
where n is the concentration of vortices, a, is &he mag- 
netic f l u  quantum, H is the magnetic field, cp is the 
angle of inclination of the vortex structure to the direc- 
tion of the magnetic field, and S is the cross sectional 
area  of the cell perpendicular to the vortex filaments. 
This energy can be regarded a s  the product of the 
generalized coordinate cp and the generalized force 
-n@,HS cp. Then experiments with rotation of the mag- 
netic field can be treated a s  the deformation of the 
vortex lattice (change in the generalized coordinate cp 
under the action of the generalized force). The value 
of the force here is connected with the concentration of 
the pinning centers through the area  S. The greater S 
the fewer the pinning centers and the greater the force. 
The observed results can easily be treated here as the 
plastic deformation of the vortex Izittice-the formation 
of dislocation half loops from the surface of the sample. 
The combination of such half loops leads to the turning 
of the pinned part of the vortex lattice in the direction 

of the acting force. The greater the dimensions of the 
cell S, the greater the deviation. The irreversibility 
here is natural. The results given in Fig. 6 for a 
sample without the memory effect can be treated a s  
deformation hardening due to the crossing of the vortex 
filaments upon formation and motion of the dislocations 
a s  a consequence of the deviation of the magnetic field 
and its return to the previous direction. 
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A theoretical investigation of the nature of the spin-flip phase transitions inducible by a magnetic field in 
infinite cubic farornagnets is carried out with allowance for the fourth- and sixth-order terms in the 
expression for the magnetic-anisotropy energy. Possible (H,T) orientational phase diagrams 
corresponding to magnetic-field directions along high-symmetry axes of the type <loo>, <Ill>, and 
<110> are constructed. The critical points of the first-order phase transitions are determined, and the 
transitional domain structure accompanying a first-order transition in samples of finite dimensions is 
studied. An experimental verification of the results of the theory has been carried out on single crystals of 
the rare-earth iron garnets Tb,Y,-,Fes0,2 (x = 0.10, 0.26) and Sm,FesOl,. Some (H,T) phase dmgrams 
have been reproduced on the basis of torque, magnetization, and differential susceptibility studies. 
Particular attention has been paid to the detection and investigation by the Fes7-NMR method of the 
transitional domain structure accompanying first-order orientation transitions, as illustrated by the iron 
garnet T b ~  IY2 ~ ~ ~ 5 ~ 1 2 .  

PACS numbers: 75.30.Kz, 75.50.Bb, 75.50.Gg, 76.60. - k 

Considerable attention is being paid at present to the 
investigation of magnetic phase transitions of the order- 
order type and, in particular, of spin-flip phase transi- 
tions (SFPT). It should be noted that the most inten- 
sively investigated SFPT are  those occurring in uniaxial 
and biaxial magnetic substances, especially in the rare- 
earth orthoferrites (see, for example, the review pub- 
lished in Ref. 1). The study of the cubic ferro- and fer- 
rimagnetic substances began only recently, the main 
attention having been paid to the investigation of spon- 
taneous SFPT, which occur in zero magnetic field, and 

which a r e  due to the change that occurs in the nature of 
the magnetic crystallographic anisotropy when the tem- 
perature changes .E2"' 

The influence of an external magnetic field on the be- 
havior of the magnetization of an anisotropic cubic fer- 
romagnetic substance in a narrow range of temperatures 
in the vicinity of the magnetic-ordering temperature has 
been investigated without allowance for the critical fluc- 
tuations in Refs. 9 and 10 and with allowance for the 
fluctuations in Ref. 11. However, the present authors 
do not know of any work in which a sufficiently complete 
analysis has been performed of the orientation phase di- 
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agrams of anisotropic cubic ferromagnetic substances 
in the low-temperature limit (T<<TC), although sepa- 
rate, uncoordinated experimental datac12-14] and magnet- 
ization-curve computations carried out quite long 
agoc1z*15-171 for some specific ferromagnets show that 
field-induced SFPT of both first and second order are 
realized in cubic ferromagnetic substances. 

The present work is devoted to the systematic study of 
SFPT induced in cubic ferro- and ferrimagnetic sub- 
stances by a magnetic field and temperature within the 
framework of the phenomenological approximation for 
T<< T,. The nature of SFPT in infinite crystals is in- 
vestigated. Generalized (H, T) phase diagrams corre- 
sponding to H orientations along principal crystallo- 
graphic directions of the type (loo), (Ill) ,  and (110) are 
constructed by analytical and numerical methods, and 
the magnetization curves are  classified. The critical 
points (CP) of the first-order orientation transitions are  
found, and the limits of applicability of the theory ignor- 
ing the order-parameter fluctuations to the study of 
second-order SFPT are  estimated. The estimates show 
that allowance for the fluctuations is unimportant for 
any practically realizable mode of approach to the sec- 
ond-order SFPT point. 

We theoretically consider the transitional (intermedi- 
ate) state, i.e., the transitional domain structure (TDS), 
which arises, a s  is already well known,c18v191 during the 
first-order SFPT in samples of finite dimensions. 

An experimental verification of certain results of the 
theory has been carried out on single crystals of iron 
garnets of the system Tb,Y,_Je501, and Sm,Fe50,,, in 
which temperature-induced first-order SFPT are  ob- 
~ e r v e d . ~ ~ ' ~ * " ~  On the basis of torque, magnetization- 
curve, low-frequency differential-susceptibility, and 
5 7 F e - ~ ~ ~  spectrum measurements, we reproduce some 
(H, T) phase diagrams of these ferrimagnetic substances 
and compare them with the theoretical diagrams. The 
NMR method has, moreover, been used to detect and 
study the intermediate state associated with first-order 
SFPT. 

