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The method of functional differentiation is used to obtain equations for the Green function of electrons in 
a superconductor making full allowance for anharmonic interactions. It is shown that these equations are 
formally identical with the well-known Eliihberg equations. The main diierence is that the equations 
allowing for the lattice anharmonicty have to be modified by replacing the spectral density of the one- 
phonon Green function occumng in the hiashberg equation with the dynamic part of a function 
representing the correlation between this density and the ion concentration. The results obtained 
demonstrate that allowance for the anharmonicity alters the superconducting properties of a metal for the 
following reasons: 1) the existence of the Deby+Waller factors in the ionic potential; 2) a change in the 
spectral density of the one-phonon Green function because of the occurrence of phonon-phonon 
interactions; 3) many-phonon process; 4) interference effects between one- and many-phonon processes. 
An analysis is made of the superconductivity of PdH and of the influence of the anharmonicity on the 
critical temperature T, of this compound. It is shown that in this case the greatest influence of the 
anharmonicity on T, is due to the DebyeWaller factors and due to a change in the spectral density of 
the one-phonon Green function. These two effects reduce the electron-phonon coupling constant of 
palladium hydride. The effect is greater in PdH than in PdD because of the greater amplitude of the zero- 
point vibrations of the H atoms. This gives rise to an anomalous isotopic effect in PdH@). 

PACS numbers: 74.60. -w 

5 1. INTRODUCTION temperature of PdD is 2°K higher than that of PdH. This 

Superconducting properties of metals a r e  usually con- i s  practically impossible to explain within the harmonic 

sidered ignoring anharmonic effects in the lattice dy- approximation framework. ~ a n ~ u l ~ [ ' ]  put forward a 

namics and in the electron-phonon interaction. The hypothesis of the possibility of explaining this anomalous 

reason for this is simple. It i s  well known that changes isotopic effect in PdH by the influence of the anhar- 
monicity associated with vibrations of the light hydrogen in the physical properties of metals due to the anhar- 
atom. monicity a r e  proportional (to an order of magnitude) to 

the square of the ratio of the amplitude of thermal vi- Even a partly consistent theoretical treatment of the 
brations u, of atoms for the interatomic distance a. influence of anharmonicity on the superconducting 
This ratio is usually much less  than unity even close to properties of metals i s  not yet available. Apart from 
the melting point. The transitions to the supercon- Ganguly's paper,['] one can mention also a short note 
ducting state occur in metals a t  such very low tempera- by Hui and In both cases  a study i s  made of 
tures that in most cases the effects associated with the the influence of anharmonicity on the electron-phonon 
ratio ui /aZ can be ignored completely. interaction and, consequently, also on T,. As in a 

However, recent years have seen indications of the 
importance of the low -temperature anharmonicity in a 
number of superconducting systems. This applies parti- 
cularly to compounds with the A-15 structure. In many 
of these compounds there i s  a structure transition from 
the cubic to the tetragonal phase near the supercon- 
ducting temperature.C1*21 Neutron investigationsf31 have 
shown that this structural transition softens the phonon 
modes extending over considerable part of the Brillouin 
zone. The appearance of these soft modes increases 
greatly the amplitude of thermal vibrations and gives 
r ise  to low-temperature anharmonicity effects in such 
systems. The importance of the anharmonicity effects 
in the superconducting properties of compounds of the 
A-15 type has recently been stressed by ~ e s t a r d i . ~ ~ ]  
The existence of low-temperature anharmonicity in 
other superconducting compounds with soft phonon 
modes is pointed out also elsewhere.[5] 

harmonic crystal, only the one-phonon scattering i s  
considered but allowance i s  made for the change in the 
phonon frequencies because of anharmonicity. The r e -  
sults of these papers can easily be understood by 
adopting the McMillan formulaf"l for the electron-pho- 
non coupling: 

