
the available information on the optical and other pro- 
perties of defects in Si and GaAs a re  insufficient for 
drawing reliable conclusions on the avalanche mechan- 
ism; the many-photon ionization has not yet been con- 
sidered in the literature a t  all  but the sensitivity of 
the avalanche and many-photon ionization processes to 
the structure of a crystal is highly likely. 

Thus, our experimental results and theoretical esti- 
mates suggest that the most probable laser damage 
mechanism in the case of pure Si and GaAs crystals 
subjected to CO, laser radiation i s  the avalanche im- 
pact ionization. In the case of the damage caused by the 
radiation of the Er3+ lasers,  i t  is more likely to be due 
to the three-photon ionization process. However, final 
conclusions on the dominant damage mechanism cannot 
be drawn without further experiments, especially on 
the kinetics of excitation of nonequilibrium carriers,  
and without detailed development of the theory for 
specific materials. 

The authors a r e  grateful to G. I. Voronkova and 0. G. 
Stolyarov for supplying the investigated single crystals 
and for valuable discussions. 
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The change of the phonon spectrum in the presence of a polaron is investigated and the frequencies of the 
lowest bound states are calculated. The oscillator strengths are estimated for absorption and Raman 
scattering of light with excitation of bound states of phonons. 
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The author and ~ashba ' "  were the first  to consider 
the restructuring of the phonon spectrum in the presence 
of a continual tight-binding polaron. It was proved that 
the change of the polarizability of the crystal near the 
polaron gives rise to an infinite number of phonon states 
whose frequencies lie lower than the frequency of the 
free phonon and differ from it by universal numerical 
factors. To our knowledge, this was the first  example 
of formation of a bound state of an electron and phonon. 
It turned out subsequently that such states arise in a 
large class of cases (see the review[']). 

In all the investigated situations it is possible to ex- 
plain only the qualitative features of the energy spec- 
trum. The only exception is the autolocalized electron 
state produced in a contact interaction with phonons in a 
one-dimensional system,r31 when the problem of the 
spectrum and wave functions of the bound state has an 
exact analytic solution.r41 In all other cases it is neces- 
sary to resort to numerical methods to obtain quantita- 
tive results. 

The present paper is a continuation of the earlierr1' 
investigation of the phonon spectrum in the presence of 

a polaron, describes the method and results of a nu- 
merical calculation of the lowest bound states, and pre- 
sents an estimate of the oscillator strengths for optical 
transitions with excitation of these states. 

The Hamiltonian of an electron interacting with dis- 
persionless polarization phonons and with an electric 
field E is of the form 

where ol is'the electron-phonon interaction constant, p 
is the electron momentum, q, is the coordinate of a 
phonon with momentum k, Hih' i s  the Hamiltonian of 
the free phonons, the energy is measured in units of a,, 
and the length i s  measured in units of (rrrwo)-1'2 (w,  i s  
the phonon energy and rn i s  the electron mass). 

In the strong-interaction limit we can obtain from (1) 
the Hamiltonian of a polaron interacting with phonons.[51 
We repeat here briefly this derivation, with an aim of 
finding the connection between the electric field and the 
coordinates of the bound states. A shift of the origin of 
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the phonon coordinates, 9, - 4, +ql, leads to the ap- 
pearance of a potential well made up of the displace- 
ments 9:. The Hamiltonian (1) can be rewritten in the 
representation of the wave functions of an electron in- 
teracting with this well: 

The displacements q: a r e  connected with the electron 
ground-state function by the self-consistency condi- . 
tionr6' 

and the functions +, satisfy the equation 

where we have omitted from the energy En a constant 
term of no importance in our case. 

The large (- a2) distances between the levels E, and 
En make it possible to calculate the last two terms of (2) 
by perturbation theory near the ground state of the crys- 
tal. Leaving out the ground state energy E,, we obtain 
the effective Hamiltonian of the phonons in the presence 
of a polaron and an electric field: 

The second term (5) corresponds to a change of the 
polarizability of the crystal in the vicinity of the polaron, 
and the third to the interaction of light with longitudinal 
phonons. From (5) we obtain for the wave functions of 
the bound states the equation 

The successive substitutions 

make it possible to calculate the infinite sum in (6) and 
write down the obtained equation in the form of the 
variational principle 

where we put r = ~ / a 2 ~ ' ' .  We note that the right-hand 
side of (8) does not contain symbolic parameters and is 
fully defined if the function +, i s  known. 