I. THEORY OF SFPT IN CUBIC FERROMAGNETS 
IN A MAGNETIC FIELD 

5 1. Orientation Phase Diagrams 

Let us consider an unbounded cubic ferromagnet lo- 
cated in a magnetic field, H, directed along one of the 
crystallographic axes of the type (loo), ( I l l ) ,  or  (110). 
Let us assume that it is uniformly magnetized, i.e., 
let us ignore the existence of equivalent (degenerate) 
phases, which inevitably exist in a real cubic magnetic 
substance because of its polyaxial nature when the field 
is oriented along a high-symmetry direction. For ex- 
ample, if ~Jl(100)  and the easy axes a re  the (111) direc- 
tions, then after the completion of the boundary-shift 
processes the rotation of the magnetization will begin to 
occur in the four degenerate phases a,,,, corresponding 
to the four (111) directions nearest to the chosen (100) 
type direction. A similar situation obtains when H is 

oriented along a (111) or  a (110) axis. 

Into the expression for the free energy of the un- 
bounded crystal enter the magnetic crystallographic 
anisotropy energy and the energy of the magnet in the 
magnetic field. Limiting ourselves to the fourth- and 
sixth-order terms, we can write the anisotropy energy 
of a cubic crystal in the form 

where Kl and K, are  the first two cubic magnetic aniso- 
tropy constants, which a re  functions of the temperature 
T (we neglect the field dependence of Kl and K,); the a, 
are the direction cosines of the magnetization vector 
M. In the spherical coordinate system whose polar axis 
coincides with a (100)-type four-fold axis of the cubic 
crystal, the total free energy of the unbounded ferro- 
magnet can be represented in the form 

-It[sin tl sine. ws(rp-q.)+cos tl cos Or]}. (1 

Here 0 and cp, 0, and cp, are  the polar and azimuthal 
angles of the vectors M and H respectively. Neglecting 
the susceptibility of the para-process, we assume that, 
at T<< T,, ]M I =Mo =const. We have adopted the nota- 
tion: 

In Ref. 2 it is shown that, in the absence of an extern- 
al magnetic field, only the phases @(,,,,, +(,,,,, and 

are realizable in a cubic ferromagnetic substance 
when two anisotropy constants are  taken into account, 
and the corresponding a(,,,= @(,,,,, @(l , l ,~+( l lo , ,  and 

Qr(,,,, SFPT are  first-order transitions. Let us 
note at once that the study of the first-order SFPT 
@(lao,t @(,,,, with allowance for only two magnetic-an- 
isotropy constants is not quite correct, since in zero 
field the stability region for the corresponding phases 
abut without overlapping (there do not exist the metasta- 
ble-state regions that a r e  characteristic of first-order 
phase transitions)." 

In the investigation of SFPT in a magnetic field we 
neglect the critical fluctuations, which is usually fully 
justified in the case of spontaneous spin-reorientation 
 transition^.^'] The specific estimates, given in 84 of 
the present section, of the values of the Ginzburg num- 
bers for typical cubic magnetic substances in the case 
of second-order spin- reorientation transitions in a mag- 
netic field (G, - 10" - justify such an approxima- 
tion. Let us also note that the analysis is also valid for 
cubic collinear ferromagnets far from the compensation 
points if the magnetic-field intensity does not exceed a 
certain critical value that causes the appearance of a 
noncollinear magnetic structure. 

The total number of possible (H, T) orientation phase 
diagrams in the (h ,q )  plane is equal to six, since for the 
three chosen H directions it is necessary to consider 
the cases K, < 0 and K,  > 0 separately. 
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A. The case H i(100), K,  < 0 

Minimizing (1) for 8, =0, we easily obtain the equilib- 
rium directions of the magnetization vector: 

q1==x/4, cos 0,(3 cost 0,-l) (q-'lZ sinz 0,)+h-0. (3) 

The condition (2) corresponds to the phase @(,,,, while 
the conditions (3) correspond to the field-modified 
(canted) phase @(,,,, (hereafter to be denoted by @(<,,,,), 
to which corresponds rotation of the magnetization in a 
(110)-type plane. Of the roots of (3) we shall be- inter- 
ested in only the one that goes over, as  h-0, into 
B < = O O  =arcsinJm. 

It is not difficult to show that the stability regions for 
the phases and +(',,,, are determined respectively 
by the following conditions: 

2q cos 40,+'lrsinz 0,[ (2q-3cos' 0,+1) (4~os%~-i)V/~sin'  20,] 
+h cos 0,>0. (5) 

The first-order-SFPT line is determined from the 
equality of the free energies of the phases, and can be 
written in the form 

'liq sin' 20,+'/, (q-cos' 0,) sin' 0,+h(l-cos 0,) -0. (6) 

It can be seen that as  h - 0 the expressions (4)-(6) go 
over into the conditions of Ref. 2, i.e., the @(,,, phases 
are stable when qz 0, the @(,,,, phases are stable when 

FIG. 1. Orientation phase diagrams of an unbounded cubic 
ferromagnet (schematic representation) : a) ,  b), and c )  for 
K2 < 0; d), e ) ,  and f) for K2 > 0. The regions of phase s u i t y  
are hatched; the dash-dot curves are the phase-equilibrium 
lines (CP-critical points; for the definitions of h and q ,  see  
(la)).  

qs 1/3, and the first-order SFPT point is determined by 
the condition q = 1 /9. 