The phonon-phonon interaction in an anharmonic crys- 
tal al ters the phonon frequencie~.[ '~J This circumstance 
then changes the value of ( w 2 )  which occurs in the de- 
nominator of Eq. (1) describing the electron-phonon 
coupling constant. Moreover, i f  the anharmonic inter- 
action results  in hardening of the original phonon 
spectrum of a harmonic cyrstal, the value of (w2)  r i ses  
and the coupling constant X correspondingly decreases. 
This i s  the conclusion reached by ~ a n ~ u l ~ [ ' 1  and by Hui 
and 

Palladium hydride is another example of the con- Clearly, a discussion of the electron-phonon inter-  
siderable influence of anharmonicity on the supercon- action in an anharmonic crystal allowing only for the 
ducting properties and particularly on the critical tran- one-phonon process of scattering of electrons by r e -  
sition temperature T,.[~] Specifically, this compound normalized anharmonic phon~ns['.'~l i s  not self-con- 
exhibits an anomalous isotopic The critical sistent. It i s  well that a change in the elec- 
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tron-phonon interaction in an anharmonic crystal oc- 
curs not only because of a change in the phonon fre- 
quencies but also because of many -phonon scattering 
processes and also because of the appearance of the 
Debye-Waller factors in the ionic potential. All these 
processes a re  of the same order in respect of anhar- 
monicity and a re  proportional to the ratio ui/a2. 

One should also mention a further fairly interesting 
problem in which it i s  very important to allow cor- 
rectly for the influence of anharmonicity on supercon- 
ductivity. ~ u m a r [ l ~ ]  and ~ ~ a i [ l ~ ]  considered the ef- 
fectiveness of two-phonon processes a s  possible super- 
conductivity mechanisms in semimetals and degenerate 
semiconductors. Since these processes a re  also pro- 
portional to the ratio &/a2, Kumar proposed to in- 
crease their effectiveness by pumping with external 
ultrasound so a s  to make the ratio u2,/a2 larger. Ngai 
pointed out that these processes a re  likely to be effec- 
tive in systems with soft phonon modes, which are  in- 
deed characterized by large values of the ratio ui/a2. 

The importance of complete allowance for the an- 
harmonic interactions in these problems i s  self-evident 
if only from the following observation. Some years ago 
Sham and Zimanr13] put forward the hypothesis that an 
increase in the electron-phonon interaction because of 
many-phonon processes may be compensated completely 
by a weakening of this interaction associated with the 
appearance of the Debye-Waller factors in the ionic 
potential. ~ r i rnva l l [ '~ ]  considered this problem in de- 
tail in the case of the electrical resistance of metals a t  
high temperatures. However, there i s  no complete 
solution to this problem even in respect of the electrical 
resistance. 

All these problems have not only been ignored in the 
theory of superconducitivity but have not even been cor- 
rectly formulated. We shall begin by deriving the exact 
equations for superconductivity allowing for anharmoni- 
city in the electron-phonon interaction in all orders. We 
shall show that in fact such equations are  analogous to 
the ~ l i a s h b e r ~  equations[17] for the electron-phonon in- 
teraction if the spectral density of the one-phonon Green 
functions i s  replaced with the spectral density of the dy- 
namic part of a function describing correlation between 
this density and the concentration of ions. Similar 
equations for a harmonic crystal with defects were ob- 
tained earlier by one of the present authors.[18] In 
recent years the correlation function of the concentra- 
tion of ions in anharmonic crystals has been investi- 
gated intensively both theoretically and experimentally 
by slow neutron scattering.[1D1 The equations derived by 
us make i t  possible to utilize fully both theoretical and 
experimental data obtained in studies of the scattering 
of slow neutrons in considering the influence of anhar- 
monicity on superconductivity. 

The present paper i s  organized a s  follows. In 0 2  we 
shall obtain the exact superconductivity equations al- 
lowing fully for the anharmonicity in the electron-pho- 
non interaction. Next in 63, we shall analyze our equa- 
tions and simplify them for "dirty" superconductors 
with a short electron mean free path. In $4 we shall 

study superconducting properties of the PdH(D) system 
and consider qualitatively the influence of anharmonicity 
of these properties. 

