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The properties of a quantum interferometer as a probe of small acoustic perturbations of a gravitational 
detector are studied. The low-frequency fluctuations of a Josephson contact are calculated, and on this 
basis formulas are obtained for the limiting sensitivity of the gravitational antenna. It is shown that when 
quantum restrictions are taken into account it is possible in principle to achieve the resolution necessary 
for second-generation antennas. 

PACS numbers: 04.80. +z 

1. INTRODUCTION 

Braginsky et ~ 1 . ~ "  have formulated a very general 
prediction for the parameters of bursts of gravitational 
radiation which can be reasonably expected a s  the result 
of cosmic catastrophes occurring with participation of 
superdense s tars  (Y -Y,). For a frequency of events no 
less  than ten events per year and a duration of bursts 
~ -10" -10-~  see the upper limit of their energy densi- 
ty a t  the Earth l ies in the range W- 1- lo4 erg/cma 
(Braginsky's estimate takes into account components 
with M -3-30M. and arange < -0.1-10-3 for the frac- 
tion of the total energy converted to gravitational radia- 
tion). For a quadrupole gravitational detector (GD) with 
masses m, linear dimension 1,-lo2 cm, and a mean 

cm/sec2, i.e., the sensitivity barely reaches the opti- 
mistic limit of the prediction. Increase of the mass of 
the GD to 5x106 g (Ref. 4) provides only F/m - 10-lo cm/ 
sec2. 

In addition there is an important limitation due to the 
possiblity of amplifying the probe signal. The amplifier 
noise temperature must satisfy the condition 

For the best low-noise amplifiers in the frequency 
range considered, T,- 1 K . [~ ]  It is therefore clear that 
only W= lo3 erg/cm2 is accessible to detection; with in- 
crease of the mass W = 10 erg/cm2. 

frequency w, - 3 X lo4 rad/sec th i s  is equivalent to an ex- 
It follows from Eqs. (1) and (2) that an increase of the 

ternal perturbation with a relative acceleration of the 
masses F/m -lo-' cm/sec2 in the optimistic case (W= pumping frequency we would be a radical measure. 

However, this is hindered by the following considera- 
lo4 erg/cm2) and F/m - 3 X lo-" cm/sec2 in the pessi- 

tions. The first ,  which is technical in nature, is the 
case ( w = l  erg/cm2, r -2  lo-' It is unavailability to experimenters of pumping generators 

that the potential sensitivity of GD permits detection of 
with sufficient stability in the range we>3 x loL0. A sec- 

such excitations if the Brownian motion is reduced by 
ond, which is fundamental in nature, is the intrusion in- 

cooling to T ,- 3 X K o r  as  the result of a high me- 
to the region of quantum limitations, according to which 

chanical quality factor Q, - 1010.c21 The reason for the 
Eq. (1) is valid a s  long a s  kT, Z E w , ,  and the maximum 

delay in construction of second-generation antennas is 
sensitivity of the antenna will not exceed the quantum 

the lack of efficient detecting elements which measure 1:-:+[61 
l l l l l l L  

small vibrations of the GD. Actually, in the best con- 
verters of the parametric type with a pumping frequen- 1 iio '" 
cy we under matched conditions, their intrinsic fludua- (:) m , n a ~ ( < )  . (3) 
tions at temperature Te limit the sensitivity of the an- 
tenna at the levelc3] For T,-2-4 K the limiting value of the pumping fre- 

quency lies a priori  somewhere near we- 10". 

In recent years the hopes of a number of experimental 
groups have been based on the use of quantum magneto- 

(') meters employing the Josephson effect-so-called 
Substitution into Eq. (1) of the values Te = 2 K, m = 3 x SQUIDS;" However, our analysisc7' has shown that sin- 
lo4 g, w, = 3  X l O l " ,  and i = 2 X sec gives F/m 2 lom9 gle-contact SQUIDS with external pumping have the same 

428 Sov. Phys. JETP 47(3), March 1978 0038-56461781030428-05$02.40 O 1979 American Institute of Physics 428 



praperties a s  parametric converters, which lead to  Eqs. 
(1)-(3). The purpose of the present article is to invest- 
igate the quantum interferometer (a magnetometer with 
two Josephson contacts) a s  the detecting element of a 
gravitational antenna. We show that in principle this el- 
ement can solve the problem of detection of the oscilla- 
tion of GDs in second-generation antennas. 