An analysis shows that the stability-loss curves of the 
phases [the expressions (4) and (5) with the equality 
sign] and the phase-equilibrium curve, (6), intersect at 
one point on the phase diagram, after which a second- 
order phase transition occurs on the line 2q+ h = 0. This 
point is a critical point for first- and second-order 
transitions. To find the CP, we proceed in the following 
manner. The critical value of the internal parameter of 
the system-the angle 8-is 8,=0. Let us expand the 
free energy fo in a series around 8, =0: 

Notice that to determine the CP in the present case it is 
necessary to have the expansion of fo right up to Be. As 
is well known, the CP is determined by the conditions 
f, = 0, f, = 0, f, >O. We obtain the eoordinates of the CP on 
the phase diagram: q, = -a, h, = 8 .  The phase diagram 
for this case in the generalized corrdinates (h,q) is 
schematically shown in Fig. la. 

B. The Case HK111). K,< 0 

The minimization of (1) for rp, = a/4 and 8, =arcsin 
x yields the following equilibrium directions for 
the crystal magnetization: 

q=n/4, 0--0~-arcsin 1 7 3  ; (7) 

cp=nl4, '/asin 20, sin (0,+00) (q-'lasin' 0,) -h=O. (8) 

The conditions (7) correspond to the @(,,,, phase, while 
the conditions (8) correspond to the @;,,, phase (rota- 
tion of M in a (110)-type plane). Let us recall that in 
the expression (8) we are interested in only the root that 
goes over, as  h - 0, into 8, = 0. The stability regions 
for the @(,,,, and @:,,, phases are determined by the 
conditions : 

while the phase-equilibrium curve is determined by the 
condition 

'ILq sin' 20,+'1, (q-cos' 0,) sina Ob,+hI 1-cos (0,-00) I -'/,, (9q- 1) 310. 

(10) 

Analysis shows that the phase-equilibrium curve and 
the stability-loss curves for the phases do not intersect 
in the (h,q) plane, i.e., the phase-equilibrium curve al- 
ways lies between the stability-loss curves. Thus, no 
CP exists, and the +(,,, ,= @;,,, transition remains, for 
any value of the magnetic field, a first-order phase 
transition. A schematic phase diagram for this case is 
shown in Fig. lb. 
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C. The Case H ll(1 lo), K2 < 0 

A magnetic field oriented along a (110)-type direction 
(rp, = n/4,6, = r/2) modifies both the @(,,,, and the @(,,, 
phases, which can be stable in zero field in the case 
when K, < 0. Let us  denote them respectively by @t,,,, 
and @;,,,. Indeed, the minimization of (1) leads to the 
following equilibrium directions for M: 

q=n/4, 0=n/2; (1 1) 

q-x/q, sin O, ( q - ' ~ ~ s i n ~ , )  (3~0s' ~,--i) -h=0. (12) 

The conditions (11) correspond to the @(,,,, phase, while 
the conditions (12) correspond to the phase @;,,,,, deter- 
mined by the root that goes over, as h - 0, into @, = 6,. 
In the @;,,,, phase the M vector rotates in the (110) 
plane. 

The following equilibrium directions for  M a r e  also 
possible: 

0=n12, 2q sin 2cp, cos (cp,-n/4) -h-0. (14) 

The conditions (13) correspond to the phase @(,,,,, while 
the conditions (14) correspond to the phase @tl,,, deter- 
mined by the root that goes over into cp, = 0 a s  h - 0. In 
this phase the magnetization rotates in a (100)-type 
plane. 

The @ ~ l l l , ~ @ ( l l o ,  SFPT is a second-order transition 
on the line h+q-?=O. Inthe region 1 / 6 c q c 1 / 3  the 
stability-loss line of the @;,,,, phase is determined by 
the expression 

2 sin' 0,(q-cost 0,) -h=O. ' 

The @;,,,=@(,,,, SFPT is also a second-order transi- 
tion that occurs on the line h - 29 = 0. In the region 
O c  q Q 1/6 the stability-loss line of the +(,,, phase is 
determined by the equation 

Since the regions of stability of the angular phases 
@;,,,, and af,,, overlap, the @;,,,,-'@;,,, SFPT is a 
first-order transition. The equilibrium curve of these 
phases is determined by the system of equations (12), 
(14), and the equation that follows from the equality of 
the free energies of the angular phases: 

'/,q sinf 20,+1/,(q-~osf 0,) sin' 8,-h sin 0, 
-*l,q sin' 2q,-h cos (9,-nI4). 

Notice that the second-order phase transitions @fill, 
= and @;loo, -' @fllo, do not possess critical points, 
but the lines of these transitions intersect the equilib- 
rium curve of the angular phases at the CP(q, = 1/6, 
h, = 1/3) of the first-order phase transition @;,,,, 
= *;loo,. 

As was to be expected, for h - 0 the phase @(,,,, is not 
stable in zero field. The phase diagram is shown in Fig. 
lc .  

D. The Case H 11(100), K2> 0 

If K, >0, then according to Ref. 2, the @,,,,, phases 
a re  stable in zero field when q c -1/3, the @(,,,, phases 
when -* c q c 0, and the @(,,,, phases when q 2 0, while 
the @(111,3@~110, and @ ~ l l O , ~ @ ( l O O ,  SFPT points a re  de- 
termined respectively by the conditions q =-4/9 and 
q =O. Therefore, for any of the three considered orien- 
tations of the field three phases should be present on the 
phase diagrams. 

