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The behavior of the surface impedance of anisotropic metals in a perpendicular magnetic field in the radio- 
frequency range is investigated theoretically and experimentally. It is found that below the helicon 
threshold there are two regions in which the skin effect has a different character. In weak fields, the skin 
effect is anomalous. However, the surface resistance R ,  and reactance X, vary rapidly with the magnetic 
field. In stronger fields, there is a skin effect of a novel type. Here the change in the impedance of the 
bulk metal with changing field is non-monotonic. The results of the calculations are in qualitative 
agreement with the experimental data for silver, copper, and aluminum. 

PACS numbers: 73.25. +i 

INTRODUCTION 

The effect of a constant field H on the surface im- 
pedance of a metal under conditions of the anomalous 
skin effect was considered in Ref. 1. It follows from 
the results of Ref. 1 that the value of the impedance in 
weak fields differs little from its value a t  H = 0, i.e., 
that the presence of a magnetic field has practically no 
effect on the anomalous skin effect. This conclusionwas 
confirmed by ~ l ig , [ ' ]  who made a numerical calculation 
of the dependence of the impedance of an alkali metal on 
the value of a magnetic field perpendicular to the sur- 
face. According to Ref. 2, in the range of fields much 
weaker than the threshold field of the helicon, the sur- 
face resistance R- and reactance X: change slowly 
with H both for specular and for diffuse reflection of the 
electrons from the surface. This result also follows 
from the analytic expression obtained in Ref. 3 for the 
impedance. 

It is shown in the present paper that the situation can 
be different in uncompensated metals with anisotropic 
Fermi surfaces. In the case of certain orientations of 
the vector H relative to the crystallographic axes, a 
number of such metals reveal a rapid change in the sur- 
face impedance in fields much smaller than the thres- 
hold field of the helicon. This pertains to the impedance 
of the bulk metal for both circular polarizations. In 
order that the impedance be strongly dependent on the 
value of ti in the region of weak fields, the Fermi sur- 
face should possess the following feature: The princi- 
pal group of carr iers  should have such a dispersion law 
that their displacements along the magnetic field in one 
cyclo.tron period a r e  greater than a certain minimum 
value. This occurs if the function aS/6p, has a broad 
minimum (S(p,) i s  the cross  sectional area  of the Fermi 
surface cut by the plane p, = const, z axis parallel to 
H). We note that in the total absence of electrons with 
small displacements there would be no collisionless 
wave absorption to cause the anomalous skin effect. In 
real metals, there i s  always a group of ca r r i e r s  with 
small displacements. However, it frequently happens 
that the number of such carr iers  is  very small. These 
carr iers  determine the dissipative part of the nonlocal 
conductivity, the value of which in weak magnetic fields 
is  practically independent of H . The principal group of 
carr iers  with large displacements makes a contribution 

proportional to& to the nondissipative part of the non- 
local conductivity. Therefore, the region of weak fields, 
in which the dissipative conductivity of the small group 
i s  predominant and the anomalous skin effect takes 
place, turns out to be significantly narrower than in 
alkali metals, and the impedance changes sharply with 
magnetic field. In stronger fields, the nondissipative 
component becomes dominant and the character of the 
skin effect changes. The damping of the radiofrequency 
field in the skin layer in this region is principally ex- 
ponential, while the thickness of the skin layer i s  pro- 
portional to (wY)-'/~, where w i s  the frequency of the 
exciting field. We emphasize that such a skin effect 
is  absent in alkali metals, in which the dissipative com- 
ponent of the conductivity i s  important up to the helicon 
threshold. 

We shall carry  out the calculation below for a com- 
paratively simple model that accounts for the significant 
properties of real  metals, demonstrate the features of 
the skin effect mentioned above, and make a comparison 
with the data of our experiments for silver, copper, and 
aluminum. 

THEORY 

1. The nonlocal conductivity of a metal with a spheri- 
cal Fermi surface in a perpendicular magnetic field 
(kl [HI lz) is  described by the e ~ ~ r e s s i o n [ ~ ~ ' ~  

where e i s  the absolute value of the charge, m i s  the ef- 
fective mass of the conduction electrons, n i s  the con- 
centration, v, i s  the Fermi velocity, 52 = eH/mc i s  the 
cyclotron frequency, v i s  the frequency of collisions 
with the lattice, k i s  the wave vector of the electromag- 
netic field in the metal, the upper sign refers to "plus" 
circular polarization, and the lower to"minus" polariza- 
tion. 

