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The temperature dependence of the resistivity of a metal with dislocations is calculated. It is assumed that 
the dislocations are straight lines arranged in three mutually perpendicular directions. The dislocation is 
described as a local linear perturbation of the force constants of the matrix. These perturbations deform 
the phonon spectrum of the crystal, causing the temperature-dependent part of the resistivity to acquire an 
increment pd(T) proportional to the dislocation density and having a unique temperature dependence. The 
temperature-dependent part of the dislocation resistivity pd(T) and its dependence on the perturbation of 
the force constants as well as on the possible anisotropy of the dislocation orientation relative to the 
external electric field are investigated in detail. The calculation results are compared with the 
experimental data. 

PACS numbers: 72.10.Fk 

1. lNTRODUCTlON AND FORMULATION OF PROBLEM sible that the cause of so  large a disparity between the- 
ory and experiment i s  indeed the underestimate of the 

By now, rather abundant experimental material has 
been accumulated concerning the resistivity of plastic- 
ally deformed metals (see, e.g., [',2'). The resistivity 
per dislocation, i.e., the cross  section for electron 
scattering by dislocations, was measured for many me- 
tals  (averaged, of course, over the configurations cor- 
responding to the experimental dislocation structure). 
More subtle features have also been observed and thor- 
oughly investigated, among which we shall note the un- 
ique temperature dependence of the dislocation resis-  
t i ~ i t y , [ ~ - ~ '  which is of interest to us here. We recall the 
main characteristics of this effect. 

Many metals (Cu, Ag, Au, Mo, Zn, Al) have revealed a 
sharp growth of the additional resistivity pd due to the 
dislocations, in a rather narrow temperature interval 
(20-100 K), beyond which the slope of pd(T) decreases, 
flattening out in some cases  and even showing a ten- 
dency to fall off. The effect is very strong: the values 
of the parameter Y,, = pd(~), ,x/pu(~) - 1 introduced inc4' 
reach 2 or  3 in some cases. The quantity r,, is sen- 
sitive to the dislocation structure. Gantmakher and Ku- 
1 e s k 0 [ ~ ~  have advanced several suggestions concerning a 
possible interpretation of the effect; the data for alumin 
umC5' give grounds for preferring the suggestion that the 
electrons a re  scattered by phonon modes connected with 
the dislocation. 

In this paper we consider the problem of resistivity of 
a metal with dislocations and take inelastic scattering 
into account. Before we proceed to formulate the prob- 
lem, we mention that the theoretical calculations of the 
usual residual dislocation resistivity pd(0), performed 
by a number of workers, were not in satisfactory agree- 
ment with experiment: the calculated cross  sections 
were smaller by one o r  two orders  than the measured 
ones.m1 In the calculations the perturbation was chosen 
in some form of a deformation potential proportional to 
the tensor of the strain due to the dislocation. Such a 
perturbation should describe well the contribution from 
long-range lattice distortions, but is not suitable in re- 
gions close to the dislocation line itself. It i s  quite pos- 

role of the core, i.e., of that region where the displace- 
ments of the atoms from their positions in a perfect 
crystal a r e  not small. Among other things, this 
strongly altered region distorts the electron spectrum 
and bound states of electrons can be produced.[71 We 
proceed from the assumption that the dislocation core 
makes the decisive contribution to the electron scatter- 
ing. It is not our task to verify this assumption theoret- 
ically and to calculate rigorously the scattering by the 
core; we shall take the scattering properties of the core 
into account phenomenologically, by assigning to the 
atoms situated on the dislocation line pseudopotentials 
different from those of the atoms of a perfect crystal. 
The difference between the corresponding scattering 
amplitudes i s  a phenomenological parameter; whose 
value we shall obtain from the experimental residual 
dislocation resistivity pd(0). With the scattering prob- 
lem so formulated, the influence of the dislocation a s  a 
singular line on the lattice-vibration spectrum i s  ac- 
counted for simultaneously in natural fashion. 