A quantum interferometerC8v9' consists of a supercon- 
ducting ring which contains two weak links-Josephson 
junctions supplied by a direct current bias J .  The bias 
current is such that the currents in the weak links ex- 
ceed the critical value Jc which destroys the supercon- 
ductivity. As a consequence, there ar ises  in the ring a 
potential difference which is an oscillating function of the 
magnetic flux penetrating the ring (the details can be 
found in booksc8* 91). 

As in Ref. 7, we shall discuss the connection of an in- 
terferometer to a GD with a coupling loop carrying a 
supercurrent Jo and firmly mounted on the GD. The ba- 
sic scheme of the entire antenna is shown in the figure. 
The interferometer is successively connected into the 
oscillatory circuit and turned to the GD resonance fre- 
quency w,. The output signal is a current flowing in the 
inductance L,,. We omit here the technical details of 
matching with the subsequent circuits, which have been 
discussed, for example, in Ref. 10; the latter can al- 
ways be taken into account by an equivalent recalcula- 
tion of the circuit parameters L, and R,. 

In what follows the thermal noise of the GD will be as- 
sumed negligible (H, -0, T,--0). The sensitivity of the 
antenna is limited only by the fluctuations of the detect- 
ing element, and to  evaluate these it is necessary to 
know the spectrum of voltage fluctuations of the quantum 
interferometer. For this reason at the beginning of the 
next section we present a calculation of the fluctuation 
spectrum of a Josephson contact under the condition of 
small fluctuations. The results a re  then used in Sec. III 
for calculation of the minimum observable force (accel- 
eration) equivalent to the action of a gravitational wave. 
The parametric mechanism of operation of the interfer- 
ometer a s  a probe with self-pumping and self-detection 
is discussed; the quantum sensitivity limit is evaluated 
in Sec. IV. Finally, in the conclusion we discuss the like- 
lihood of use of the quantum interferometer for second- 
generation gravitational antennas. 

2. LOW-FREQUENCY SPECTRUM OF VOLTAGE 
FLUCTUATIONS OF A JOSEPHSON JUNCTION 

The behavior of the quantum-mechanical phase rp of a 
Josephson junction with negligible capacitance is des- 
cribed by the e q u a t i ~ n ~ ~ . ~ ~  (for a =l) 

$+a sin cp=I+T. (4) 

The dimensionless designations a r e  as follows: r=w,,, 
where wo = 2lrRJ,/ihO is the characteristic frequency of 
the junction, R is the normal component of resistance, 

is the magnetic flux quantum, and I=YJ,. The spec- 
t r a l  intensity of the current fluctuations I with inclusion 
of quantum noise is 

where r = 2rrkT/JciPo, 8 = EwdkT, v =  w/wo, and T i s  the 
temperature of the Josephson contact. Retention in Eq. 
(4) of the arbitrary constant a # 1 is required for the 
subsequent calculation of the sensitivity of a two-con- 
tact magnetometer (Sec. 3). 

The low-frequency part  of the voltage fluctuations in 
a Josephson junction has been calculated previously, [''I 
but the method of direct expansion in small fluctuations 

used in that work leads to an erroneous result. For 
this reason, rather than make a fundamental analysis, 
we prefer to calculate the low-frequency fluctuation 
spectrum 4 by means of an asymptotic method in non- 
linear oscillation theory.c1z1 

In Eq. (4) the ser ies  of substitutions 

leads to the equation 

2-1'- - a', g ( r )  = (2/vo2) [tT+T/(I+a) 1. (7 

Here the random variable [ (r )  i_s written in the linear 
approximation in the fluctuations I ,  which we as_sum_eJ 
small. It is possible to discard terms of order I ', I<, 
and higher if we limit the bandwidth of the spectrum I. 
We shall assume that the spectrum (5) is cut off above 
somewhere in the region of frequencies 1 < v< 10. A 
better defined condition of applicability of the subsequent 
calculations is [ << 1. For this case Eq. (7) has been an- 
alyzed by ~ t r a t o n o v i c h . ~ ' ~ ~  The role of harmonics of the 
fundamental frequency vo is small  in this case, and the 
solution of Eq. (7) can be represented in quasiharmonic 
form: 

Z=A COS(~/~V~T+O)  =A cos 7, z=-~ /~v .  A sin 7. (8) 

The v.ariable u from Eq. (6) differs from z only in its 
amplitude: 

and for the phase 0 and the amplitude logarithm v=lnA, 
the following equations a r e  valid (for details see Ref. 
13) : 

- 
The smallness of I assures slow variation of v and 8. 