We a r e  interested in the case of frequencies w that 

395 Sov. Phys. JETP 47(2), Feb. 1978 0038-564617814702-0395$02.40 01978 American Institute of Physics 395 



a r e  small in comparison with the frequency of collisions 
v and such magnetic fields in which SZ >> v.  Upon satis- 
faction of these conditions, the nonlocal conductivity 
o, does not depend on W ,  and the value of q reduces to 
the ratio of the maximum displacement of the electrons 
per cyclotron period to the electromagnetic wavelength, 
q= kv,/s2. 

As i s  well known, a t  values of the magnetic field cor- 
responding to the inequality'q2 < 1, a helicon wave exists 
in the "minus" circular polarization. In the region q2 
> 1, the logarithm in (2) has a finite imaginary part due 
to the collisionless absorption that makes propagation 
of the helicon impossible and leads to the anomalous 
skin effect. 

In the region of weak magnetic fields, where q2 >> 1, 
the approximate expression for the function F i s  of the 
form 

The first term on the right side corresponds to col- 
lisionless absorption of the wave by electrons with 
small longitudinal velocities (Landau damping), while 
the second describes the dispersion of the nondissipa- 
tive part of a, due to electrons with large velocities. 

Substituting (4) in (I), we have 

The first  term in (5) does not depend on ri, while the 
numerical coefficient in the second term i s  of the same 
order a s  in the first. Therefore, in the region q>> 1 the 
second component is  much smaller than the first, whence 
it follows that the magnetic field has a weak effect on the 
anomalous skin effect. 

The situation is different for anisotropic metals if the 
magnetic field H i s  oriented relative to the Fermi sur- 
face in such a way that the plot of BS/ap, for the basic 
group of ca r r i e r s  has a minimum, i.e., there a r e  no 
electrons among them with small displacements along 
the field. In particular, this takes place in noble metals 
a t  k J 1 ~  [110][~~ and in aluminum[61 at  k l l ~  [loo]. In the 
study of dopplerons in copper in Ref. 7, a model of the 
Fermi surface was considered with minimum aS/ap,, 
for which the function F, which describes the electron 
contribution to the conductivity, i s  of the form" 

where 

At large q, this function i s  real, FCC- q", i.e., the 
electrons make no contribution to the collisionless ab- 
sorption. Moreover, it must be noted that the sign of 
F i s  the opposite of the sign of the second term in (4). 
This i s  also a consequence of the minimum of BS/ap,. 

Besides the electrons, copper has hole orbits of the 
"dog bone" type, located near the central cross  section 
of the Fermi surface. Among these ca r r i e r s  there 
a r e  holes with small displacements, causing collision- 
less  absorption. However, the hole concentration in 
copper i s  small, therefore the dissipative conductivity 
term associated with them i s  numerically small. Thus, 
the asymptotic expression for the conductivity a t  q >> 1 
is  of the form 

where a i s  a small numerical coefficient. 

We emphasize that the asymptotic form (8) i s  not the 
consequence of the model and occurs in all cases in 
which the basic group of ca r r i e r s  has a minimum of 
as/ap,. 

2. We want to describe the behavior of the impedance 
not only in fields that a r e  small in comparison with the 
helicon threshold field, but also in the region of the 
helicon and the doppleron that exists in the opposite 
polarization.c7-91 Therefore, we consider a simple 
Fermi-liquid model for which the nonlocal conductivity 
has the correct asymptotic forms a t  both large and 
small q: 

The second term represents the contribution of the elec- 
tron Fermi surface, which has the shape of a paraboloid 
of revolution.[101 We have written unity in the denom- 
inator of the first  term s o  that the collisionless absorp- 
tion vanishes a s  q- 0, a s  i s  the case in real  metals. 

The dispersion equation for circular polarizations of 
the electromagnetic field k2c2 = 4niwo+ can be written 
in this model in the form 

where 

for the paraboloid aS/bp, = 2np, = const. In the second 
term in square brackets, we have neglected the small 
imaginary terms of order y. 

We consider f i rs t  the region of fields satisfying the 
inequality 

aE5<i. (13) 

Under the condition (13), the f i rs t  component in the 
square brackets in (11) i s  small and can be neglected in 
comparison with the second. Here the dispersion equa- 
tion has two solutions: qH and q,, which describe the 
distribution of the radiofrequency field in the metal and 
the value of the impedance. In the minus polarization, 
both roots a r e  real a t  5 <*. One of them refers  to the 

396 Sov. Phys. JETP 47(2), Feb. 1978 Voloshin et a/. 396 



helicon, and the other to the doppleron. At 5 > a ,  both 
roots a re  essentially complex. In the plus polarization, 
the root q, i s  imaginary; it i s  connected with the 
"damped helicon." The root q,, which i s  real, char- 
acterizes the doppleron. 