52. DERIVATION OF SUPERCONDUCTIVITY 
EQUATIONS FOR AN ANHARMONIC CRYSTAL 

We shall write the complete electron-ion Hamiltonian 
of a crystal in the form 

- 
1 + J v*, (r, rl)p;(r')'$+ (r) ~ ,$ (r )dr  drr + - J VX2 (r, rf) pt(r)pf(rr)dr dr'. 
2 

We have introduced here the operator of the ion concen- 
tration 

where R, i s  the coordinate of the ion position. 

For convenience, we shall describe superconducting 
properties not by means of the usual electron creation 
and annihilation operators but by introducing 

The downward-pointing arrow in the operator Jl+(x) de- 
notes the spin direction. The quantity T,  is the usual 
Pauli matrix. 

We shall obtain the superconductivity equations by 
functional differentiation and with this in mind we shall 
introduce the following external sources in the Hamil- 
tonian 

We shall write the equation for the operator Jl(x): 

where x = r ,  t. Introducing the matrix thermodynamic 
Green function, defined in the time interval -1 /T  < t 
< 1 / ~  (T i s  the temperature), 

G(x, 2') --i(T$(z) g+ (2') ). (7 

we obtain the following equation for this function 

= - i 1  dr" V,,(r, rl') <Tpt(rt', t )  ra$(z)$+ (2')) (8 

-i 1 dr" Ve. (r, rl') <TIP+ (2'') zr$(zl') t$ (z )$+  (2') >+6 (2-2') I. 

Here, I i s  a unit matrix. 

We shall rewrite Eq. (8) by means of the functional 
derivatives: 
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] G (z, 2') =I8 (2-2') . - i la  drl V.,(r, r l ) -  
8J ( 4 ,  t )  

We can easily show that 

where p,(rl) is the density of electrons a t  the point r,. 

We shall introduce vG) for the total Hartree field 
acting on electrons: 

and we shall rewrite Eq.' (9) in terms of the functional 
derivative of v&): 

Equation (11) for the Green function GG, xf)  can be 
written in the generally accepted form employing the 
matrix for the self-energy part  a x ,  xff): 

Comparing Eqs. (1 1) and (12), we find that 

I dr" P (x ,  x") G (x", 3') = i ~ ,  j dx" drl 

6 
+I' . , (r , r , ) -  6v('n) ] - G (z, z ' ) .  

6J(r1, t )  6 V ( z 0 )  

Multiplying this equation by G"(x',xW) and integrating 
with respect to xl ,  we find that 

where we employ the following notation for the effective 
electron-electron interaction 

and also for the matrix vertex part 

The effective electron-electron interaction W (x, x,) i s  
calculated in the same manner a s  in an earlier paper by 
one of the present auth0rs[~~1 dealing with a harmonic 
crystal. Introducing the electron polarization operator 
nG, xf),  

and the function of the reciprocal permittivity e"(x,xl), 

we find that laborious but simple calculations yield 

The f i rs t  term in Eq. (16) represents simply the 
screened Coulomb electron-electron interaction. The 
second term represents the interaction of electrons with 
dynamic vibrations of ions. We shall describe these 
variations by introducing the thermodynamic Green 
function: 

The Fourier component of this function D(r , r l ,  iw,) has 
the spectral representation 

I - Q (r ,  c', z )  
D(r , r r , imn)=-  dz-. 

*n-- 1 0 . - Z  

The spectral density @ (r, r l ,  z )  can be expressed in 
terms of the dynamic part of a function Sf(r ,  r ' ,  o )  de- 
scribing the correlation between this density and ion 
concentration: 

@ ( I ,  r', 0 )  = [ ~ z ( o ) + l I - ' S ' ( r ,  r', o ) ,  (19) 

where n(w) i s  the Bose function 

Then, the total correlation function S1(r, rf ,  w )  i s  de- 
scribed by 

Integration in Eq. (20) is carried out over the usual time 
between -.o and +.o and the angular brackets represent 
thermodynamic averaging. 

The function S(r, r ' ,  w) was first  introduced by Van 
~ o v e [ ~ ~ ]  and i t  i s  central to the description of any scat- 
tering processes in condensed media. The dynamic part 
of the correlation function S1(r, rl, w )  i s  related to the 
total correlation function ~ ( r ,  rl, o )  by 

s'(r.  r', 0 )  =S(r ,  r', 0 )  - (pL(r ,  t )  >(p,(r t ,  t') @ ( a ) .  