This is easist  and simplest to do with the aid of the 
Lifshitz-Kosevich model, in which a linear defect is 
represented by a line of local changes of the force ma- 
tr ix of the crystalJ8l The electron-scattering proba- 
bility Wm., which determines the resistivity, will be 
determined in the Born approximation using the free- 
electron model (k and kr  a r e  the wave vectors of the in- 
itial and final states). The perturbation i s  taken to be 
the combined pseudopotential of the metal with the dis- 
locations; we confine ourselves to a cubic lattice of the 
perfect crystal and represent the dislocations a s  
straight lines oriented along the cubic axes and disposed 
in random fashion. Simultaneously with accounting for 
the singular properties of the dislocation atoms a s  scat- 
te rers ,  we wish to take into account the role they play 
in the lattice vibrations, and particularly the influence 
of the corresponding changes of the force matrix on the 
phonon spectrum, 

This purpose is well served by the calculation scheme 
used by Kagan and ~hernov. [~ '  In this scheme, W,. is 
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expressed in terms of the Van Hove scattering corre- 
lation function S(q, w): 

here - 
q=k-kt, o=ek-ek . ,  ( . . . )Y = J dt elUL( .  . . ), 

-cm 

m i s  the effective mass  of the electron, V ,  i s  the volume 
of the unit cell, N is the number of si tes in the crystal, 
a,(q) i s  the amplitude of the electron scattering by the 
n-th site (a,(q) = -(mVo/2n)w,(q), where w,(q) is the 
Fourier  component of the pseudopotential), the radius 
vector of this site is R,(t) = Rz + u,(t), un(t) i s  the operator 
of displacement from the equilibrium position in the 
Heisenberg representation, E, i s  the electron energy, 
and (...) denotes statistical averaging over the vibra- 
tional states. It suffices to retain in the correlation 
function S,. (q, w) the expansion terms quadratic in 
u,, i.e., 

In accord with the foregoing, we ascribe to the dislo- 
cation line itself all the changes in the electron scatter- 
ing, and assume that the atoms situated on this line 
have a scattering amplitude a,(q) different from the 
scattering amplitude a,(q) of the other atoms." To sel- 
ect  the si tes on the dislocation lines we label the direc- 
tions of the latter by the index 0 of the coordinate axis 
congruent with this line. In the atomic plane perpen- 
dicular to the axis a ,  the coordinates of the atoms a re  
labeled by a two-dimensional index nsu, [ , la ,  with 
n =  (nu, nsu); we introduce a function ca(rsa) equal to un- 
ity i f  n,, falls on a dislocation site and to zero in all 
other places. We can now use for a, in (1) the expres- 
sion 

We neglect the contribution from the intersection of dis- 
location lines, since i t  is quadratic in the dislocation 
density. 

The influence of the dislocation manifests itself, fur- 
ther, in the expressions for the correlators in (2). The 
equations for the oscillations can be written in the Lif- 
shitz-Kosevich model in the form 

Here M is the mass  of the atom, A(n - nJ )  is the unper- 
turbed force matrix, and the right-hand side describes 
i t s  local perturbation. The force matrices in (4) a r e  ta- 

ken in a form diagonal in the vibration polarization in- 
dices; this simplification, which exerts  no fundamental 
effect on the results, allows us  to use henceforward the 
scalar value of the displacement and obviates the need 
for writing down the polarization indices. 

We introduce in the usual manner the lattice Green's 
function (6 = 1) 

G(n,  n'; t)=-iibl < [u . ( t ) ,  a..(O) I) ,  t>O 
< [u.*(O), n.(t) 1 ), t c O  

It i s  easy to obtain for i t s  frequency Fourier  component, 
with the aid of (4), the Dyson equation 

G (n, n'; 4 = Go (n - n'; o )  + ca(nlEa) 6 (n,E,, u , ~ ~ )  
a, na. n~ (6 

XGVn - n,; o) U (n,, - q , )G (n,, n': o) 

(Go is the Green's function of the ideal lattice). After 
determining G(n, nt; w )  from (6), we obtain the Fourier  
components of the correlators in (2), using the known 
relation 

'<a.(t)u.. (O)).=-2M-'(n.+f) Im G ( n ,  n'; o+i6), 
na=[e*:'-l]-' 

Finally, we obtain the resistivity from the formula 

Here pk8f0,/ae, i s  the nonequilibrium increment to the 
Fe rmi  distribution function fi. Of course, it i s  neces- 
sa ry  to average in (8) over the dislocation configu- 
rations. 

