
dk' 
Im nri-n zz xIF.(kelk',el) lalq,(k-kt) Iz6(u-a'-a,). . e. 

(24) 

where F,  is the constant of the interaction of the light 
with the phonons, and k and e a re  the wave vector and 
polarization vector of the photon. Since the photon wave 
vectors k and k' a re  very small, it suffices to calculate 
4, at k =O. This can be easily done by using (6) and (7). 
The result i s  

where x, i s  the coordinate matrix element given by (22) 
for the transition with excitation of the state q ,  

for which the applicability criterion is in fact (26). Thus 
the cross  section for Raman scattering with excitation 
bound states of phonons i s  gigantic, a s  i s  the cross  sec- 
tion for the absorption of light. 

The author thanks E. I. Rashba for a number of use- 
ful discussions. 
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A calculation is made of the static energy, energy of zero-point vibrations, thermodynamic potential, and 
equation of state of solid molecular hydrogen in the volume range 10-60 a.u./atom. The calculations are 
carried out in the group approximation and third-order terms are included. It is shown that, for given 
values of the specific volume, allowance for the three-particle interactions reduces the energy and pressure 
compared with the pair approximation. Estimates are given of the precision and limits of validity of earlier 
pair-approximation calculations [V. P. Trubitsyn, Sov. Phys. Solid State 8, 688 (1976); V. Magnasco 
and G. F. Musso, J. Chem. Phys. 47, 1723 (1967); G. A. Neece, F. J. Rogers, and W. G. Hoover, J. 
Comput. Phys. 7, 621 (1971); Hover et aL Phys. Earth Planet. Inter. 6, 60 (1972); England et al. 
Phys. Rev. Lett. 32, 758 (1974)l. 

PACS numbers: 3 1.70.Ks, 65.50. + m, 64.30. + t 

In calculating the thermodynamic functions of the identifies all the nearest neighbors of this molecule; 
molecular phase of solid hydrogen, the main task is to u:: is the potential energy of the pair interaction be- 
determine the static energy of a crystal. This is usually tween the molecules. 
done in the approximation of a pair interaction between 
the molecules forming the When only the The expression (1) is the first  (binary) term of the 

interaction between the nearest neighbors is taken into expansion of the energy a s  a ser ies  in groups of two, 

account in this approximation, the lattice energy per three, etc., molecules. It is shown by ~ o s a n o w ~ ~ '  that 

atom, measured from the energy of a free molecule, the general form of this expansion for the bound-state 

is given by energy of a system of Nparticles is 

Here, n i s  the number of molecules in a unit cell; the The summation in Eq. (2) is carried out over all the 
index a labels the molecules in this cell and the index j k-particle subgroups of the original set of N particles. 
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The quantities &,({k}) a r e  found from the recurrence 
relationship 

Here, ~,({k}) is the ~ami l ton ian  of a k-particle cluster: 

The mass of a single particle i s  denoted by M and the 
potential energy of the particles is u,({k)); $,({k}) is the 
wave function of the ground state of a k-particle cluster. 

The potential energy of k molecules does not reduce 
to the sum of the energies of their pair interactions. In 
the approximation of adiabatic motion of the nuclei, we 
shall define it a s  the sum E, of the electron energy and 
the energy of interaction between the nuclei at fixed 
positions. We a re  interested only in the static energy 
of the crystal so  that we shall go to  the limit M - .e . 
Then, H, = E, is the potential energy of k molecules at 
equilibrium positions in the crystal lattice and Eq. (3) 
becomes 

Using Eq. (2) and allowing for the translational sym- - 

metry of crystals, we obtain the following expression-- 
for the energy of a crystal, calculated per atom: 

The summation in Eq. (5) i s  carried out over all the 
molecules forming a unit cell and over all the clusters 
containing such a molecule a s  a center. 