53. INVESTIGATION OF SUPERCONDUCTIVITY 
EQUATIONS OF AN ANHARMONIC CRYSTAL 

Before analyzing our new equations, we shall note 
that a complete treatment would require derivation, 
from the electron-ion Hamiltonian (2), also an equation 
for the Green function DGr,xl).  We shall see later that 
in the harmonic approximation this function reduces to 
the usual one-phonon Green function. The relevant 
equations for a normal metal a re  obtained in the har- 
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monic approximation in Ah earlier  paper of one of the 
present authors.t201 M e i s ~ n e r , [ ~ ~ ]    ill is,[^^] and 
plakidaLZ4] made attempts to obtain equations for this 
function allowing for  the anharmonic interactions. How- 
ever, the resultant equations were so complex that any 
detailed analysis was practically impossible. There- 
fore, we shall calculate the function ~ ( x ,  xl)  using a 
phenomenological Hamiltonian allowing for the anhar- 
monic interactions up to the fourth order in respect of 
the ion displacement. This approach to the calculation 
of D(x,xl) is used widely in studies of the scattering of 
neutrons in anharmonic crystals. 

We shall begin by rewriting the above equations in a 
somewhat more convenient form: 

G-' (x ,  z') =Go-' (z ,  z') -P( z ,  I ' ) ,  

where the function Go(x,xl) satisfies 

The Green function Go(%, x l )  can be expressed in terms 
of the Bloch wave functions qk ( x )  of an electron in a 
periodic field: 

Go (x ,  z') = iT (22) 
u. k 

The Bloch wave functions vk (x) should naturally be de- 
duced in a self-consistent manner from Eq. (21) but we 
shall not consider this problem because detailed cal- 
culations would take us outside the scope of the present 
paper. 

We shall write the self-energy part  C(x,xt) a s  a sum 
of two terms: 

z (z, X I )  =qOU1(~, zl)+zp,,on(x, z') . (134 

The first term in this sum, Cc0,, (x, xl)  i s  due to the 
Coulomb electron-electron interaction. The second 
term C,,,,~~(X, X I )  can be written, in accordance with Eqs. 
(13) and (15) in the form 

ZPh,,(z, 2') 3-i  dxl dz2 dz ,  dx, drr dr"V.r ( a ,  r') e-I ( z ,  z , )  V., (r,, r") J (23) 

A complete calculation of the superconducting pro- 
perties of a metal with exact allowance for the Coulomb 
electron-electron interaction is not yet possible. 
Strictly speaking, the absence of a small parameter 
in the Coulomb interaction prevents a consistent cal- 
culation of the properties of even a normal metal. How- 
ever, i t  i s  well known that the direct contribution of the 
Coulomb interaction to the superconducting properties 
of a metal i s  largely suppressed because of the con- 
siderable difference between the energies of electron 
excitations (these a r e  of the order of the Fermi energy, 
i.e., -2-5 eV) and phonon energies (-0.01-0.1 e ~ ) .  
Therefore, we shall follow the usual procedure of r e -  
placing Zcoul (x,xl) with the simplest approximation of 
the Coulomb pseudopotential and we shall describe the 

vertex part r (x,, xl ,  x,) by the simplest approximation 
which follows from Eq. (15): 

A detailed discussion of the problem of correctness 
in these approximations i s  given in the book by 
Bulaevski; et a1 .rZ5] Since we a re  interested mainly in 
the influence of anharmonicity and this i s  concentrated 
in the function D(x, xl), our approximations will have 
little effect on the problem in hand. 