The application of a magnetic field along a (100)-type 
axis modifies the phases @(,,,, and @(,,,,. As a result of 
the minimization of (I), we obtain the following M orien- 
tation: 

9 4 4 ,  0-0; (15) 

(p=n/4, cos 01,(3 cos' 0,,-1) (q+112sin'01,)+h=0. (16) 

The conditions (15) determine the phase @(,,,,, while 
(16) determines the phase @;,,,, (M lies in a (110)-type 
plane), the root that goes over into el, = 8, a s  h - 0 being 
of interest to us. 

The following equilibrium directions for M a r e  also 
possible: 

q=O, 0=0; 
q=O. 2q cos 0 2 ,  cos 201,+12=0. 

The conditions (17) correspond to the phase %(,,,,, while 
(18) correspond to the phase @;,,,,, determined by the 
root that goes over, a s  h - 0, into 8,, = r/4 (M lies in a 
(100)-type plane). 

It is easy to show that the transitions between the an- 
gular phases and the collinear phase a r e  second-order 
SFPT that occur on the straight line 2q+h = O .  

The regions of stability of the phases +;,,,, and @;,,,, 
are  bounded by this straight line (Fig. Id), a s  well a s  
by the curves defined respectively by the equations 
q +  COS~O,,=O and 29 C O S ~ ~ I , , + ~  C O S ~ , , = ~ .  

The regions of stability of the angular phases overlap, 
and the @ ~ l l l , ~ @ ~ l l o ,  SFPT is a first-order transition. 
The phase-equilibrium curve is determined by the sys- 
tem of equations (16), (18), (19): 

'/,q sint 28,,+'14(q+cos2 OIL)  sin' el,-h cos 0,,-'1.q sinf 202,-h cos Of,. 

(19) 
As in the preceding case, for h>O the second-order 
phase transitions between the angular phases and the 
collinear phase do not possess critical points; the lines 
of these transitions intersect the equilibrium curve of 
the angular phases at the CP(q, = -1, h, =2) of the first- 
order SFPT @;,,, , = @;,,,,. 

E. The Case H Ik11 I), K2 > 0 

In this case the magnetic field cants the phases @(,,,, 
and @(,,,,. The minimization of the f ree  energy (1) 
leads to the following equilibrium directions for the 
magnetization: 
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(p-n/4, '/z sin 20, ~in(0,+0~) (q+'/, sin' 0,) -h=O. (21) rium orientations for M: 

The conditions (20) determine the phase @(,,,,, while 
Eq. (21) determines the angular phases *f,,, and @;,,,,. 
It should be noted that to the phase @tloo, corresponds 
the root that goes over into 8,,=0 a s  h-0, while to the 
phase @fllo, corresponds the root that goes over into 
O,, = n/2 [in both phases M rotates in a (110)-type plane]. 

The region of stability of the phase @(,,,, is deter- 
mined by the condition 

In the interval 0 c q c 1/9 the equation of the stability- 
loss line of the phase a:,,, has the form 

sin @,,[-fl sina OIL(q+cos' 0,,)+h] -0, (22) 

while in the range q > 1/9 

2q cos 40,,+'lrsint el,[ (2q+3 cosz 0,,-i) (4 cos' O1,-i) -'lrsint 201,] 
+h cos (0,,-Bo) =O. (231 

For  the phase &;,,,,, the stability lines in the intervals 
0 c q 9 1/9 and -* c q c 0 a re  also described respectively 
by Eqs. (22) and (23), with the only difference that the 
root O,, of Eq. (21) should be used. 

In the case under consideration the SFPT between the 
collinear and the angular phases a r e  first-order transi- 
tions, and the phase-equilibrium lines a re  determined 
by the equation 

The transition @f,,,-'@;,,,, is also a first-order 
SFPT. The distinctive feature of the transition, which 
consists in the coincidence of the phase-equilibrium 
with the stability-loss lines, is ,  a s  has already been 
noted, due to a certain incorrectness in the study of this 
transition in the model with two anisotropy constants. 

As can be seen from Fig. l e ,  the phase-equilibrium 
lines of all the three first-order transitions terminate 
at one first-order SFPT critical point. Proceeding in 
the same way as  in the case A, i.e., expanding fo around 
the critical value of the internal parameter of the sys- 
tem, O,=8,, we obtain 

where 

For  any such expansion (the presence of the term -JIS) 
the critical point is an isolated second-order transition 
point, and can be found from the condition f, =0, f, =0, 
and f ,z ,  0. Its coordinates are: q,= 1/9, he= 16/27. 

F. The Case H 11(110), K,> 0 

The minimization of (1) leads to the following equilib- 

(p-=n/4, 0-n/2; (25) 
cp-nl4, sin 0,(q+'lrsin2 0,) (3 cosz 0,-i) - h 4 .  (26) 

The conditions (25) correspond to the phase &(,,,,, while 
the conditions (26) correspond to the field-modified 
phase @[,,,,. Notice that we a r e  interested in that root 
of Eq. (26) which goes over into 8,=8, a s  h-0. It is 
also possible for M to have the equilibrium directions 
determined by the conditions (14), which correspond to 
the phase @;,,,. 

The Gflo0,= @;,,,, SFPT is a second-order transition 
that occurs on the line h - 29 = O  (the transition line and 
the stability-loss lines of the phases coincide; see Fig. 
If). 