We shall use the group expansion (5) to allow for 
three-particle clusters. In this case, the energy of a 
crystal, measured from the energy of a free molecule, 
is 

Here, u$:, i s  the three-particle contribution to the 
potential energy of the interaction between molecules 
a, j, and k, equal to the difference between the total 
energy of such a three-particle complex and the sum 
of one-particle energies of the molecules and energies 
of their pair interactions: 

Similarly, the potential energy of the pair interaction 
is defined a s  the difference between the total energy of 
a pair of molecules and the sum of their one-particle 
energies: 

The total energies of three- and two-particle clusters 
were found by applying the variational method to valence 
bonds with atomic 1S orbitals. The electron wave func- 
tion of a system of three hydrogen molecules was repre- 
sented by an expansion in t e rms  of 37 basis functions, 
which were conveniently selected by the Rumer diagram 
method (see Appendix I). The whole set of basis func- 
tions included five covalent, twelve singly and twelve 
doubly polarized, and eight triply polarized structures. 
(Examples of diagrams for structures of each type a re  
given in Appendix I.) The complete set of diagrams was 
then constructed by successive transpositions of the 
nuclei. An analytic expression for the wave function 
was a linear combination of the Slater determinants of 
the type 

where a(1) = (~3/rr)1'Zexp(- 5 1 r, - r, 1 )  is the Slater 1 s  
function; 

a re  the eigenfunctions of the one-particle operator S ,  
with the eigenvalues of + 1/2 and - 1/2, respectively. 
For example, the covalent structure represented by the 
diagram (1.1) in Appendix I i s  associated with the wave 
function 

Examples of analytic representation of the wave func- 
tions a r e  also given in Appendix I. 

In the state described by each of the functions cpi, the 
r component and the total spin of the system of six elec- 
trons vanish, and 

The wave function of a three-molecule complex i s  a 
linear combination of the cy i  functions. The coefficients 
in this combination a re  the variational parameters. The 
total energy of the complex was determined a s  the 
smallest root of the secular equation, obtained a s  a re- 
sult of energy variation. 

The pair interaction energy U g i  was calculated 
similarly. The wave function of the complex of two 
molecules was described by a linear combination of ten 
basis functions. Their structure and analytic forms, 
expressed in terms of the Slater determinants, were a s  
given in Appendix II. The energy calculations reduced 
to the solution of the variational problem. 

The energy of a crystal was calculated for two types 
of lattice: the hcp lattice with the molecular axes paral- 
lel to the principal axis, and a lattice in which the cen- 
t e r s  of the molecules formed a face-centered cube and 
the axes were directed parallel to the principal diago- 
nals of this cube (a-nitrogen structure). Each molecule 
in these lattices had 12 nearest neighbors. In the cal- 
culation of the three-particle interactions, account was 
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taken only of those clusters in which not more than one 
distance between the centers of the molecules ekceeded 
the distance between the nearest neighbors. These 
three-particle clusters, whose number was 150 in each 
lattice, dominated the correction due to the three- 
particle interaction. One could also show that, among 
these, the greatest contribution was made by 24 three- 
particle clusters, in which all three distances were 
equal to  the distance between the nearest neighbors; 
this happened in spite of the fact that the number of 
such structures was only a small proportion of the total 
number of three-particle complexes considered. The 
symmetry conditions reduced the number of the various 
three-particle complexes to 8 in the hcp structure and 
to 12 in the a-nitrogen structure. 

The parameter (-the effective nuclear charge-was 
assumed to be 1.193 atomic units (a.u.), and the dis- 
tance between the nuclei in a molecule to be 1.4166 a.u., 
i.e., equal to the value corresponding to the minimum 
energy of a free molecule calculated in the approxima- 
tion of the same bonds (one covalent and one polarized). 
In the case of the hcp lattice, the ratio c/a of the height 
of the cell c to the length of i ts  base a was varied in the 
pair interaction approximation. The results of variation 
of the cell shape in the hcp lattice yielded: 

Clearly, a reduction in the specific volume, i.e., an 
increase in pressure, causes the lattice to become 
elongated along the principal axis. 