In the case of pure superconducting metals the transi- 
tion to the representation in terms of the Bloch function 
qk (x) makes the self-energy part  C (x, xl) a fairly com- 
plex function of the energy and momentum k. It i s  well 
known that the retarding nature of the electron-phonon 
interaction results in concentration of the function 
C(iwn, k) mainly near the Fermi surface so that this 
function depends only, on the direction of the vector k, 
(k, i s  the vector defining the Fermi surface). In "dirty" 
superconductors the scattering by impurities results in 
averaging of all the quantities over the angles and the 
self-energy part  becomes, a s  in an isotropic supercon- 
ductor, solely afunction of ion. In this case the func- 
tion C(iw,, cF) i s  described by the following equation: 

+ T J. def  T ~ [ ~ o ~ ~ - E ' T ~ - Z ( B ' ,  i o n ' )  I T S .  
*., --I 

In Eq. (24), p i s  the averaged Coulomb interaction and 
R(E,,,  E',  iw,, - iw,) is the averaged electron-electron in- 
teraction, which i s  due to the dynamic vibrations of 
ions. Following Eqs. (13), (16), and (23), the latter 
quantity can be written in the following form 

In Eq. (25), g,, g,, g,, and g, a re  the reciprocal lattice 
vectors, N ( E , )  i s  the density of electron states on the 
Fermi surface, ck and ck+ a re  the energies of Bloch 
electrons with momenta k and k +q. The quantity 
A(q +g, k) i s  the form factor for  the scattering of Bloch 
electrons, given by 

The function ~ - ' ( q  +g,  q +g,) i s  the matrix of the r e -  
ciprocal permittivity and ~ ( q  +g,  q +g,, iw, - ica,.) i s  the 
Fourier component of the function describing the dy- 
namic vibrations of ions. The quantity ~ , , ( q  +g)  i s  the 
matrix element of the interaction of an electron with the 
ionic potential of a unit lattice, given by 
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where x i s  the radius vector of an atom in a given cell. 
The summation in Eq. (26) i s  carried out over all the 
positions of atoms in one unit cell. 

Applying the spectral representation (18) of the func- 
tion D(q + g, q + g,, ion - iw,,) and expressing the analytic 
continuation of the function E(iw,, E ~ )  in the form 

X ( o )  = [ 1- (2 ( a )  1 uI+Z(O) A ( 0 )  12, 

we can reduce Eq. (24) for the functions ~ ( o )  and ~ ( w )  
to expressions which are  formally identical with the 
usual 61iashberg equations 

*I 

-p do' Re A (a') [ I - 2 f  ( o r )  1 1 (27) 
B - - 

X [ 1 - Z ( o ) ] o  =I do' 5 donS(o")  
0 0 

~ { [ f ( - - o n ) + N ( o " )  ] K - ( o f ,  or', o ) + [ f ( o ' ) + N ( o N )  ] K - ( a ' ,  @", o ) } .  

Here, f (a )  and ~ ( w )  are  the Fermi and Bose distribu- 
tion functions, 

In the system (27) we shall consider only the critical 
temperatures. 

The only real difference between the system (27) and 
the usual ~ l i a s h b e r ~  equations i s  the definition of the 
function S(W). It follows from Eqs. (18) and (25) for an 
anharmonic crystal that this function i s  

The spectral density (q + g, q +g,, w) will be deter- 
mined by calculating the Green functions of ion dis- 
placements D(Q,,Q,, t ) ,  which can be written in the fol- 
lowing form on the basis of Eqs. (3), (16), and (17): 

We have introduced here the following description of 
dynamic displacements of ions u,(t) from the equilibri- 
um position: 

Employing an expansion in terms of c u m u l a n t ~ , ~ ~ ~ ~  this 
function can be represented a s  

Here, the index L means that we have to consider only 
the coupled diagrams in the calculation of thermody - 
namic averages. 

The function D(Q,,Q,, t) for a harmonic crystal can be 
calculated exactlycz7 I: 

D(Ql ,  Q,, t )  =-i ~ e x p ( - i ~ , R . + i ~ , ~ . ~ ) e x p  (-w~,-w'~) 
I,"' 

X(exp[(TQlun(t)Qlu..(0) )]-I). 
(31) 

where the expression 

esp  ( -WQ,)  =(exp (-iQ,u.(t)  )=esp [ - Y Z Q l a Q e < ~ . " ( t ) ~ ~ ( t )  ) ]  (32) 

is simply the usual Debye-Waller factor. 