For  q<-3 the phase &(,,,, loses its stability on the 
line h + q  + +  = O n  The stability-loss line for the @ f , , , ,  
phase in the interval -9/14 <q<-1/3 is determined by 
the expression 

2q cos 40,+'/2 sinrO,[ (2qf3 cos'0,-i) (4 cos' 0,-i) 
-'/¶ sint 20,]+h sin 0,-0. (27) 

The &;,,,,* @;,,,, SFPT is a first-order transition, the 
transition line being expressible in the form 

'/,q sinz 20,+'/, (q+cosZ 0,) sin' 0,-h sin 0,-'/rq+h=O. (28) 

In the present case a CP also exists. The coefficients 
of the free-energy expansion around the critical value of 
the parameter of the system, 8, = r/2, have the form 

foO='/iq-h, fr=q+'/z+h, fi--"/,q-'Is-%h, 
fa="/,,q+'"'/o+%,Oh. 

The C P  is determined by the same conditions a s  in the 
case A. Its coordinates are:  

In fields stranger than he, the @(,,,,p: SFPT is a 
second-order transition on the line h+ q + $ = 0. Conse- 
quently, the point with the coordinates (29) is a C P  for 
first- and second-order transitions. 

Notice that in the cases B-F the conditions for the 
stability of the phases @(,,,, &(,,,,, and @(,,,, in zero 
field, a s  well as the SFPT points agree with the data of 
Ref. 2. 

$2. Magnetization Curves of Cubic Ferromagnets 

The equations determining the equilibrium directions 
of the magnetization allow us to compute the magnetiza- 
tion curves of cubic ferromagnetic substances. These 
curves a r e  shown in Fig. 2 for some typical values of 
the parameter q. The kinks that appear on their reach- 
ing saturation correspond to second-order SFPT points. 
First-order SFPT on the magnetization curves arise in 
two ways. If we neglect the hysteresis phenomena, i.e., 
assume that metastable states a r e  not realized, and 
that the condition for a transition is the equalitv of the 
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FIG. 2. Theoretical mag- 
netization curves of an un- 
bounded cubic ferromagnet 
without allowance for the 
metastable states that a- 
rise in first-order SFPT 
(m = Mh/Mo) : a), b), and 
c) for K2<O; d),e), and 
f )  for K2 > 0 .  The curves 
have been constructed for 
typical values of the para- 
meter q. 

f ree  energies of the phases, then the magnetization critical points considered in Subsecs. A, E, and F of 
jumps culminating in the attainment of the state of sat- 01. 
uration correspond to first-order transitions from angu- 

To study the magnetization distribution at a DB, lar into collinear phases. Certain curves of this kind 
which can be regarded as an inhomogeneity, we should 

a re  discussed in, for  example, Ref. 12. To a first-or- add to the free energy (1) terms that arise from these 
der transition between angular phases also corresponds 

inhomogeneities and have, in the main, an exchange 
a jump in the magnetization, but after the jump the mag- 

character: 
netization continues to grow because of the noncomple- - 
tion of the rotation process. The possibility of such f inh =*/,a1(aM/a~.) *, 
transitions is pointed out in Ref. 20. And, finally, in 
the case E (see 51) there can, in principle, occur two where cut  is the constant of the inhomogeneous exchange 
magnetization jumps in the interval O<q< 1/9 (see Fig. interaction. Below we shall study those DB at which the 
2e). rotation of the vector M occurs in (110)-type planes. 

53. The Domain (Interphase) Boundaries Associated with 
First-Order SFPT 

In 0 1  we considered the uniform distribution of mag- 
netization in a cubic magnetic substance of infinite di- 
mensions. The case is somewhat different in crystals 
of finite size, in which owing to the magnetic dipole in- 
teraction the so-called intermediate state (which is one 
in which the domains of the phases that a r e  possible for 
the first-order SFPT in question a re  arranged in turn) 
turns out to be energetically advantageous. In all the 
above-considered cases, a transition from one phase 
into another is caused by a change in the external mag- 
netic field (or temperature). It is known that one of the 
conditions for the coexistence of the various phases 
near a first-order phase transition point is the constan- 

A. The First-Order SFPT a(, ,,, 2 ;, , , (K, < 0 )  

In this case, near the CP, the free energy can be 
written in the form 

Here Q'=dO/dq, where 71 is the coordinate in the direc- 
tion perpendicular to the DB plane. By varying the ex- 
pression (301, we can obtain an equation for the distri- 
bution of the magnetization at the DB: 

Or'+ a-*O(f2+fiO'+fsO') =O. 

Its f irst  integral has the form 

(O')z-2a-18z(*/,f,+*/,fiO'+ */.f,O') =const. 

cy of the internal magnetic field in the ~ r y s t a l , ~ "  this We find the of the integration either from the 
constancy being secured when the external magnetic condition Q(q) I,,++, = O , O t  (71) In++, = 0 (this implies that 
field B, changes by a redistribution of the parts of the the homogeneous phase a(,,, occurs to the right of the 
material in each of the phases. DB), o r  from the condition O ( q ) l , + , , = O o Q t ( ~ ) I . , _ , = O  

The nature of the domain boundaries (DB) arising in a (to the left of the DB is the homigenkous phase b;,,,,). 
first-order SFPT in the absence of a magnetic field was It is not difficult to verify that the two values for the 
studied in the work published in Ref. 2. We shall dwell constant of integration coincide. This is connected with 
on the investigation of DB in cubic magnetic substances the fact that the domains of the indicated phase a re  in 
in external magnetic fields. Of special interest is the thermodynamic equilibrium, i.e., the expression (30) 
investigation in question near the first-order SFPT for q - km is analyzed on the phase-equilibrium curve 
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(B), the equation for which has, near the CP ,  the form 

Thus, we can write 

(0') Z-2a-'02(1/zfz+'/<fi0'+'/afs8') -0. 