2. CALCULATION OF THE RESISTIVITY 

R e  choose p, in the form customary in the free-elec- 
tron model: 

where E is the electric field. It is then necessary to 
average over the configurations only the structure fac- 
to r  S that enters in (1). Taking (2) and (7) into account 
and using (3), we obtain for that part of S which corre- 
sponds to elastic scattering, in the approximation linear 
in the dislocation density, 

Here Wo and W, a r e  the Debye-Waller factors (2) for  
si tes outside the dislocation and on the dislocation, re-  
spectively, b is the lattice constant, c, = D a b Z ,  and D, 
i s  the density of the dislocations parallel to the cv axis. 
In inelastic scattering the structure factor reduces to 
the expression 
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+ (Aa)' x r (nix) G (n;?)} Im G ( n ,  n'; w -t- i8j><. (11) 
.I.> 

The averaging of al l  three t e rms  of (11) over the con- 
figurations in the approximation linear in c, can be car-  
ried out by a method which is a certain generalization 
of the method used by Eliott and Taylor.c1o1 We shall 
not give the calculations here, but present the final ex- 
pressions for the averaged Green's functions encount- 
ered in (11). The term with a: contains a Green's func- 
tion with arbitrary lattice indices, and we have for  i t  

~ : ( o ) e x ~ [ i ~ ( n - n ' )  b ]  (G(n ,  n'; o )  > c  - - 
q 

where 

U,,, G:(w), and Gia (n,,; o) a re  the spatial Fourier 
components of the local potential U from (4) and of the 
Green's function of a perfect crystal: 

1 
~ ~ ' ( o )  =Z Go ( n ;  a )  e - I q n b  = - 

oZ-oq2 ' 

1 exp (iqtznt>). 
G:, o) = Go (n: o) exp (- iq=nlb) = - 

ni *ta ,t, 0" -0; ' 

N,, is the number of atoms in the plane perpendicular to 
the (Y axis, and w, i s  the natural frequency of the oscil- 
lations of a perfect lattice and corresponds to the wave 
vector q; within the framework of our approximations 
we can assume that w, = sq, where s is a certain effec- 
tive speed of sound; q ,  is the projection of q on the di- 
rection of the dislocation line. 

The other t e rms  of (11) depend on Green's functions 
with lattice indices that fall on dislocation lines. The 
averaged value of this function, which we shall label 
with the superscript d, is 

' C 
exp [ iq,  (n, - nh) bl G& (ngD - n;,; 6)) 

(Cd(n ,  n'; o):, = - 
N, i - U,,G", (0; 0) (15) 

9. 

where N, i s  the number of atoms on the dislocation line 
(No NEa = N). 

Using (12) and (151, we obtain for  (S,,,,), 

We have already separated in the f i rs t  te rm the part 
that leads to the ordinary Bloch law for the resistivity 
of an ideal metal due to scattering by phonons (the unity 
t e rm in the square brackets). The contributions of all 
other t e rms  of (16) to p a r e  proportional to the dislo- 
cation density, i.e., they correspond to the inelastic 
part  of pd. 

The elastic part of pd, which i s  obtained by substitu- 
ting in (8) the structure factor (lo), contains the tem- 
perature-independent residual resistivity pd(0), which 
is connected with the f i rs t  te rm of (lo), and also parts  
that depend on T via the Debye-Waller factors W, and 
W,. The lat ter  a r e  given by 

q' j d o  (n.+i) lm<Dd&. n ;  u+i6) >.. W,--- 
f i M - -  

In the calculation of the integrals with respect to 
dkdk' o r  dkdq = dkk2d 6 x s in0dcpd~q~d6~ sinO'dqr in (8) i t  
is useful to change over to the integration variables 

We assume henceforth that the electric field E (which 
enters in cp, (9) i s  oriented along a definite crystallo- 
graphic axis, i.e., i t  is parallel o r  perpendicular to 
various se ts  of dislocation lines. This assumption sim- 
plifies the analysis of the anisotropy effects, which un- 
doubtedly must a r i se  in the presence of some preferred 
orientation in the dislocation system. 