Expanding the exponential function in the last factor 
in Eq. (30), we find successively the contributions made 
to D(Q,, Q,, t) by one-phonon, two-phonon, and other 
processes. In describing superconductivity in harmonic 
crystals a t  low temperatures we can ignore both many- 
phonon processes and the Debye-Waller factors so that 
the function D(Q,,Q,, t )  reduces to the usual one-phonon 
Green function 

The spectral density of the function D,(Q,,Q,, t) has the 
simple form 

Here, M i s  the mass of an ion, eq,  is the polarization 
vector, and wq, i s  the phonon frequency. In this case 
the function S(w) reduces to the usual expression em- 
ployed in descriptions of superconductivity in harmonic 
crystals. 

The expression (31) for the function D(Q,,Q,, t )  does 
not apply to an anharmonic crystal. Moreover, in such 
a crystal we cannot even separate clearly one-phonon 
processes, two-phonon processes, etc., because in 
this case there a re  always interference e f f e ~ t s . [ ~ ~ . ~ ~ 1  

In calculating the function D(Q,,Q,, t )  we shall confine 
ourselves to the simplest one- and two-phonon pro- 
cesses and to the interference between them. With this 
in mind, we shall expand the exponential functions in 
Eq. (29) to within terms of the fourth order in u,: 

Finally, the Green function D(Q,,Q,, t )  can be expressed 
in the following form in this approximation: 

Here, D,(Q,,Q,, t) is the one-phonon Green function: 
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D,(Q,,Q,, t )  is the two-phonon Green function: 

and the function D,, describes interference processes 

The function S(W), describing superconducting proper- 
ties, can then also be written in the form 

The functions Dl(Ql,Q,, t ) ,  D,(Q,,Q,, t), and 
D,, (Q1,Q,, t) should be calculated allowing for the an- 
harmonic interactions. In the description of neutron 
scattering in an anharmonic crystal we have to know 
these functions only for Q, =Q,. Such functions have been 
calculated on many  occasion^^^^'^^] using a phenomeno- 
logical phonon Hamiltonian allowing for third- and 
fourth-order anharmonicity. These calculations are  
given in the most detailed form by ~ l y d e . [ ~ ~ ]  We can 
readily extend these results to the more general case 
Q1#Qz and we then obtain the following expressions for 
the Fourier components of these functions applicable to 
crystals with one atom per unit cell: 

Qt"ema exp (-WQ,) Q t e q ?  exp (- We) 
(2,110)~~) 

q* 

In these expressions A(Q - q - g) i s  the delta function 
describing the conservation of momentum to within a 
reciprocal lattice vector, and V,(~,X,, q,Xz, q,~,)  is the 
anharmonic three-phonon interaction constant. The 
functions d , (q~,  w) and d , ( q , ~ ~ , q ~ h ~ ,  W) a re ,  respectively, 
the one- and two-phonon Green functions. When allow- 
ance i s  made for the anharmonic interactions, the one- 
phonon Green function can be expressed in the form 

where rIqx(w) i s  the polarization phonon operator, the 
simplest expressions fo r  which have been obtained by 
several a ~ t h o r s C ~ ~ - ~ ~ ]  allowing for the three-phonon 
interactions in the second order of the perturbation the- 
ory and for the four-phonon interactions in the first  
order. 

In the investigations mentioned in ~ n t r o d u c t i o n [ ~ ~ ~ ~ ]  an 
allowance for the influence of anharmonicity of super- 
conductivity i s  essentially limited to changes in the one- 
particle Green function alone. We can see from our 
expressions that this i s  quite inconsistent. One should 
allow, to the same extent, for changes associated with 
the Debye-Waller factors exp(-w~), which occur in the 
function D,(Q,,Q,, t )  and also the changes associated with 
with the functions D,(Q,,Q,, t )  and D,, (Q,,Q,,t). 