Integrating Eq. (31), we obtain 

0=0,(3eq'"+1)-'", 0,'=-4fz/f6, qo= ' / , (d f , )" .  (32) 

Notice that the indicated expression for 0; is valid only 
on the phase-equilibrium curve. The quantity q, has the 
meaning of an effective DB thickness, and, a s  can be 
seen from the expression (32), the effective DB thiqk- 
ness increases a s  the C P  is approached along the phase- 
equilibrium curve. 

Knowledge of the magnetization distribution at the DB 
allows the computation of the surface magnetization 
value: 

which yields 

It can be seen that the surface-energy density of the DB 
tends to zero a s  the C P  i s  approached. This is con- 
nected with the fact that the difference between the 
phases disappears a t  the CP, 

B. The First-Order SFPT ,, , , ,.2 @(, , ,, ( K ,  > 0 )  

Arguments and computations similar to the foregoing 
lead to the following magnetization distribution at the 
DB for this case: 

$=$,(en'W-i)-', $L=-3fz/fa, $=0-00. qp=(a / f r )" .  

The surface-energy density of the DB near the C P  is 
given in this case by 

C. The First-Order SFPT @,, , ,, 2 @;, , , , ( K ,  > 00 

It can be shown that in this case 

$4. The Region of Applicability of the Landau Theory 

Let us estimate the region of applicability of the Lan- 
dau theory a s  applied to the description of second-order 
SFPT in cubic ferromagnets. It is not difficult to show 

that the value of the Ginzburg numberc2'] in the case of 
interest to us can be estimated from the following for- 
mula: 

Here T, is the transition temperature, A is the ex- 
change-coupling constant, k is the Boltzmann constant, 
C is a constant of the order  of unity, that depends on the 
type of second-order SFPT. Let us  carry  out the esti- 
mate for the ferrite-garnets Tb,Y3,.J?e5OlZ and 
Sm3Fe501,, which have been experimentally investigated 
by us (see below in Sec. II), these ferrite-garnets being 
typical cubic ferrimagnets with moderate (-lo4 erg/cm3) 
and substantial (-lo6 erg/cm3) anisotropy constants. 
Using the Tb,,Y2.,Fe,012 (the transition iP:,,,,= @(loo,) 
the values C = 2, qc =-a, A = 4.4 X erg/deg, a s  well 
a s  the values q= -0.61, 8q/8T -0.04 deg-', K2 =-1.3 
x lo4  erg/cm3, which correspond to T, =I35 K , [ ~ ]  we can 
obtain that G, = 1.5 X lod. Similarly, for Sm3Fe501z (the 
transition iP:,,,,p iP(llO)), C = 7/2, qc=-9/14; the values 
q =-0.78, aq/8T= 0.03 deg", and Kz =1.8 x 10' erg/cm3 
for T, = 78 K; we find that G,= 2 x Since the cri-  
terion for the applicability of the Landau theorycz1] is 
the condition 

we can conclude that for the purpose of describing SFPT 
in cubic magnets the theory is inapplicable only in a 
very narrow interval of relative temperatures (7 - lo9) 
near T,. 

II. EXPERIMENTAL STUDY OF SFPT IN THE IRON 
GARNETS 

8 1. Samples and Measurement Procedure 

Investigations of the effect of an external magnetic 
field on SFPT were carried out on the single crystals 
of the iron garnets of the system Tb,Y3_.J?e50,, and the 
single crystals of the iron garnet Sm3Fe5012 that were 
used by us earl ier  for  the study of reorientation in zero 

The technology for  growing single crystals is 
described in Refs. 6 and 22. Spherical samples of diam- 
e ter  1-4 mm o r  samples in the formof thin disks were 
used. 

The magnetic anisotropy constants were measured by 
the torque method in fields of up to 14 kOe. The tem- 
perature dependences of the constants K, and K2 of fer- 
r i tes of the system TbxY,,Fe501, have been measured 
by Borodin et U E . ~ ~ '  and Kolacheva et al.cz31 Additional 
measurements have also been made of the constants for 
terbium-yttrium garnets in the low-temperature region 
10-77 K and for the samarium garnet in the 50-60-K 
range. 

The curves of magnetization of the single crystals 
along the various directions were measured with the aid 
of a vibrating magnetometer in fields of up to 10 kOe. 
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The orientation of the samples was effected by a mag- 
netic method. 

The "F~-NMR spectra were measured, using the 
Hahn two-pulse spin-echo technique, on a spectrometer 
with facilities for frequency sweep and automatic spec- 
trum recording. The necessary resolving power was 
secured by the choice of exciting pulses of substantial 
width (5-10 psec); to raise the sensitivity we used a 
stroboscopic integrator. 