Using the relations which follow from Eqs. (6) and 
(8) : 
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one can find for r j  in first order in f: 

This formula relates 4 with the random variables f, 0 ,  
and v ,  for which statistical characteristics are found 
from Eqs. (5), (7), and (9). In principle Eq. (10) solves 
the problem of the fluctuation spectrum of a Josephson 
contact, From this we can find both the low-frequency 
part of the fluctuations and the natural width of the gen- 
eration line, together with the pedestal. In the present 
article we limit ourselves to calculation of the low-fre- 
quency part of the spectrum. For this purpose it is 
necessary to expand Eq. (10) in Fourier series in the 
harmonics of v, and then average over the period v;'. 

Using Eqs. (7) and (9), we obtain 

I - [ + I - I - v )  2 +... 
(I$)= v, + - <T)+(Tcos 27) 2 

1'0 Vo I 
(11) 

The low-frequency voltage on the contact, which coin- 
cides with (rj),C8993 in accordance with Eq. (11) consists 
of a constant component, thezontribution of the low-fre- 
quency part of the spectrum I, and also the contribution 
of the high-frequency fluctuations of 4 whose spectrum 
i s  close to the generation frequency v, (frequency con- 
version as the result of the nonlinear properties of the 
contact). Similarly there exist combination contributions 
of fluctuations resulting from higher harmonics, which 
in the approximation selected have been omitted in Eq. 
(11). Finally for the spectral intensity of the contact 
noise we have 

(12) 

For a = 1 we can see a difference from the result ob- 
tained in Ref. 11, where the combination term has the 
form (l/212)S,(vo). The second term in the square brac- 
kets in Eq. (12) i s  small. The main difference i s  due to 
the factor (I - vJ2, which reduces the role of the combi- 
nation effects, assuring that they fall off with increase 

, of bias current as I-3 rather than as I-' as in Ref. 11. 
Physically I - v, is the difference in the ordinates of the 
volt-ampere characteristics of an ordinary resistance 
4 =I and a Josephson junction rj = vo. With increase of 
I the characteristics approach each other and the non- 
linear effects disappear. 

The region of applicability of the quasiharmonic ap- 
proximation (8) which we have used is limited by the 
conditions (see Ref. 13) 

For p 2 1, Av 2 l(v,- 1) these relations lead to the re- 
quirement 

If we limit the bandwidth at the level of the second har- 
monic of the Josephson generation, i.e., (AV/V,) = 2, it 

is necessary to choose contacts whose resistance i s  
s l O 3  ohms, which i s  technically achievable. 

3. CALCULATION OF LIMITING OBSERVABLE 
FORCE 

Let us turn to  calculation of the sensitivity of a gravi- 
tational antenna with a quantum interferometer (see 
Fig. 1). The equations of the interferometer are  as fol- 
lows (for details see Ref. 14): 

Here cp, and cp, a re  the phase jumps in the weak links, 
cp,= 2a@J@, i s  the magnetic flux signal, v = V/Vo and 
j = (J, - J2)/Jc a re  the voltage on the interferometer ring 
and the current circulating in it, 1 = 2rL JC/9, i s  the in- 
ductance of the ring, and < and & are the independent 
fluctuation currents generated in the contact resistances 
(for simplicity we assume that the arms are symmetric, 
Vo=JcR). 

The equation for the current in the circuit I, = J,/Jc 
has the form 

E, i s  the fluctuation emf in the resistance of the circuit. 
The calculation i s  carried out most simply with neglect 
of the ring inductance 1 = 0 (in actual circuits a typical 
operating regime corresponds to the condition 1s 1). 
Then from Eq. (15) it follows that 

Equation (17) i s  identical to the equation for a single 
contact considered in Sec. 11. The role of a i s  played by 
the quantity cos(cp J2), which i s  slow in comparison 
with the changes of (p at the Josephson generation fre- 
quency (w, - w, << w,). Solution of Eq. (17) gives the func- 
tion v entering into Eq. (16), and in view of the selective 
properties of the circuit only the slow part of the func- 
tion i s  needed: 

L'(*=v~+ ( I /dyn) (q, sin rqb -It1) +%. (1 8) 

We assumed above that cp, consists of a constant bias 
and a weak harmonic signal: cp,= cp,+ds , cp, >>I& 1, 
& = ~,cosv,r,  and x i s  a random variable which has the 
spectrum (12) (with replacement of r by r/2). 