We have ignored the Debye-Waller factors in the cal- 
culation of D,(Q,,Q,, f) and D, (Q,,Q,, t ) ,  Moreover, it 
is sufficient to find these functions by using the one- and 
two-particle Green functions (occurring in them) in the 
harmonic approximation. Allowance for anharmonicity 
may give rise to coupled two-phonon 
which-in their turn-may become hybridized with one- 
particle optical phonons. All these processes may in- 
fluence also superconductivity. Such refinements of 
two-particle Green functions a re  clearly of little im- 
portance in the case of weak anharmonicity. Allowance 
for bound states, compared with the harmonic approxi- 
mation for the two-phonon Green function, alters 
slightly the quantities averaged over the whole spec- 
trum. For example, such changes in the electron-pho- 
non coupling are  of the order of (E, - 2~,)/2w,, where 
E, i s  the energy of a coupled two-phonon state and W, i s  
the energy of one phonon. 

In the case of crystals whose anharmonicity is as- 
sociated with the existence of soft phonon modes of 
frequencies 0, of the order of the critical supercon- 
ducting temperature T,, for example the A-15 com- 
pounds, an analytic solution of the superconductivity 
equations (27) i s  practically impossible, a s  shown in 
our earlier paper.[32] 

An interesting case, which has the advantage that i t  
can be considered within the framework of analytic solu- 
tion of the equations of superconductivity, i s  the super- 
conductivity of PdH, whose anharmonicity is associated 
with the zero-point vibrations of the light hydrogen 
atoms. In this case all the characteristic phonon fre- 
quencies w, a re  higher than T, and we can use an analy- 
tic expression for T, found by us  earlier.[32] 

84. SUPERCONDUCTIVITY OF PdH(D) COMPOUNDS 
AND THE ANOMALOUS ISOTOPIC EFFECT 

The critical temperature of the superconducting 
transition given by the system (27) can be described a s  
f o l l o ~ ~ [ ~ ~ ~ ~ ~ ~ :  

T.-1,14ol,,e-* exp 
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In this expression A is the electron-phonon coupling 
constant: 

The quantity w,,, i s  the logarithmic mean frequency of 
the phonon spectrum: 

and I.(+ i s  the Coulomb pseudopotential 

The quantity A is defined a s  follows: 

The lattice dynamics of the compounds PdH(D) is 
characterized by the existence of two modes with very 
different frequenciescss1: these are  the acoustic vibra- 
tion modes of characteristic frequency w, - 200% and 
the optical vibrations with coo,,- 650°K. In view of the 
large difference between the masses of the Pd and H 
atoms, essentially only the Pd atoms participate in the 
acoustic vibrations and the H atoms in the optical vibra- 
tions. Consequently, the electron-phonon coupling con- 
stant can be written in the form 

Here, w, is some frequency lying in the gap between 
the acoustic and optical vibrations w,, < w, < w,,,, where 
the constants APd and A, represent the interaction of 
electrons with the vibrations of the Pd and H atoms. 
In the harmonic approximation they can be described 
in the form suggested by ~ c ~ i l l a n ~ " ' :  

and in this approximation the two constants a re  indepen- 
dent of the atomic masses but a re  affected only by the 
magnitude of the electron-ion interaction and by the 
force constants of the acoustic and optical vibrations. 

An important feature which distinguishes PdH from 
many other transition-metal hydrides is the smallness 
of the force constants responsible for the optical vibra- 
tions, compared with the acoustic force constants. The 
force constants can be described by the quantity y 
=M(w2). In the case of PdH the ratio of the force con- 
stants is yaC lYopt - 5. It i s  clear from Eq. (45) that the 
smallness of the force constants of the optical vibra- 
tions tends to increase the constant representing the 
coupling with the vibrations of the H atoms. The rela- 
tive values of the constants A,, and k H  a re  governed not 
only by the force constants z,, and yo,,, but also by the 
electron-ion interaction represented by the constants 

Cpd and CH. When CP,- CH, we find-in accordance with 
the ratio of the force constants-that - 5APd. In fact, 
the relationship between X ,, and A H  of PdH is still not 
known and the published estimates a re  highly contradic- 
tory .re] 

In quantitative estimates of the dependence of T, on 
the masses of the H and D isotopes i t  i s  absolutely e s -  
sential to know the ratio of to A, and, therefore, we 
shall confine ourselves to the qualitative analysis of the 
situation. Since PdH is a superconductor with weak 
coupling, we can calculate T, confining our attention to 
the effects of anharmonicity in the electron-phonon 
coupling constants A. The preexponential factors w ,,, 
and e"' can be calculated in the harmonic approxima- 
tion. We then find that 

where the values of A,, and A H  a r e  given by Eq. (45). 

