of Lorentz invariance of the form of the solution 
to Eqs. (5) and (6) will be fulfilled if all the vector quan- 
tities a re  proportional to xu and all the scalar quantities 
depend on T. Thus, u" - xu (from the normalization con- 
dition uuuu= 1 we find uu =xF/r ,  o r  v =x/t) and s =s(T), 
T=T(T) ,  etc. The substitution of v =x/t and T =  T(T) into 
Eqs. (5) and (6) transforms (6) into an identity, while 
(5) is reduced to the equation 

Upon the appearance of the secondary particles 

P 1 PO+PII a = arcth v = arcth -2 = -In ---- , 
Po 2 Po-PI, 

i.e., a plays the role of rapidity. From (9)-(11) we 
find 

x=r* exp [-0/cO2] sh a. t = ~ *  erp [-O/coz] ch a. (13) ' 

At the moment of disintegration the number of second- 
ary  particles i s  proportional to the total entropy, S, of 
the system. The rapidity distribution of the entropy can 
be found by going over from x , t  to 6 ,  a! with the aid of 
the formulas (13): 

Let us write the solution to Eq. (7), S(T) =const.rm', 
in the form 

The quantity T is the proper time of the element moving 
with velocity v =x/t. With the aid of (4) we have 

where n/12 is the a rea  of the transverse cross section 
of the liquid. We find on the disintegration curve 

the rapidity distribution of the secondary hadrons: from which i t  can be seen that the quantity T* plays the 
role &the proper time of the elements of the liquid a t  
the moment of disintegration into the final particles, 
while E * and s * are  the critical values a t  the moment 
of disintegration. It i s  also easy to see that all the 
thermodynamic quantities, p, E, s , and T, a t  fixed t 
have their minimum values at the center, x = 0, of the 
system and attain their maximum values a t  the bound- 
ary points x,(t) (the left boundary) and x2(t) (the right 
boundary). As a consequence, in the CM system the 
slowest particles (v = O  a t  x ~ 0 )  a re  the first, and the 
fastest ones the last, to appear a t  the borders of the 
system. 

The formula (15) shows that the rapidity distribution is 
flat. The scaling requirement will be fulfilled if T* does 
not depend on the initial energy, E,. To obtain agree- 
ment with the experimental data, we must have that, in 
order of magnitude, T* - 1/ p.  

For brevity, we shall call the solution (10) a scaling 
solution. Many of i ts  attractive features have been con- 
sidered in a number of The authors of these 

Let us emphasize once again that the functions papers did not, however, investigate the extremely im- 
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portant problem connected with the violation of the ener- 
gy-momentum conservation laws for the scaling solution. 
The point is that the solution (10) possesses an import- 
ant characteristic: all the thermodynamic quantities 
a r e  discontinuous a t  the boundary of the liquid with a 
vacuum. It is clear that for a physical system with an 
energy density that does not vanish a t  the boundary the 
conservation of the total energy and total momentum 
follows from the local conservation laws (2) only when 
certain boundary conditions a re  fulfilled. In this re- 
spect the situation is analogous to the bag model.[lOl 

3. THE LAWS OF CONSERVATION OF 
ENERGY AND MOMENTUM FOR THE 
SCALING SOLUTION 

A necessary and sufficient condition for the conserva- 
tion of the total energy and total momentum is the van- 
ishing of the energy-momentum flux density across the 
lateral surface of the tube described by the liquid in 
4-space: 

where 

is the normal, directed outwards from the system, to 
the lateral face of the tube and k = 1,2 correspond to the 
left and right boundaries; the point denotes differentia- 
tion with respect to time (in (16) we have dropped the in- 
dices k ,  v = 2,3, which a r e  unessential in our analysis). 
Let us recall that the necessity of the conditions (16) is 
connected with the requirement of conservation of the 
4-momentum Pu in any coordinate system. In the CM 
system P=O and is conserved by virtue of the symmetry 
of the problem. This symmetry is, however, broken 
by the Lorentz transformations, which inevitably leads 
to the violation of the conservation laws when the con- 
ditions (16) a r e  not fulfilled. 

The substitution of (3), (9), and (10) into (16) leads, 
after elementary calculations, to the solution 

i.e., the fulfillment of the conservation laws is possible 
only in the idealized case of a liquid with zero pressure 
(the boundaries then move with a velocity equal to the 
velocity of the liquid at the boundaries). When cg = 0, the 
temperature of any element of the liquid is constant, and 
does not depend on the energy density. This particular 
case does not, in essence, bear any relation to hydro- 
dynamics, but describes the free (uniform and rectilin- 
ear)  motion of an ensemble of individual particles. 