The components of the differential susceptibility were 
measured in the following manner. In the magnet gap 
was placed a device consisting of two pairs of coils ar -  
ranged in such a way that the axis of one pair was paral- 
lel, and that of the other perpendicular, to the constant 
field H,. A spherical sample was placed a t  the point of 
intersection of the coil axes. To measure x,, the coils 
of parallel orientation were fed by an audio-frequency 
oscillator (F =20 kHz), and a signal, proportional to x,, 
was tapped from the coils of perpendicular orientation. 
An electrical compensation of the emf's resulting from 
the inevitable e r r o r s  in the relative orientation of the 
coils was carried out. The component x,, was measured 
by the bridge method a t  the same frequency, using only 
the coils of parallel orientation, All the x measure- 
ments were relative. 

$2. Results of the Experiment and their Discussion 

In Fig. 3a we present, for the case of external magnet- 
ic fields directed along a (1 11 )-type axis, magnetization 
curves of the iron garnet Tb,~,Y,~,Fe,O,,, measured on 
a spherical sample in the temperature range 10-106 K. 
In this range the parameter q varies from a value of 
0.1 to a value of 0.39 (K, <0), and, in accordance with 
the diagram shown in Fig. lb ,  the easy axes a r e  the 
(100)-type directions (a result which is confirmed by 
the experimental data of Ref. 5) and the first-order 
SFPT +(,,,, should occur in a magnetic field 
~ ~ I ~ ( l 1 ~ ) .  

Indeed, the magnetization curves exhibit pronounced 
anomalies, which confirm the existence of this transi- 

FIG. 3. Curves of magnetization of the iron garnet 
Tbo.iYz.sFe501z along the (111) axis, measured in an increasing 
magnetic field. a) Spherical sample at T K: 1) 106.0, 2) 77.3, 
3) 58.5, 4) 48.8, 5) 37.4, 6) 29.8, 7) 21.0, 8) 10.0. b) 
T=29.8 K: 1) disk with t / d  = 0.05; 2) disk with t/d = 0.14; 3) 
sphere. 

tion. Notice that the difference between the observed 
anomalies and the way the magnetization should behave 
in an unbounded crystal consists in the following. Fi rs t ,  
in the region of an anomaly the dependence M(H,) has a 
slope close to the slope of the initial section of the mag- 
netization curve, where the magnetization is accom- 
plished through the shifting of the DB and the internal 
field is virtually equal to zero. Secondly, the hysteresis 
of the magnetization curves in the region of the anoma- 
lies is small, i n  any case,  it is more than an order of 
magnitude smaller than the hysteresis given by the the- 
ory in the homogeneous case (we have in mind the width 
-in field terms-of the overall metastable-phase re- 
gion). 

These differences find a natural explanation i f  it is 
assumed that an intermediate state is realized in the 
sample during the first-order phase transition under in- 
vestigation, i.e., the sample separates into domains of 
the phases Qf,,,, and a(,,,,, which coexist in some field 
range. This range can be roughly estimated to be AH, 
= N W ,  where N is the demagnetization factor of the 
sample and AM is the magnitude of the magnetization 
jump. The last condition corresponds to the constancy 
of the internal field in a sample of finite size during the 
first-order phase transition. Check measurements per- 
formed on samples with different demagnetization fac- 
tors  qualitatively confirm this result. 

In Fig. 3b we present three plots of M(H,) in the re-  
gion of the anomalies for a spherical sample and disks 
with different values of the ratio t /d. The increase of 
the slope of the dependence M(H,) a s  the demagnetiza- 
tion factor decreases is clearly visible. The presence 
of a transitional state and, consequently, of a TDS al- 
lows a qualitative explanation of the small  width-in 
field terms-of the hysteresis loop. Analysis of the 
phase portrait of the equation describing the magnetiza- 
tion distribution a t  a DB for a fixed q(T) value that al- 
lows the occurrence of the first-order transition and for 
different magnetic-field values shows that the angular 
and collinear phases coexist only in a narrow range of 
internal fields near the phase-equilibrium curve and 
that the new phase develops continuously and reversibly 
from "nuclei" that a r e  the walls between the domains of 
the old phase. The virtual absence of hysteresis in the 
case of the investigation of the first-order SFPT in 
these same compounds with respect to temperature has 
been explained in much the same ~ a y . [ ~ * ~ * ~ '  The compu- 
tations in Sec. I, 53 confirm the coexistence of the 
phases on the phase-equilibrium curve near the C P  of 
the first-order transition. It is interesting that the ob- 
servation of this same transition in pulsed magnetic 
fields allows the detection of substantial hysteresis (see 
the low-field transition in Fig. 1 of Ref. 24). It i s  pos- 
sible that, in the case of a high rate of change of the 
field, the TDS does not have time to develop, and the 
behavior of the reorientation is the same a s  in the ho- 
mogeneous case. But this surmise requires additional 
verification. 

In Fig. 4 we have plotted on the theoretical phase dia- 
gram for the phase transitions Q;,,,,r 9(,,,, experimen- 
tal points obtained from the above-presented magnetiza- 
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tion curves of the iron garnet with x = 0 .l, as well as  
from those of tlae ferrite with x = 0.26, whose magnetiza- 
tion curves have an entirely similar shape. The solid 
lines represent the stability-loss curves of the phases, 
while the dash-dot line represents the phase-equilibrium 
curve, which was computed numerically from the for- 
mulas (8)-(10). In processing the experimental data we 
took the degaussing field into account, so that along the 
ordinate axis we have plotted the parameter k for an in- 
ternal-field value given by H = Hot - (4r/3)Mt, where Hot 
and Mt a re  respectively the external field and the mag- 
netization corresponding to the midpoint of the "anoma- 
lous" section of the M(Ho) curve. In the same figure we 
have plotted a point for a disk with t/d=0.05, when it 
can be assumed that H s Ho. It can be seen that the ex- 
perimental data for the two ferrites of different compo- 
sitions lie near the phase-equilibrium curve of the gen- 
eralized phase diagram. This also corroborates the 
conclusion that the intermediate state associated with 
first-order phase transitions in cubic ferromagnets is 
realized near the equilibrium curve for the phases. 