We assume the reflection of the electrons from the 
surface to be diffuse. Then the surface impedance 2, 
of the semi-infinite metal i s  determined by the express- 
ion of Ref. 11, which can be written in the form 

Z,=a - dq In- D$q) ] -Il  

In the considered region of fields, the integral in (14) i s  
simply expressed in terms of the solution of the dis- 
persion equation: 

If we substitute the explicit expressions for q, and q ,  
in (16) (the roots of the dispersion equation, which have 
positive imaginary parts), we then obtain 

These a re  in fact interpolation formulas. They de- 
scribe correctly the behavior of the impedance both in 
the region of existence of the helicon in strong fields 
(( << 1) and in fields that a r e  much smaller than the 
threshold value (5 >> 1). The dependence of the im- 
pedance Z- on the field in the vicinity of the helicon 
threshold i s  sensitive to the model of the Fermi surface 
and one should not attribute a special significance to 
it. 

We consider in more detail the skin effect in the reg- 
ion of comparatively weak fields, where 

Here the expressions (17)-(18) for the impedance a r e  
simplified and take the form 

l-i  
Z+=a- 

1 i 

It follows from (20) with account of (12) and (15) that R+ 
and X, a r e  proportional to (W~/H) ' /~ ,  while R- (wH)'I2. 
In the minus polarization, the electromagnetic field de- 
cays exponentially over a distance 6 = l/kl', where W' 
is  the imaginary part of k and i s  a solution of the dis- 
persion equation. This distance i s  

fi cp, a=---- 
E'" eH 

(of?) -". 

In the plus polarization, the field i s  the sum of the 
doppleron and skin terms. The doppleron term has 
small damping, while the skin term decays over a dis- 

tance of the order of 6 (21). 

3. We now study the region of weak magnetic fields 

In this case, the dispersion equation (10) can be written 
approximately in the form 

The expression in square brackets, which i s  connected 
with the nonlocal conductivity, i s  defined on the real  
q axis. We continue it analytically into the complex q 
plane, defining the first  sheet by the cuts shown in Fig. 
1. Then the dispersion equation for theplus polarization 
has in the upper halfplane of the first  sheet the solution 

and two solutions q, and q; for the minus polarization: 

The locations of these roots a r e  shown in Fig. 1. The 
remaining roots of the dispersion equations lie in the 
lower halfplane and we shall not be interested in them 
in what follows. 

The surface impedance i s  determined by the integral 
(14). We carry out integration by parts and deform the 
contour of integration to the cut in the upper halfplane, 
isolating the pole components. Then, using the small- 
ness of a, we displace the cu?s to the real  semi-axis. 
Finally, replacing q2 by x ,  we obtain 

where q, a r e  the dispersion-equation roots lying in the 
upper halfplane on the first  sheet. 

Further calculation of the integrals for different po- 
larization is carried out separately. As a result of un- 
complicated but tedious calculations with the use of the 
inequality (22), we find 

The quantity 2, does not depend onH. It represents the 
impedance of a metal with carr ier  concentration an 

FIG. 1. Cuts aad roots of 
the dispersion equation in 
the plane of q. 
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under the conditions of the anomalous skin effect a t  H 
= 0. The functions A, describe the change in the im- 
pedance with the magnetic field. Thanks to the fact that 
5 enters into (29) only in combination with the small 
factor a4, the functions A, (in contrast with the case of 
the alkali metal,r31 change rapidly with FI. It should be 
emphasized that the impedance for linear polarization, 
Zzxx = ZYy = (Z+ + 2-)/2, does not contain a logarithmic 
term and therefore i s  a more slowly varying function of 
the field. Moreover, we note that in specular reflection 
of the carr iers  from the surface, the impedance has 
likewise no logarithmic singularities. 