In a real physical system, the pressure is not equal 
to zero, s o  that the scaling solution leads to the viola- 
tion of the conservation laws (i.e., (16) is not fulfilled). 
This circumstance is directly connected with the fact 
that the scaling solution (9), (10) satisfies the equations 
of motion (2) inside the liquid, but breaks down at  the 
boundary points. In order to investigate this question, 
let us separate out the discontinuities of the thermody- 
namic quantities in the energy-momentum tensor (3) in 

their explicit form with the aid of the 8 step functions. 
Then we find in the case when the equations of hydrody- 
namics a r e  satisfied inside the liquid that 

It is not difficult to see that the requirement that (17) be 
equal to zero (i.e., the satisfaction of the equations (2) 
a t  the boundary points) is equivalent to the conditions 
(16). For the solution (9), (10) these conditions a r e  not 
fulfilled when c: # 0. 

In order to give a physical meaning to the scaling 
solution, we shall assume that the energy-momentum 
tensor, (3), of the liquid is not the total tensor of the 
hadron system. Let us, in accordance with (I?'), assume 
that the total tensor of the hadron system differs from 
the tensor, (3), of the ideal liquid a t  points on the bound- 
ary with a vacuum: 

TUv-Tuy8 (2-2, ( t )  ) 9 (z2 ( t )  -2) + tw6 (z-x, ( t )  ) . 
*-,.'a 

(18) 

Let us determine the form of the auxiliary tensor tu" 
from the requirement that the local energy-momentum 
conservation laws be fulfilled in the whole space: 

a p l  a tSv -- 2 ( [ ( - I ) ~ ( ~ ~ ( ~ ) T * O - T * I ) + - ]  6(z-zk( t ) )  
axv 

I - 1 . 2  
azv 

+ [ik ( t )  Po-tuL]6' (z-zk ( t )  ) ) , (19) 
d 

6 ' ( ~ ) = - 6 ( ~ ) .  
dy 

Taking into account the rules for handling the deriva- 
tives of generalized functions, we arrive a t  the follow- 
ing system of equations: 

If the tensor tuv is symmetric a t  x =x,(t), then i t  fol- 
lows from (21) that 

where we have introduced the notation w = toO(t ,x,(t)). . 

4. FORMULATION OF THE MODEL 

In the model developed by us, the hadron system's 
total energy-momentum tensor, integrated over the 
transverse cross  section, can be given in the form 

mI ( t )  32. +z - 6 (z-z,(t) 1, 
h l . 2  

where 
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It is clear that the auxiliary tensor tUY6(x - x,(t)) is the 
energy-momentum tensor of a particle of mass m,(t) and 
energy 

As follows from (23), in the interval xl(t) <x<x,(t) the 
local energy-momentum conservation law 

leads to the equations, (2), of relativistic hydrodyna- 
mics. As their solution, we choose (10). At the bound- 
ary points xl(t),x,(t) we arrive a t  the equations (20), 
which we rewrite a s  follows: 

The formula (24) can be represented in a form from 
which the relativistic invariance of the model clearly 
follows: 

where n>'is defined in (16) and d ~ = d t ( l - J ; ) ' / ~ .  It i s  
not difficult to verify that the conservation of the total 
energy and total momentum of the system follows from 
the Eqs. (24), i.e., that 

Thus, the obtained equations imply that, in the 
physically correct formulation of the scaling solution, 
we should explicitly ta!re into account the exchange of 
energy and momentum between the liquid and the bound- 
ary ,  which is a particle-like object. It seems natural 
to identify these objects with the leading particles that 
appear in hadron-hadron collisions. Such a model is 
quite close to the quark-gluon picture of hadron inter- 
actionsc"]: the valence quarks of the colliding hadrons 
fly through each other and interact in the process of sep- 
aration through exchange of gluons, being converted in 
the final phase into leading particles. They correspond 
in our model to the particle-like states at the periphery 
of the "gluon liquid." 