The integration with respect to dqdqf  and dr, can be 
carried out immediately, and the Fe rmi  statistics im- 
pose the usual limitation q, = 2kp on the interval of the 
integration with respect to dq. The expression for  pd(T) 
obtained by subtracting from (8) the phonon resistivity 
of the ideal metal can be represented in the form 

where 

0 
L 0 - 

Pke l  =-p2 d~ Q ~ J  dQ,F. J dR Ono(no+l) I ( Q ,  Q, Q,), 

hoZx +- va 1 (k,b)' [ ( P f  is)'-Q'JZ 1-V.C,(Q+iG) 

We have used here the following notation for the para- 
meters: 

and also for the variables: 
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and the functions (see (14)): 

Aa(q )  ~ ( q )  AZ- do = - bZ 

a. ( 0 )  ' Aa(0) 7 Va=-Uq.v 4ns- 
*-Pae 

1oO2 dx  
c , ( R + i 6 )  = +G: ( 0 ;  0 f i 6 )  = j =I,-ing, sign R. 

( b k ~ )  (R+i6)'-Q,'-x 

9 is the unit step function (the integral in (21) is cut off 
a t  the upper limit in the spiri t  of the Debye model). The 
prime a t  the summation sign and a t  pt, means that i t  is 
necessary to take only the a corresponding to directions 
perpendicular to the electric field E; the function F, is 
given by 

Ella 
(Q2-Qa2)/2, E l a  

(we recall that the cubic-axes index a labels also the 
directions of the dislocation lines). 

Formulas (18) and (19) a r e  the general (within the 
framework of our model) expressions for the dislocation 
resistivity pd(T). It is due, a s  follows from (19a) and 
(19b), to three processes: direct scattering by dislo- 
cations ( terms with (hit)'), scattering by the distorted 
phonon spectrum (terms proportional to a:), and inter- 
ference of these two effects (the part with ZoAiz). The 
residual resistivity is obviously determined by the f i rs t  
te rm of (19a): 

All other terms introduce a temperature dependence. 
The concrete results for pd(T) depend on the form of the 
functions &(Q) and V,(Q,), which characterize respec- 
tively the change of the scattering amplitude and the 
distortion of the interatomic-interaction forces by the 
dislocation line (all other functions and parameters of 
our model a r e  given in (18)-(21), and the form of &,(Q) 
can be borrowed from pseudopotential theory). 

3. RESULTS AND DISCUSSION 

In the limiting case of high temperatures T 2 O we can 
progress quite f a r  in an analysis of pd(T) without involv- 
ing greatly the concrete forms of hit and V,. We re- 
place the product of the Planck functions in (19) by T2/ 
(On)' and consider by way of example the integral of the 
f irst  te rm of (19b) with respect to dn: 

The contour C, is made up of the lines (0+ id, a +  i6) and 
(m-i6,O - ib), with 6 -+O. Closing i t  with a r c s  of the 
circles C, of radius r - 0 and C ,  of radius R -a (see 
Fig. I) ,  we obtain 

Here Cr contains only the residues of the poles outside 
the real  positive axis. 