The static energies of a molecular hydrogen crystal, 
calculated by the above method in the pair and three- 
particle approximations, a re  plotted a s  a function of the 
specific volume in Figs. l a  (hcp lattice) and lb  (a-ni- 
trogen lattice). The values of the energy per atom, 
measured from the energy of a free molecule, a re  
given. For both lattices, the correction due to the 
three-particle interactions i s  negative and i ts  absolute 
value r ises  with increase in the density of the crystal. 

u ,  a.u.latom 

FIG. 1. Static energy of a crystal. (a) Hexagonal close- 
packed lattice: (1) pair interaction, nearest neighbors; (2) 
three-particle interaction allowing for second-nearest neigh- 
bors; (3) three-particle interaction allowing only for the 
nearest neighbors. (b) Lattice of the a-nitrogen type: (1) 
pair interaction, nearest neighbors; (2) three-particle inter- 
action allowing for second-nearest neighbors; (3) three- 
particle interaction allowing only for the nearest neighbors. 

FIG. 2. Static component 
of the pressure for the hcp 
lattice. 

In the range of specific volumes smaller than -15 a.u./ 
atom, the three-particle contribution r ises  so much 
that allowance for this contribution alters the sign of the 
isothermal compressibility. The inclusion of the zero- 
point vibrations does not basically alter the situation. 
Formally, the vanishing of the compressibility corres- 
ponds to the limit of stability of the investigated phase. 
However, i t  i s  clear that, in reality, the contribution 
of higher-order terms in the expansion (2) becomes con- 
siderable in the volume range under investigation and 
the adopted approach becomes invalid. In addition to a 
reduction in energy, this allowance for the three-parti- 
cle interactions reduces the pressure. The static con- 
tribution to the pressure, calculated in the free-particle 
approximation, i s  shown in Fig. 2. The result applies 
to the hcp lattice; the corresponding dependence for the 
a-nitrogen lattice i s  exactly the same. 

The calculated static energy of a crystal must be 
supplemented by the energy of zero-point vibrations. 
We calculated the latter in the Debye approximation, a s  
was done by ~ b r i k o s o v . ~ ~ '  The total energy of a crystal, 
including that of zero-point vibrations, is plotted in 
Fig. 3 a s  a function of the specific volume of the hcp 
lattice. In the specific-volume range under considera- 
tion, the contribution of zero-point vibrations is rela- 
tively small and this justifies approximate allowance 
for these vibrations in the calculation of the thermo- 
dynamic functions. 

FIG. 3. Allowance for zero- 
point vibrations: (1) static 
energy; (2) energy with al- 
lowance for zero-point vibra- 

----_ 
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FIG. 4. Thermodynamic po- 
tential of molecular hydro- 
gen (hcp lattice). 

I' I 

0 01 0.2 03 004 
P, Mbar 

Figure 4 gives the thermodynamic potential of mole- 
cular hydrogen a s  a function of pressure a t  absolute 
zero. The result applies to the hcp lattice in the range 
of pressures in which the contribution of the ignored 
higher-order terms in Eq. (2) is of little significance. 

APPENDIX I 

In a variational calculation of the energy of a system 
of three hydrogen molecules, the wave function was 
represented by a linear combination of 37 basis func- 
tions, which could conveniently be represented in the 
following form by means of the Rumer diagrams. We 
shall use the letters a, b, c, d, e, f to denote the protons 
in the three hydrogen molecules: a b ,  cd, and ef. A 
continuous arrow joining different letters (for example, 
6 and c) means that the spin of electrons with orbitals 
centered on b and c have opposite directions. A dashed 
arrow joining identical letters (for example, and _a) 
denotes that two electrons with opposite spins a re  
located a t  the same nucleus a. Examples of the basis 
functions of the three-molecular system a re  given be- 
low: 

The covalent structures a r e  represented by the dia- 
grams (I.l), singly polarized by (I.2), doubly polarized 
by (I.3), and triply polarized by (1.4). Analytic forms 
of the wave functions, expressed in terms of the Slater 
determinants, a re  described by the formulas given be- 
low. 

a) Covalent structures: 

b) Singly polarized structures: 

c) Doubly polarized structures: 

d) Triply polarized structures: 

APPENDIX II 

The wave functions of two-molecule complexes were 
represented by linear combinations of 10 basis func- 
tions, corresponding to the following diagrams: 

Covalent structures correspond to the diagrams (II. 1), 
singly polarized structures to (II.2), and doubly polarized 
to (11.3). 