Substitution of (18) into (16) permits evaluation of the 
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intrinsic sensitivity of a two-contact SQUID a s  a mag- 
netometer. For vo - 1, @ s 1, and sin(cpd2) - 1 we obtain 
for the minimum detectable flux 

Typical parameter values T-4 K,  ~ , - 1 0 ~ - 1 0 ~  V, J, 
- - -- --- 
-10"-1v A give a numerical estimate barn,, - 
- 1 0 ~ ) @ , ~ z - l ' ~ ,  whGh i s  two to three ordeis"of magni- 
tude better than the limiting resolution of single-contact 
magnetometers in the hysteresis mode.c71 

The sensitivity of the gravitational antenna can be 
found from simultaneous solution of Eqs. (17)) (18)) and 
the equation for the mechanical degree of freedom. The 
energy of interaction of the electrical and mechanical 
degrees of freedom we shall assume proportional to the 
sum of the currents J, + J2 flowing in the a rms  of the in- 
terferometer, which can be assured by choice of the 
geometry in the experimental arrangement. Altogether 
we have the system of equations 

(-i.C,/4&vo) sin q b  1j+&~+23f~i+r,ll,i 
=b-s(i-e(a), yi-~,,'~+~.v"'~,,=\ ,,Zf., 

where y = x/d is the mechanical coordinate, = A(l +I/ 
2v0) is the equivalent damping, and the parameters a r e  
the same a s  in Ref. 7: 

is the external force equivalent to action of a gravita- 
tional wave (here qs= XCoy). 

The maximum value of the output signal, which is the 
current I,, , _corresponds to the relation X 2 =  Xip t  

= 161,, vo(w ,,?)/Sv,sincp,; here 

LJ$=[ (Fd5)'/2m] (oo/o,) sin qb (&a-I. 

As in Ref. 7, we shall consider a short external ac- 
tion F ( t )  of duration ? with a spectrum concentrated in 
the region o,* f-'. From solution of the system (20) we 
find the spectrum of the response signal I$(v) and the 
power spectrum of fluctuations Sci(v). For the ratio of 
the signal to noise after optimal processing we obtain 

In the limiting case of small circuit noise S,-0 the 
observable amplitude of external force following from 
Eq. (21) for p = 1 and X =  X,, is 

For not too large @ < 10 in the regime 1 < I < 2 ,  simp,- 1, 
Eq. (22) gives 

The same relation i s  valid when the circuit noise is im- 

portant: 

S.=kT,iRcpoVo-z=2nk~iIJ,@o>>S,; 

In the above equation the contact temperature T must be 
replaced by the circuit noise temperature TCi . 

4. THE PARAMETRIC MECHANISM AND THE 
QUANTUM SENSITIVITY LIMIT 

Equation (23) has the form characteristic of an anten- 
na with a parametric converter, whose makeup includes 
a pumping generator working at frequency ~ ~ . ~ ~ 9 ~ ~  This 
fact compels us to consider the quantum interferometer 
as a probe of the parametric type. Analysis shows that 
such a representation is possible. In fact, in the pres- 
ence of a magnetic bias flux in the ring of the interfero- 
meter a high-frequency circulating currant appears a s  
the result of Josephson generation (self-pumping). In 
the working regime at vo - 1 only the fundamental harmo- 
nic of the current i s  of great importance. It follows 
from Eq. (15) for 2 = 0 that j = -sin(cps/2)coscp, from 
which, using the main equation (4)) we can find 

The variations of ps = cp, + q, in the presence of a signal 
q, lead to amplitude-frequency modulation of the circu- 
lating current. The inverse demodulation and separa- 
tion of the low-frequency voltage in the interferometer 
ring a r e  accomplished as the result of the nonlinear 
properties of the Josephson junction, 

It is easy to show that taking into account of only the 
first harmonic already provides a low-frequency voltage 
close in value to  the exact value of vo. For this purpose 
we substitute (24) into (25) and after straightforward 
transformations obtain 

v = "'~XP [- 21 (VO - I )  1 ra0 [ 
I + a  vo 21(v0 vo - I ) ]  (26) 

+ 2a. ['I I)] CIJS v.7 + higher harmonica 

(Po,, a r e  Beesel functions). From this we obtain for the 
low-frequency part of the voltage 

In the working regime: 1 < I <  2, a = cos(q J2) -0.7, vow 1, 
the contribution of higher harmonics to v(*I) does not ex- 
ceed 2W0. 