It is easy to verify, by using (21), that such a pole is 
possible only on the negative axis under the conditions 
V, < 0 and exp(l/V,) > Q:. As a result we have 

Y l = n  Q + n e ( - v a ) e  erp - -Q, 
i -V .  ln Qa2 ( ( 1  a )  

The other parts  of (19) a r e  calculated similarly. We 
present the formulas for  the high-temperature limit of 
pd, with t e rms  similar to the second term of (23) omit- 
ted'': 

Let us  ascertain f i rs t  whether our results  (24) and 
(25) can ensure at  T -Q a value of pd(T) of the same or-  
de r  a s  pd(0) (22), a s  is the case in the experiments. We 
used fo r  the purpose the maximum-screening approxi- 
mation, in which a(Q) = a(O), and put in (22), (24), and 
(25) 

The potential V, is taken in the long-wave approxi- 
mationc8': 

At I X I< e the integrand in (24) and (25) has no singu- 
larities, and the calculations yield (at I X 155 e) 

and next 

FIG. 1. 
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Here c,,,,, is the density of the dislocations parallel 
(perpendicular) to the electric field. 

F o r  I X 1 >> e we have (we retain only the principal 
te rms in X-') 

The expression for r (T)  contains the small parameter 
p , /Ms  - s / v ,  << 1, which characterizes (together with 
A2 and T/0)  the magnitude of the temperature part of 
the cross  section relative to the static part. It is there- 
fore clear that a large temperature effect cannot be 
produced by pure dislocation scattering, without allow- 
ance for the changes of the phonon spectrum (the last  
te rms of (27) and (28)).3) Noticeable changes canbe en- 
sured in our problem by interference and phonon pro- 
cesses (the f i rs t  two t e rms  in (27) and (28)) provided 
that A'a is small enough. We shall retain henceforth on- 
ly these terms. The sign of the effect o r  the direction 
of the slope of the r (T)  plot is determined in this case 
by the ratio of the parameters A& and A and by their 
signs. At I X I<< 1 the interference term predominates 
and r(T) is independent of X, while the sign of the effect 
is the sign of the parameter AZ. At I X I >> e both the 
phonon term and the interference term a re  practically 
independent of the sign of the lat ter  is connected a s  
before with the sign of A6, and the contribution of the 
phonon term is negative. 

We present numerical estimates for the parameters 
of copper (in the calculations of a, we used the limiting 
value of the Fourier  component of the pseudopotential 
w,(O)= - 2/3~,,["] and for pd(0)/D, we assumed the value 
2 X 10-19S1-cm',[11 which yielded 1 A2 / =  0.1): 

The estimates (29) show that i t  is possible in principle 
to attribute the large (-1) values of r (T)  to the scatter- 
ing processes considered by us. 

The temperature functions that describe the electron- 
phonon scattering and take a linear asymptotic form us- 
ually become linear long before the values T/O - 1 a r e  
reached. One can expect formulas (27) and (28) to re- 
main in force also at  T / 0 s  1. The analysis of the low- 
temperature limit (T/0<< 1) of the expressions (18) and 
(19) for pd(T) is much more cumbersome. A distinction 
must be made between the contributions due to scatter- 
ing by bound and by resonant phonon states. The form- 
e r  are  formally connected with the poles of the function 
(1 - vaGa)-' in (19b), which appear in the region SZ2 
<Qa2 5), i.e., the roots of the equation 1 - V a l a  = 0, and 
a r e  equal to 

The roots (39) fall in the region a' < Q i  only if V, <O 
[(i.e., X < 0 in (26)l. The resonant scatter* takesplace 
in the region Q i  < SZ2 < 1, in which (1 - V,G,)-' gives the 
resonant denominator (1 - V, I,)' + $V;. 

In the region where bound states exist, the integration 
with respect to dS1 in (19b) is carried out with the aid of 
a &function that replaces SZ with SZ,,(Q,). In the maxi- 
mum-screening approximation we can carry  out directly 
also the integration with respect to dQ. The greatest dif- 
ficulties a r e  raised by the integration with respect to 
dQ,, but asymptotic estimates can be obtained by the 
saddle-point method. F o r  resonant scattering, the cal- 
culations a r e  more difficult (two integrations with re- 
spect to dQ, and dS1 remain), but for a number of limit- 
ing cases it is nevertheless possible to obtain analytic 
solutions. We shall not present the cumbersome and 
hard-to-visualize results for the low-temperature limit, 
and merely note their characteristic features. 