Pekar has indicated that the frequencies of the three 
oscillations corresponding to the shift of the polaron a s  

a whole should vanish.[61 A shift by a distance 6R adds 
a term i 6R k qg is added to the values of given by 
(3), so that the functions kg:, k,q: and k,q:"are eigen- 
functions, corresponding to v=O, of Eq. (6). For the 
corresponding functions f,, f,, and f ,  we obtain, taking 
into account the substitutions (7) and the relations ob- 
tained after differentiating (4) with respect to x, y, and 
z ,  the following simple expressions: 

We point out a number of relations that must be satis- 
fied by the functions 4, q, and f defined by Eq. (6) with 
the substitutions (7). Transforming (6) with (7) taken 
into account, we obtain 

from which follows, by virtue of the orthogonality of @, 
and #,, the relation 

which imposes an additional condition on the functions f 
with zero angular momentum. This condition is im- 
portant because the functional (8) contains at I = O  only 
derivatives of f ,  and defines by the same token f ,  apart 
from a constant that must be determined from (11). 

We determine the normalization of the phonon wave 
function q(r) from the condition that in the ground state 
the potential energy of the oscillation with frequency u 
is equal to u/4. Taking (6) into account, this condition 
takes the form 

The function q(r) is expressed in terms of the function 
f by the relation 

At large r, the function q(r) decreases like r-'-' if I 
> 0. At I = O  i t  is necessary to take (11) into account, SO 

that q(r) a Y - ~ ( Z  = 0). 

The essential f irst  step towards the solution of the 
variational problem (8) is to find the wave function $, 
defined by Eq. (4) at n=O. This equation is nonlinear 
in $,, and was therefore solved by a combination of an 
iteration method. Namely, we use besides Eq. (4) a 
variational principle that follows from (4) for the energy 
E,. The function +,was specified in the form 

$ Q ( Z )  ~ 7 4 2 ~ 0 ( 7 x ) 7  
Y Q ( x )  =e-*f 'P(x) ,  

where P ( x )  is a power ser ies  in x. 

From the variational principle for E, we obtain the 
value of the scale factor y, corresponding to the mini- 
mum energy at the given coefficients of the power series 
(15). The obtained (li, i s  used to calculate the potential 
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in the parentheses in the left-hand side of (4). The lin- 
ea r  equation with this potential is solved by the method 
of moments, thus determining the coefficients of the 
power series (1 5). Using the variational principle again, 
the scale factor y is determined and the process con- 
tinued until the coefficients of the series (15) and the 
scale factor y reach stable values. 

The described iteration process converges very 
rapidly for the energy, but the determination of the 
series coefficients requires several thousand iterations. 
This is precisely why the number of independent coef- 
ficients of the series (15) is limited to three. The func- 
tion \k, used in the calculation is of the form 

The values obtained for the coefficients Ci and for y a r e  

C1=0.1338, C2=0.01327, C - I 0  y=1.465. (17) 

The choice of the function 4, in the form (16) ensures 
the absence of a linear and cubic term in its expansion 
in small x. The importance of this condition can be 
verified with the only known solution of the variational 
problem (8). Namely, the right-hand side of (8) should 
become equal to unity upon substitution of the function 
f, = aln#,/ax. From the form of (8) it follows that the 
choice of Q, in Gaussian form with subsequent sub- 
stitution of f, in (8) leads to u = 1 in place of u = 0. The 
choice of a, in a form that ensures the absence of a 
linear term in the expansion of x with three independent 
coefficients of the power series leads to a right-hand 
side of (8) with a value close to 0.4. The reason is  that 
upon substitution of the indicated form off, the func- 
tional (8) contains derivatives of a, up to fourth order, 
and by the same token turns out to be most sensitive to 
the behavior of Go at short distances. The function \k, 
defined by (16) and (17) yields for (8) a right-hand side 
close to 0.96, i.e., differing by approximately 4% from 
the exact value. 

The described method of estimating the accuracy of *, i s  quite satisfactory if the values of x that a re  vital 
in the problem are  of the order of unity. With increas- 
ing serial number of the state, however, o r  with in- 
creasing angular momentum I ,  large values of x become 
important, and this calls for substituting in (8) a function 
Q, that is highly accurate at x>> 1. The accuracy of \k, 
a s  given by (16) and (17) at x>> 1 is estimated in the 
following manner: At Y >> a-l the potential in (4) turns 
into a Coulomb potential, so that the difference between 
the asymptotic form of \k, and the asymptotic form of 
the hydrogen function is determined by the difference 
between the eigenvalue of (4) and the eigenvalue in the 
hydrogen-atom problem. The asymptotic form obtained 
for a, by the condition that the results can be joined with 
the solution (16) and (17) is 

- 0.1894 ,-o mszo 153 (i-o.7g/z), Yob) - - (4n) " (18) 

and the joining point corresponds to x =  5.23. The next 
higher powers of l/x in the parentheses of (18) have 
small numerical coefficients and can be neglected at  

x > 5. Comparison of the numerical solution (16) with 
the asymptotic form (18) shows that in the interval from 
x =  5 to x =  20 they differ by not more than 7%. The ac- 
curacy of the function \k, obtained by us  can therefore 
be regarded a s  satisfactory for the determination of the 
energies of the lowest bound states corresponding to 
small values of the angular momentum I .  