Equations (24)-(27) demonstrate the parametric na- 
ture  of the operation of a quantum interferometer as a 
probe with self-pumping and self-detection. This is ex- 
act for 1 = 0. If the ring inductance is different from 
zero, there also appears a mechanism due directly to 
the constant compensating current in the ring. However, 
for I -S 1 (which is satisfied in experimental circuits) the 
parametric principle must be considered dominant. 

As was noted in Sec. I, the r ise  in sensitivity of para- 
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metric probes with increase of the pumping frequency 
in reality is limited by quantum fluctuations. The latter 
are  taken into account by Eq. (22), which for f i  --.o 

(w,-w, T-0) gives a relation similar to Eq. (3). It i s  
important, however, to evaluate the critical pumping 
frequency for which Eq. (23) is still satisfied. This cri- 
tical frequency depends on the efficiency of conversion 
of high-frequency fluctuations into the low-frequency 
region. It obviously corresponds to the value 8 ,  at 
which the two terms in the curly brackets of Eq. (22) be- 
come equal. In majorized form this condition is 

For v, - 1 it follows from this that PC, > 10 or   ti(^,)^, 
- - -  

> 10kT. Thus, for a quantum interferometer the critical 
self-pumping frequency turns out to be an order of mag- 
nitude higher than the value expected a Priori (see Sec. 
1). 

5. DISCUSSION OF RESULTS 

The principal result of the analysis carried out above 
is the conclusion that a quantum interferometer in prin- 
ciple can serve as the parametric converter for a grav- 
itational antenna with an extremely high pumping fre- 
quency. In fact, the Josephson generation frequency, 
for example, for contact parameters Vo- lo-' V and Jc - lo-' A,  amounts to w, = 2nVdJC@, = 3. 1012, which i s  an 
order of magnitude higher than for inductive converters 
working in known antenna  model^.^^*^] At the same time 
it exceeds the critical frequency of the quantum sensi- 
tivity limit (28), for which (o,), > 10kT/ti=6 x 1012 
(T-4K). It i s  notable also that a quantum interfero- 
meter i s  a type of parametric probe which does not re-  
quire an external pumping generator and demodulator 
(detector), which are sources of additional fluctuations 
limiting the sensitivity of the best experimental models 
of parametric converters.c151 This feature of a quantum 
interferometer i s  unique. 

Returning to the estimates (1) and (2) and substituting 
in these equations instead of we the frequency w, = 3 x 1012 
while retaining the remaining parameters, we can see 
that in principle it becomes possible to detect accelera- 
tions (F/m),i, 2 10'1° cm/sec2 for m = 3 X lo4 g and 
(F/m),,,, 2 lo-" cm/sec2 for m = 5 x lo6 which com- 
pletely satisfies the requirements imposed on second- 
generation antennas. 

It is important to note that, in contrast to the case of 
a single-contact SQUID in a hysteresis-free regime (see 
Ref. ?), Eq. (23) determines not the limiting achievable 
sensitivity, but the force detectable with retention of 
the maximum absolute value of response signal. The 
condition (2) shows that an amplifier with noise temper- 
ature of 10 K will be sufficient for detection of pulses at 

a level10 erg/cm2 for a mass m = 3 x lo4 g and of 10-I 
erg/cm2 for a mass m = 5 x lo6 g. 

In conclusion we note that although the main calcula- 
tion (Sec. III) has been carried out for the case 1 =0, the 
results should not change greatly for 1 < 1, which is typ- 
ical for practical circuits. Realization of an antenna 
with a quantum interferometer in practice, of course, 
involves difficulties in preparation of contacts with the 
specified characteristics J, and R and also difficulties 
in matching them with the subsequent amplifier. 

The authors thank V. B. ~ r a ~ i n s k i r  for his support of 
this work and for helpful discussions. 

"SQUID i s  an acronym for superconducting quantum interfer- 
ence device. 
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