Of course, the small  parameter p,/Ms is retained 
here, too, in the expression for  r(T),  but the temper- 
ature dependence is more complicated. At I X [<< 1 the 
principal role is played by t e rms  with a power-law tem- 
perature dependence, which a r e  proportional to (T/ 
0)4, (T/0)5, and (T/0)6, but there a r e  also exponential 
te rms mexp [ - 3 ( 8 2 / ~ ~ 2 ) " 3 ]  (they appear a t  T < X0). At 
larger  values of the parameter X the temperature terms 
have a greater variety of forms. Depending on the re- 
lations between T, 0 ,  and X, power-law terms appear 
(from the f i rs t  to the sixth power of T/0) a s  well a s  ex- 
ponential~ such a s  exp (-28/T(X ln~)"'] [at  T < 0 /  
(A ln~)"']. The principal role is played, just a s  a t  high 
temperatures, by the interference and phonon terms, 
but the relation between them differs from that in (27) 
and (28). 

The character of the transition of the function r (T)  to 
the linear limit depends on the value of A. The tran- 
sition becomes steeper with increasing X. Typical plots 
of r (T)  for  A;> 0, c,, = c,, and for  X equal 10 and 100, a re  
shown in Fig. 2. 

We note one more important feature of the temper- 
ature part of the dislocation resistivity: the quantity 
pd(T) depends on dislocations of all orientations, in con- 
t r a s t  to the residual resistivity pd(0), which is not influ- 

FIG. 2. 
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enced by dislocations parallel to the applied field. A 
study of the anisotropy of pd(T) may permit a more re- 
liable determination of the role of the scattering mech- 
anism considered by us. For  example, a situation is 
possible with p:(T) < 0 but p,d(T)> 0 (the symbols (1 and 1 
mark the contributions from dislocations parallel and 
perpendicular to the electric field). This should occur 
if X >> 1 and A&> 0. For  high temperatures this follows 
from (29); f o r  low temperatures this behavior should 
take place at A> 4 (AZ)(bkp)', when the main contribution 
to pf is made by resonant states. At Ah<O, p: and pf 
are  negative, but the anisotropy a t  large A remains; 
thus, a t  high temperatures the dislocations parallel to 
the field scatter three times more strongly than the 
perpendicular ones. At low values of X the anisotropy 
decreases. 

The foregoing results demonstrate the important role 
played in the qualitative picture of the effect considered 
here by the parameter X, which characterizes the local 
distortion of the force constants. The value of this 
phenomenological parameter of the Lifshitz-Kosevich 
model is unknown. As shown in this paper, the phonon 
modes distorted by the dislocations should exert a most 
noticeable influence on the temperature dependence of 
the dislocation resistivity regardless of the parameter 
X (see (29)). It is possible that the experimental re- 
s ~ l t s ' ~ - ~ '  a r e  explained by the described mechanism. 
This can be established more reliably by carrying out a 
more detailed investigation of the character of pd(T) in 
the low-temperature region. Then a comparison of the 
experimental data with the numerical calculations will 
make i t  possible to estimate the value of X. 

"1t is assumed that the parameter a i (q )  takes into account the 
possibility of formation of bound electronic states on the dis- 
locations. The corresponding change in the electron scatter- 

ing can depend in principle also on the temperature. This ef- 
fect, however, calls for a special analysis and will not be 
considered here. 

')1n the long-wave approximation for the potential V, (we con- 
fine ourselves in the estimates to this approximation) the 
contribution of such terms can be shown to be negligible. On 
the other hand, the Lifshitz-Kosevich model, which we use 
to calculate the Green's function and the spectrum, does not 
cover the case of sufficiently short waves. 

''we are  not considering cases with ell >> c,. 
"1t is of interest to note that the main contribution to the inter- 

ference part of (28) is  due to the Debye-Waller fador-the 
last term of (24). 

5 ' ~ h e  function (1 - V, G, )-I has poles also in the region n2 > 1. 
They lead to a contribution wexp(-a/T) to the resistivity, but 
the Lifshitz-Kosevich model is not valid in the region of their 
eldstence. 
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