Let us explicitly write out Eq. (24) in the CM system 
for one of the boundaries (for definiteness, the right- 
hand boundary x,(t)  =z(t)): 

Here 

w(t) i s  the energy of a particle-like state a t  a boundary 
of the liquid with a vacuum. The Eqs. (25) and (26) con- 
stitute a system of ordinary nonlinear differential equa- 
tions for the two unknown functions z(t) and w(t). In 
spite of their quite complicated character, it i s  possible 
to find an exact analytic solution to these equations. 

It can be verified by a direct calculation that the first 
integrals of (25), (26) have the form 

a z ( t )  ( t 2 - z 2 ( t )  ) - ( 1 + c u ' ) 1 2 + ~  ( t )  =E,  (27) 

where a nCL"€*(r*) '+4,  while E and P are  constants of 
integration. 

Equation (27) expresses the law of conservation of en- 
ergy for the right half of the system. The first  term on 
the left-hand side of (27) i s ,  a s  is easy to verify, the 
energy of the liquid 

while the second term is the energy of the particle. In 
the case of symmetric separation E =E,/2. 

The constant of integration P does not have as simple 
a physical meaning a s  E has. The momentum, II, of the 
right half of the system increases in time because of the 
action of the force 

on the right half of the system at  the point x = 0, i.e., 
dII/dt =f(t). Then we can write 

where PI= const. 

A direct computation yields 

.(I) 

11 = j TIOdx+w ( t )  i ( t )  =at ( t 2 - z2 ( t )  ) -"+'~')~~-at-*+w ( t )  i (l). (3'0) 
0 

From a comparison of (28), (29), and (30), it is clear 
that P = P t .  

Eliminating w(t) from (27) and (28), we obtain 

i ( t )  [E-a  z ( t )  (t2-r'(t))-('+'~"~-[P-at(t'-zl(t))-"+*"~2] -0. (31) 

Equation (31) is an equation in total differentials. Its 
solution for ci < 1 is 

E z ( t )  -Pt  + 4 ( tZ-z2  ( t )  ) "-"'"'= Q =; const, 
1-co 

(32) 

while for ci = 1 

( t l - z2 ( t ) ) '"  - 
Ez ( t )  -Pt+a In - Q = const. 

7-  
(33) 
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Using (32) and (33), we obtain an equation character- 
izing the variation of the mass  of a boundary particle 
with the quantity T = (tz- ~ ~ ( t ) ) " ~ .  For  c: < 1, 

and for c: = 1 

where M2 =EZ- F. 
By the use of the variable T the particle trajectory is 

found in the explicit form 

E P  z ( T ) - F ~ + z ( ~ * + r e ) ~ ) ,  

where 

Using the obtained relations, we can also easily find 
the dependence w ( t ) .  

Let us investigate the obtained solutions. In the t - - 
asymptotic limit we find from (32) that i ( t )  - P / E ,  with, 
as can be seen from (29), the total momentum of the 
right-hand part of the system II(t)-P. In view of this, 
we require on the basis of physical arguments that 0 <P 
c E.  An investigation of Eq. (32) shows that the function 
z(t) can be determined uniquely provided l i( t)  /<I .  And 
if a t  the initial moment z(to) 2 and ;(to) 2 0, then these 
inequalities and the condition z(t) < 1 a r e  maintained a t  
all  t >to. We have directly from (25) and (26) that 

from which can be seen the nature of the convexity of the 
z =z(t)  curves. 

The behavior of the solutions in the physical region 
is shown in Fig. 1 for different values of Q. 

An important characteristic of the model under con- 
sideration is the growth of the entropy of the liquid in 
the course of the expansion. For  the right half of the 
liquid, with allowance for the local conservation law (5) 
inside the liquid, we have 

Using (36), we can easily show by reductio ad absurdum 
that, if a t  the initial moment to 

i(t.) > v  (to, z (to)) -2 (to) It., 

then this inequality is maintained during the whole sep- 
aration time, i.e., the entropy of the liquid increases, 
o r  dS/dt >O. Notice that in the t -- asymptotic limit 
we always have i ( t )  >u(t,z(t)) (see Fig. 1). 