We shall also give the analytic formulas correspond- 
ing to these diagrams. 

a )  Covalent structures: 

b) Singly polarized structures: 

c) Doubly polarized structures. 
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It is shown that in spatially disordered magnetic systems three macroscopically different types of 
magnetically disordered exchange structures are possible. Besides a disordered ferromagnet and a 
completely random structure of the spin-glass type, a structure corresponding to a disordered 
antiferromagnet with three mutually perpendicular antiferromagnetic moments is possible. Nonlinear 
equations are found that describe the dynamical properties of spin glasses and disordered ferromagnets and 
antiferrornagnets with allowance for the external magnetic field and relativistic interactions. The spin-wave 
spectrum and magnetic-resonance frequencies are calculated. 

PACS numbers: 75.30.D~. 75.30.Et 

This paper i s  devoted to a macroscopic analysis of 
the magnetic properties of spatially disordered media, 
i.e., systems in which the spatial distribution of the 
magnetic atoms is, on the average, homogeneous and 
isotropic. We a r e  concerned here with amorphous sub- 
stances containing magnetic atoms o r  with weak solu- 
tions of magnetic atoms in nonmagnetic crystals. We 
shall assume that the appearance of one magnetic struc- 
ture or another in the substances under consideration 
is  due principally to exchange forces considerably 
greater than the relativistic interactions. 

A spatially disordered system can be completely ordered 
magnetically. The only such case i s  complete ferromagne- 
tic ordering of the spins of the magnetic atoms. Any 
other magnetic order i s  obviously incompatible with 
spatial disorder. The macroscopic properties of such a 
ferromagnet do not differ from the properties of ordina- 
ry  crystalline ferromagnets and a r e  described by the 
Landau-Lifshitz equation.['] 

In recent times, disordered systems with magnetic 
structures of a different type have been widely investi- 
gated (see the  review^[^*^]). These, firstly, a r e  the so- 
called spin glasses (see Ref. 2), in which not only the 
positions but a lso  the directions of the spins of the dif- 
ferent atoms a r e  randomly distributed. In addition, 
there exist systems (see Ref. 3) possessing a finite 
spontaneous magnetization whose value a t  ze ro  temper- 
ature, however, differs substantially from the nominal 
value. The state of such a disordered ferromagnet i s  
analogous to the state of a spin glass in an external 
magnetic field. There i s  partial ferromagnetic order 
superimposed on a fairly random (in general) distribu- 
tion of spin orientations. 

veloped in the work of Marchenko and the author,C41 all 
the theoretically possible macroscopically different 
types of such partial order will be found. I t  turns out 
that, apart  from the disordered ferromagnet, there ex- 
i s t s  only one other possible structure-a disordered 
antiferromagnet characterized by three mutually per- 
pendicular antiferromagnetic moments. 

The dynamical properties of disordered magnetic me- 
dia can be described macroscopically in a manner anal- 
ogous to the way in which ordinary amorphous solids 
a r e  described by the theory of elasticity. In this case 
the analog of the spatial-displacement vector that ap- 
pears  in elasticity theory i s  a rotation of al l  the spins 
through the same angle. The exchange energy does not 
change under such a rotation. The change of energy i s  
determined, therefore, by the time and space deriva- 
tives of the rotation angles, which a r e  analogous to the 
velocity of the medium and the deformation. The des- 
cription of the spin dynamics by means of rotation an- 
gles has been used in the study of the magnetic proper- 
ties of the superfluid phases of He315s81 and of crystal- 
lineF7] and disorderedC8] magnets. There is, however, 
an  essential difference between elasticity theory and 
magnetic dynamics. Unlike spatial displacements, dif- 
ferent rotations do not, generally speaking, commute. 
Therefore, the equations of magnetic dynamics a r e  non- 
linear even for small velocities and deformations. Be- 
low we shall derive the dynamical equations for all 
three types of disordered magnetic structures, i.e., for 
spin glasses and disordered ferromagnets and antifer- 
romagnets. For  our purposes i t  will be convenient to 
use the Lagrangian formalism applied by ~ a k i [ ~ ]  to in- 
vestigate the magnetic properties of liquid He3-B and 
by ~ z ~ a l o s h i n s k i ;  and ~ u k h a r e n k o [ ~ l  for crystalline 

Below, on the basis of the symmetry arguments de- magnets. The spin-glass case i s  the simplest. The 
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