To calculate v we use the following approximations 
of the radial parts f '  of the functions f: 

These equations a re  substituted in the functional (8) and 
variation with respect to C, yields a system of linear 
equations of order N, whose eigenvalues determine the 
frequencies of the bound states. We give the frequencies 
of the two lowest states for the first  three angular- 
momentum values: 

We see that the frequencies condense rapidly towards 
the frequency of the free phonon. These frequency val- 
ues were obtained at N=8. The calculation of the fre- 
quencies of the following states and of states with angu- 
l a r  momenta 1 > 2  is difficult because of the insufficient 
accuracy of the previously obtained function Q, when 
x>>l. 

The matrix element of the coordinate for the transi- 
tion with excitation of a bound state of the phonon i s  
determined by the coefficient of E in the last term of 
(5), if we substitute for q, a wave function satisfying 
Eq. (6) and normalized by relation (12). Taking the sub- 
sitution (7) into account, we get 

It follows therefore that the light excites only states 
with 1 = 1. For the oscillator strength F ,  which deter- 
mines the intensity of the light absorption when the state 
f, is excited, we obtain after changing over to the polaron 
unit of length (Y - x/2l "a) the expression 

To separate explicitly the exponent of a, this expres- ' 

sion is written in a form that does not depend on the 
normalization off,. It is seen that with increasing bind- 
ing force the oscillator strength decreases like N4. 

To estimate the intensity of Raman scattering, we 
use formula (25) of Rashba's paper.[7' According to this 
formula the imaginary part of the polarization operator, 
which determines the Raman-scattering intensity per 
polaron, is given by 
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dk' 
Im nri-n zz xIF.(kelk',el) lalq,(k-kt) Iz6(u-a'-a,). . e. 

(24) 

where F,  is the constant of the interaction of the light 
with the phonons, and k and e a re  the wave vector and 
polarization vector of the photon. Since the photon wave 
vectors k and k' a re  very small, it suffices to calculate 
4, at k =O. This can be easily done by using (6) and (7). 
The result i s  

where x, i s  the coordinate matrix element given by (22) 
for the transition with excitation of the state q ,  

for which the applicability criterion is in fact (26). Thus 
the cross  section for Raman scattering with excitation 
bound states of phonons i s  gigantic, a s  i s  the cross  sec- 
tion for the absorption of light. 

The author thanks E. I. Rashba for a number of use- 
ful discussions. 
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A calculation is made of the static energy, energy of zero-point vibrations, thermodynamic potential, and 
equation of state of solid molecular hydrogen in the volume range 10-60 a.u./atom. The calculations are 
carried out in the group approximation and third-order terms are included. It is shown that, for given 
values of the specific volume, allowance for the three-particle interactions reduces the energy and pressure 
compared with the pair approximation. Estimates are given of the precision and limits of validity of earlier 
pair-approximation calculations [V. P. Trubitsyn, Sov. Phys. Solid State 8, 688 (1976); V. Magnasco 
and G. F. Musso, J. Chem. Phys. 47, 1723 (1967); G. A. Neece, F. J. Rogers, and W. G. Hoover, J. 
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In calculating the thermodynamic functions of the identifies all the nearest neighbors of this molecule; 
molecular phase of solid hydrogen, the main task is to u:: is the potential energy of the pair interaction be- 
determine the static energy of a crystal. This is usually tween the molecules. 
done in the approximation of a pair interaction between 
the molecules forming the When only the The expression (1) is the first  (binary) term of the 

interaction between the nearest neighbors is taken into expansion of the energy a s  a ser ies  in groups of two, 

account in this approximation, the lattice energy per three, etc., molecules. It is shown by ~ o s a n o w ~ ~ '  that 

atom, measured from the energy of a free molecule, the general form of this expansion for the bound-state 

is given by energy of a system of Nparticles is 

Here, n i s  the number of molecules in a unit cell; the The summation in Eq. (2) is carried out over all the 
index a labels the molecules in this cell and the index j k-particle subgroups of the original set of N particles. 
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