4. Plots of the surface resistance and the reactance 
for  both circular polarizations a re  shown in Fig. 2. 
These a re  obtained by numerical integration of (14) with 
the conductivity (9). The calculation was performed for 
the following values of the parameters: n = 5x loz2 cm-', 
a =  0.2; Po= 0.47ri A", the free path length of the elec- 
trons 1 = p d m  v = 0.5 mm, m = 10-27g, frequency o/2n 
= 200 kHz. Since the chosen value of CY i s  not very small, 
it i s  impossible to expect numerical agreement of these 
curves with the asymptotic formulas calculated earlier. 
However, the character of the change of R, and X, with 
the field ti i s  in complete agreement with the expres- 
sions (17)-(18) and (27)-(29). It i s  seen from the draw- 
ing that in weak fields the functions Z , ( H )  undergo a 
sharp change; hence the signs of the derivatives of 
d ~ , / d ~  and d X , / d ~  a r e  opposite to the signs of these 

FIG. 2. Plots of the magnetic field dependence of the surface 
resistance (a) and reactance (b) of a semi-infinite metal. 
Curves 1 correspond to the plus polarization, curves 2 to the 
minus. 

functions in the alkali metal.12' The significant dif- 
ference from the alkali metal lies in the fact that the 
functions R , (fi ) and X , (H ) have extrema on going to the 
region of moderate fields. It should be noted in this 
case that, in correspondence with Eqs. (17)-(18) and 
(27)-(29), the extrema of R+ and X -  a r e  located a t  
smaller fields than the extrema of R- and X + .  

5. We noted above that the character of the reflection 
of the electrons affects the change in the impedance of 
the semi-infinite metal in weak fields. It i s  also known 
that the behavior of the impedance in the vicinity of the 
helicon and doppleron i s  very sensitive 
to the character of the reflection. It was shown in Refs. 
13,14 that in diffuse reflection, the amplitude of the 
doppleron oscillations in compensated metals in strong 
fields i s  much greater than that in specular reflection. 
Is  i s  of interest to study the effect of diffuse reflection 
on the doppleron oscillations of the uncompensated 
metal. We do this with the help of the model (9) de- 
scribed above. We determine the amplitude of the dop- 
pleron oscillations of the impedance of the plate for the 
plus polarization in the region of moderate fields (13). 
Since the holes play a small role in this region, we can 
use the results of Ref. 13 for the amplitude of the dop- 
pleron oscillations in the paraboloidal model. In order 
to obtain the formula for the impedance of the plate in 
the plus polarization we must replace the quantity 1 
-ij in Eq. (29) of Ref. 13 by - ( l + i j )  and q, by q,. As- 
suming that the thickness of the plate d i s  large in com- 
parison with the damping length of the doppleron, we 
can represent the oscillatory part of the impedance AZ, 
in the form 

I - q D 2  
ilZ+=4a erp ( i k D d )  

4~ (qDZ-qJ f ' )  

in the case of specular reflection, and 

in the case of diffuse reflection, where k,= qflY/poc 
i s  the wave vector of the doppleron. 

The solutions of the dispersion equations (10)-(11) for 
the plus polarization in the region (13) a re  of the form 

In (33) me have taken into account a small imaginary 
term (proportional to a )  that i s  due to the dissipative 
hole conductivity. This term determines the damping 
of the doppleron and, consequently, the value of the ex- 
ponential in (30)-(31), although it does not affect the 
pre-exponential factors. Here and below, we shall not 
write for the damping of the doppleron the obvious com- 
ponent ij due to collisions. 

Substituting (32)-(33) in (30)-(31), we get for the 
amplitude of the doppleron oscillations 

in the case of specular reflection, and 
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in the case of diffuse reflection; kg- Imk,. 

In the range of fields in which 5 >> 1, the amplitudes 
of the oscillations in both cases a r e  the same: 

4n 4oap  ' " nune 'h A-(4) c nne cH exp[-a(-) 4cH d l .  

At small 5,  the amplitude of the oscillations in the 
diffuse case falls off a s  1 / ~ ,  while in the specular case 
it contains the extra factor 45 and falls off a s  T4. 

EXPERIMENT AND DISCUSSION 

The R (Y) and X(H) dependences of silver, copper and 
aluminum were studied experimentally in the case of 
circular polarizations of the exciting field. The samples 
were plane-parallel plates, cut by the electric spark 
method from single crystal blanks. After the cutting, 
the plates of silver and copper were treated by the 
method described in Refs. 15 and 16. The normals to 
their surfaces coincide with the direction of the [110] 
axis. The dimensions of the samples of silver and 
copper after treatment amounted to 1 4 ~ 7 ~ 0 . 8 1 1  and 
l o x  8 x  0.25 mm, respectively, while the resistance 
ratios p3,,/p4., were 1.6 x lo4 and 1.4 x lo4, respec- 
tively. The normal to the aluminum plate coincided 
with the [loo] axis. The sample was etched in concen- 
trated nitric acid before the measurements. Its di- 
mensions were 12 x 6 x 0.47 mm and the resistance ratio 
P,,/P,.,= 7x lo3. 