It can be seen from (37) that the growth of the entropy 

follows from the fact that the boundary moves faster 
than the boundary elements of the liquid, i.e., new 
streamlines appear a t  the boundary (see Fig. 2). This 
implies the production of new liquid elements a t  the 
boundary in the course of the expansion (let us recall 
that the chemical potential of the liquid has been taken 
to be equal to zero). The energy expended on the pro- 
duction of the new liquid particles is borrowed both 
from the boundary particles and from the interior re- 
gion occupied by the liquid. The nature of the energy 
exchange between a boundary particle and the liquid 
depends on the specific choice of the constants of inte- 
gration and on the quantity ci, different signs of G(t) 
being possible a t  different stages of the expansion. The 
indicated entropy-growth effect is connected with the 
decrease of the mass of the boundary particle, a result 
which can be seen from the following relation 

t 

dm dS 
sign ( =- sign (P)) , 

FIG. 1. The trajectories 
z ( t )  in the region z ( t )  2 0, s: 2 ( t )  2 0. As Q grows at 
fixed E and P ,  the curves 
shift to the right. The 
dashed line represents the 
curve .- [ i Z -  (at/P)a1('+e)]'h, 

on which 2 = 0 for different 
Q .  Above the curve 

Ez-Pt+a(t'-8') (I-%'ll~-O, 

which is  depicted in the 
figure by the dash-dot 
line, t >z/ t .  

which can be derived with the use of (36). 

2 

On the disintegration hypersurface (t2 - x2)lJ2 = T* ,  with 
with allowance for (13), we have 

FIG. 2. The straight lines x = ct (c =const) are the lines of 
flow of the liquid. The segmentAB corresponds to the hadron 
system at the moment of time to ,  the segment CE at the mo- 
ment t >to. The segment DE contains the liquid elements pr* 
duced during the period ( t o ,  t ) .  
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whence for 2% - .o we have 

According to (15), we then have a logarithmic growth of 
the multiplicity of the secondary particles from the dis- 
integration of the hadron liquid: 

Let us write down the relations on the disintegration 
hypersurface that allow us to obtain the quantities that 
a r e  measurable in experiment. For  T =  T* we have the 
following expression for the inelasticity coefficient k, 
which we define as the fraction of the energy possessed 
by the Liquid: 

and for the leading-particle mass  

where 

The presence of the three constants of integration, E ,  
P ,  and Q, reflects the arbitrariness in the choice of 
the initial values for z(to), 2(t0), and w (to) a t  the moment 
of time to. 

Because of the Lorentz contraction of the longitudinal 
dimensions of the colliding hadrons, i t  is natural to as-  
sume that the initial dimensions of the hadron system 
decrease with increasing E. Let us, therefore, se t  
z(to)-E-" (n> 0). In the Landau modelr1] n = 1, whereas 
allowance for the quantum effectsCS1 yields n = 1/3. For 
an arbitrary n>O, we obtain, under the assumption that 
the mass of the leading cluster is either finite o r  in- 
creases with E not faster than EY (y < I ) ,  the estimate 
P / E  - 1 for E - .o. 

Thus, the relations (38) and (39) express k and rn in 
terms of two parameters: Q and M ~ .  Notice that for 
fixed P, E,  and Q, and for 0 <  ctc 1, the mass, m,  of 
the leading cluster increases, while the coefficient k 
decreases, with increasing c:. Using the experimental 
values for k and m (k -0.5; m i s  of the order of one o r  
several GeV), we can easily solve (38) and (39) f o r  Q 
and MZ and thereby fix the parameters of the model 
under consideration. 

5. CONCLUSION 

The physical picture of hadron-hadron collisions a t  
high energies looks a s  follows in the model. under con- 
sideration. Excited particle-like states ar ise  during 
collisions of initial particles a t  the boundaries of the 
hadron system. In the process of separation they gen- 
erate a trail of hadron liquid behind them, so  that new 
liquid elements, which a re  drawn into the motion, ap- 
pear during the entire time of expansion. The entropy 

of the liquid increases, which i s  directly connected 
with the decrease of the boundary-particle mass  (in in- 
troducing an appropriate definition for the entropy of the 
boundary particles, we could have considered the 
entropy of the entire expanding hadron system to be 
constant). 

We have thus f a r  discussed that part  of the hadron 
matter which moves in the CM system to the right. 
The analysis of the left half is completely analogous. 
Notice, however, that the division of the energy and 
the momentum between the liquid and a boundary part- 
icle may not be the same for  the two halves, depending 
on the choice of the constants of integration for the left- 
and right-hand parts of the system. Thus, the model 
assumes that the symmetry in the final-particle distri- 
bution, arising when the distribution is averaged over 
a large number of collisions, can be broken in each 
individual event. 