The change 6~ in the electron-phonon coupling con- 
stant can be expressed in the form 

where S,(W) i s  calculated in the harmonic approximation 
using Eq. (33) for the spectral density of the function 
D(Q,,Q~, w). The four contributions to 6X represent the 
following processes. The term 6X1 appears because of 
the presence of the Debye-Waller factor in the one-pho- 
non Green function, bX, i s  due to the difference between 
the one-phonon Green function for an anharmonic crys-  
tal and that obtained in the harmonic approximation, 
6hs is the contribution of two-phonon processes, and 
6h, i s  a contribution of the interference processes. 

The application of Eqs. (39)-(41) makes it possible to 
estimate these contributions considering only the an- 
harmonicity of the optical vibrations of light atoms. It 
must be mentioned particularly that in the calculation of 
the coupling constant and i ts  changes in accordance with 
Eqs. (44) and (46) there i s  no need to calculate the spec- 
tral  density of the functions D(Q,,Q, ,  o )  because 

- S ( o )  A =  Jdw- 
0 

0 

can be expressed directly in terms of the D function at 
a zero frequency. Applying the approximation of al- 
most-free electrons, we easily obtain the expressions 
for two of these terms: 

In the above expressions f&) represents the screened 
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potential of the interaction of an electron with a H atom. 

It i s  clear from Eqs. (49) and (50) that in the case of 
an optical dispersion-free mode the contribution of the 
Debye-Waller factor is negative and four times as 
large a s  the contribution of two-phonon processes. We 
can show that in the same approximations there i s  no 
contribution from interference processes and 6 4  = 0. 

The factor ( 2 k , ) / ~ ~ w ~ ~ ,  occurring in Eqs. (49) and 
(50) in front of the constant hH i s  the square of the ratio 
of the distance between electrons to the amplitude of 
zero-point vibrations. In the adopted approximations, 
we find that 6X2 can be described by 

In this expression, nop,(q, 0) i s  the polarization operator 
for the optical vibrations. 

We shall begin by rewriting Eq. (51) on the basis of 
the theorem of averages: 

The sign of the change in the coupling constant 6h, de- 
pends on the sign of the polarization operator. The 
third-order anharmonicity is known to make a negative 
contribution to n; (0) and the contribution of the four- 
order anharmonicity i s  p o s i t i ~ e . [ ~ ~ - ~ ~ ~  It i s  known from 
the experimental that the shift of the phonon 
frequencies in PdH because of anharmonicity increases 
these frequencies. The shift can be written in the form 

tr,?=o,,'(l+Re n,,(o,,)/oqi2). 

The experimental results[331 show that Ren,,(w,,)/w2,, 
is of the order of 0.1. Since n,,(w) i s  a decreasing 
function of the frequency w, the ratio IIS (O)/W& i s  at 
least not smaller than 0.1 and i t  i s  positive. 

Thus, the most important processes which alter  the 
electron-phonon coupling constant and reduce i t  be- 
cause of anharmonicity a re  the Debye-Waller factor 
and renormalization of phonon frequencies. The order 
of magnitude is such that if we allow only for the fourth- 
.order anharmonicity, we find that 

where v4 i s  the average anharmonicity constant. A 
calculation of the actual relationship between the values 
of 6h, and 6A2 requires a more accurate knowledge of 
the force constants and interionic potentials in the 
compoung PdH. It i s  important to note that the reduc- 
tion in the coupling constant for PdH i s  greater than 
for PdD because the amplitude of the zero-point vibra- 
tions U; = 1/MHwOpt of the H atoms i s  greater than that 

of the deuterium atoms. In the final analysis, this 
aspect is responsible for the anomalous isotopic effect 
exhibited by PdH(D). 
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