The measurements of the impedance were carried out 
in a magnetic field perpendicular to the surface of the 
plate, a t  a temperature of 4.2 K and in the radiofre- 
quency range. The real  and imaginary parts of the 
impedance were studied by means of an amplitude bridge 
and an autodyne, in the coil of the tank circuit of which 
the sample was placed. The measurement apparatus 
assured a reliable discrimination of the signals propor- 
tional to R (H ) and X(Y). The method of measurements 
and the method of calibration of the impedance changes 
a r e  described in detail in Ref. 17. The coil of the tank 
circuit, and also the auxiliary coil which permits pro- 
duction of a circularly polarized field, were wound of 
brass  wire of diameter 0.08 mm. The use of copper 
coils led to a significant distortion of the experimental 
plots a s  a consequence of the dependence of the im- 
pedance of the wire on the magnetic field. 

Figures 3 and 4 show the R,(Y) and X , ( H )  curves 
for silver and aluminum. We subtractedfrom the plotted 
values a correction connected with the weak dependence 
of the impedance of the brass  coils on the magnetic 
field. Above all, note should be made of the presence 
of a strong dependence of the impedance of silver on 
the magnetic field intensity over the entire interval of 
its change. 

The R, andX, curves in Fig. 3 a r e  nonmonotonic; in 
fields H < 3  kOe they have extrema. In stronger fields, 
the resistance R+ decreases with increase in H (if we 
disregard small oscillations) and rC- increases. The 

FIG. 3. Plots of the surface resistance (a) and reactance (b) 
of a plate of silver in the case of plus circular polarization 
(curves 1) and minus (curves 2). The magnetic field i s  HllnJJ 
[1001, the frequency u/2r=l90 kHz, d =0.811 mm, T =4.2 K. 

FIG. 4. Plots of the resistance (a) and reactance (b) of an 
aluminum plate for plus polarization (curves 1) and minus 
(curves 2). The magnetic field i s  Hlln~~[1001, the frequency 
u/2r=190 kHz, d=0.47 mm, T =4.2 K .  
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signs of the change in the reactances X, in the region 
Y>3 kOe a r e  proportional to the signs of the change of 
the corresponding resistances R. Since the signs of the 
change of R+ and R-, and also of X+ and X,, a r e  dif - 
ferent, the dependence of the impedance on the field 
in the linear polarization turns out to be much weaker 
(the impedance in the linear polarization i s  equal to the 
half -sum of Z ,  and Z- ) .  It should be noted that in most 
experimental studies of the impedance of metals in a 
magnetic field, the derivative d R / d ~  o r d ~ / d Y  was mea- 
sured for linear polarizations with copper coils. This 
apparently makes difficult the observation of the singu- 
larities of the impedance of uncompensated metals in a 
magnetic field. 

The oscillations of the impedance on the curves of 
Fig. 3 a r e  connected with the penetration of the elec- 
tromagnetic field through the plate. The oscillations 
of R- and X -  in strong fields a r e  due to the excitation 
of the helicon. In the plus polarization, oscillations 
a r e  seen that a r e  connected with the doppleron wave. 
The properties of dopplerons in silver were studied 
in Ref. 8. 

U'e do not present the plots of the impedance for 
copper, since the behavior of Z, ( t i )  for it does not 
differ qualitatively from the corresponding curves for 
silver. The basic difference i s  that the singularities 
near zero field were more clearly pronounced than in 
the curves of Fig. 3. It is  probable that this i s  con- 
nected with the small free path length of the carr iers  
in copper. 

Figure 4 shows the R, (H  ) and X ,  ( H )  curves for 
aluminum. In general outline, the behavior of the im- 
pedance of aluminum is the same a s  that of the im- 
pedance of silver. In a comparison of the plots in 
Figs. 4 and 3, one should compare the corresponding 
curves of opposite polarizations, since the majority 
carr iers  in aluminum a r e  holes, while those in silver 
a r e  electrons. The impedance of aluminum in weak 
fields changes more smoothly than that of silver. The 
doppleron oscillations in aluminum have a relatively 
small amplitude and a r e  observed only in the deriva- 
tives of the impedance. In the curves of Fig. 4 for 
the plus polarization, in strong fields, large helicon 

oscillations a r e  observed. 

A comparison of the curves in Figs. 3 and 4 with the 
corresponding curves on Fig. 2 shows that the extremal 
and theoretical results a r e  in qualitative agreement. 
An exception i s  the region of very weak fields (52 - v), 
where our theory i s  inapplicable. 
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