Notice also that the proper expansion time T* does 
not depend on the initial energy. The finiteness of T* 

(7 * - I/@ ) justifies the use of the one-dimensional ap- 
proximation. Indeed, the one-dimensional approxima- 
tion for  a liquid element moving with velocity v is valid 
a s  long a s  the signal from the lateral face (its velocity 
is equal to c,) has not reached the center of the sys- 
tem, i.e., a s  long a s  

Since v = x / t ,  this i s  equivalent to the condition that 
T 5 l /pco,  which is fulfilled in our estimates: T S T* 

- I/@ - 
The space-time picture developed in the present 

paper for the process of multiple production can, ap- 
parently, be verified in the study of high-energy hadron- 
nucleus collisions. Let us mention in this connection 
the well-known Gottfried model,c121 whose hydrodynam- 
ic basis consists i n  precisely the use of solutions of 
the type (10). From the standpoint of our analysis, 
that model should be reexamined. 

In conclusion, we should like to note one interesting 
interconnection between the multiperipheral and hydro- 
dynamic approaches. The model considered by us 
yields the same results a s  the multiperipheral model. 
The basic premises and their justification are ,  how- 
ever, not the same in the two models. If models of 
the hydrodynamic type meet with difficulties in the 
analysis of the initial phase of the process because of 
the neglect of the quantum effects, the multiperipheral 
model, in i ts  conventional formulation, apparently con- 
tains inherent inconsistencies, which manifest them- 
selves in the study of the space-time picture of the ap- 
pearance of the real  hadrons. As has been shown by 
~ e l b e r ~  in a recent paper~'31 the space volumes in 
which the particles of the multiperipheral chain a r e  
produced turn out to be quite small, s o  that the final 
phase of the process should contain motion of the hydro- 
dynamic type. A synthesis of the two approaches is 
called for. 
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Solution of the Fokker-Planck equation for a laminar 
medium 
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An exact analytic solution (Green's function) of the Fokker-Planck equation is found for the case in which 
the mean square of the multiple-scattering angle is a function of a longitudinal coordinate. 

PACS numbers: 05.60. +w 

The Fokker-Planck kinetic equation, which describes q on the energy of a particle by introducing an appro- 
the spatial and angular distribution of particles subject priate dependence of the scattering properties of the 
to multiple scattering in the small-angle approximation, medium on the coordinate. The case of dependence of 
i s  of the well-known form q on the longitudinal coordinate z is of particular inter- 

est, since because the transverse displacements are  
aw aw -+ 0- = qA*, az ar (1) small the dependence of the scattering properties of the 

medium on r are  usually of little importance. 
where r i s  the radius vector in the transverse direction, Therefore the aim of this paper i s  to find the distri- 
z i s  the coordinate of longitudinal displacement, 8 i s  a bution function in closed form (in terms of quadratures) 
two-dimensional angular vector fixing the projection of 
the vector of the velocity's direction on a plane normal in its dependence on the function q(z). 

to the z axis, and q denotes one fourth of the mean We shall look for a solution of Eq. (1) in the form 
square of the multiple scattering angle in unit path 
length along the longitudinal coordinate. w (r, e , ~ )  - -& ~ ~ P ( - P , ~ ~ + P ~ * - P , ~ ~ ) ,  (2) 

In applying this equation to actual physical problems 
it i s  necessary, a s  a rule, to take into account a depen- where p,, p,, p,, and s are  functions of the coordinatez. 

dence of q on the spatial coordinates. This is the situa- Substitution of Eq. (2) in Eq. (1) gives the following 
tion, for example, when what i s  required is an estimate system of equations: 
of the spatial and angular distribution of a beam of fast i & 

--a- 
d ~ :  

particles as they pass through an inhomogeneous s dz 4~1% =-Ps '~~  
medium. Examples are  analysis of the passage of cos- -- dp' pi-4prZq. 

(3) 
mic rays through the atmosphere, calculation of effec- 2 2pt-4p:p~q, -&-- 

-- 

tiveness of targets and of shielding arrangements in Normalizing the function w(r, 6, z )  to unity, 
accelerators, investigation of the properties of charged- 
particle detectors, estimates of the effect of the spread jj w (r, 0, z)dr d0-1, 
in position and direction of travel on transition and (4) 

Cherenkov radiation; there a re  many other cases. we find that s= 4p#, -pg and that the first equation i s  a 
Moreover, if the particles are  subject to continuous consequence of the others. Successive use of the sec- 
energy loss, one can take the effect of a dependence of ond, third, and fourth equations in combination with 
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