The coexistence of the phases @;loo, and @(,,,, during 
first-order phase transitions in single crystals with 
x =0.1 has been demonstrated by 5 7 F e - ~ ~ ~  method at 
T =4.2 K. The NMR spectra of the octahedral ions Fe3+ 
in a spherical sample (d =3 -9 mm) were measured in the 
geometry: HoIl(ll l), H,,, IH,,. These spectra, which 
were measured as the magnetic field was decreased, 
are  shown in Fig. 5. We shall not discuss the theory, 
developed in Refs. 25 and 26 and summarized in Ref. 5 
from the standpoint of the possibility of investigating 
magnetic structures, of 57Fe-~MR spectra of the iron 
garnets. It follows from Fig. 1 of Ref. 5, which depicts 
the angular dependence of the three branches of the 
spectrum of the octahedral ions as M is rotated in the 
(110) plane, that for the at,,, phases we should observe 
a single line (denoted by a) that, when M deviates from 
a (100)-type axis (i.e., in the case of the angular phases 
Ip;,,,, should split up into three lines with intensity 
ratios of 1:2:1. On the other hand, the spectrum of the 
collinear phase @(,,,, should consist of two lines a1 and 
an) with an intensity ratio of 1:3. Taking these obser- 
vations and the fact that the spectra recorded as the 
field was decreased and those recorded in increasing 
field have identical shape into account, we can interpret 
the spectra shown in Fig. 5 in the following manner. In 

FIG. 4. Theoretical phase diagram for H ~ ~ J  011) (K2< 0) togeth- 
er  with experimental data for iron garnets of the system 
TbrYS.rFe5012: e) x=O.l, sphere; A) x =  0.1, disk with t/d 
= 0.05; 0) x=0.26, sphere. Temperature range: 10- 77 K. 
The mean error values are indicated (see explanations in text). 

zero field the spectrum consists of a single line, a, 
i.e., on1.y the @(,,,, phases are  realized. As the intensi- 
ty of the external field increases, the line a indeed 
splits up into three lines with intensity ratios close to 
the theoretical values (this group of lines is designated 
in Fig. 5 as  a'), i.e., the angular phases @;loo, are  real- 
ized. Starting from some value of the field, there ap- 
pear in the spectrum lines, a1 and axl, corresponding to 
the @( ,,, , phases, and, what is more, an increase in the 
field does not affect the magnitude of the splitting of the 
lines in the group a', but only causes a redistribution of 
the intensities of the lines of the and a(,,, , phases 
right down to the total disappearance of the a' lines. 
The spectra in this field range unambiguously prove the 
coexistence of the collinear phase and the angular 
phases, i.e ., the existence of the intermediate state. 
As the field intensity % increases further, only the 
lines 8 and alI, which characterize the phase @(,,,,, 
remain in the spectrum. 

We have compared the maximum angle of deviation of 
the magnetization M from a (100)-type axis, determined 
from the NMR spectra, i.e., the angle 8, of the 
phase in the intermediate state, with its theoretical val- 
ue on the phase-equilibrium curve. On the basis of the 
distance between the lines ax and axx (1.05 MHz) and the 
splitting of the lines in the group a< (0.28 MHz), we can, 
using the theoretical angular dependence of the NMR 
frequencies?' easily find that 8, = 7.2". Extrapolation to 
T =4.2 K yields a value for the parameter q within the 
limits 0.2-0.22. On the phase-equilibrium curve (10) to 
such values correspond theoretical values for O,, (8), 
in the range 9.6-11". Allowing for a possible error  in 
the determination of q a s  a result of the extrapolation 

H, -6.22 kCm 1 ,A, 
75.5 76.0 76.5 71.0 77.5 

f, MHz 
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T ~ o . ~ Y ~ . s F ~ s ~ ~ z  (T= 4.2 K), A-w toe measured in a decreasing 
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explained in the text. 

(I= 

Bar'yakhtar et a/. 323 



FIG. 6. Dependence of the 
relative volume of the *(lH) 
phases of a monocrystal- 
line sphere of the iron gar- 
net Tbo.iY2.9Fe5012 on the 
external magnetic field 
intensity for T =  4.2 K and 
Hall 011). 

from 10 to 4.2 K and for the resolution of the NMR spec- 
t ra ,  we can acknowledge the agreement between the ob- 
tained values to be quite satisfactory. Thus, the NMR 
method also corroborates the inference of the existence 
of a transitional state near the phase-equilibrium curve. 
Notice also that the direct observation of the coexist- 
ence of the domains of the @(,,, and @(,,,, phases has 
been accomplished by Belyaeva et al.L141 with the aid of 
magnetooptical methods in the case of magnetization 
along a (1 11)-type axis (T = 4.2 K) of a thin erbium-iron- 
garnet ( ~ r , ~ e , 0 , , )  plate. In this cubic ferromagnet, a s  
in the terbium yttrium iron garnets, the easy axes a t  
T = 4.2 K a re  the (100) directions. 

The NMR technique allows us  to reproduce the field 
dependences of the volumes of the coexisting phases in 
the intermediate state. In Fig. 6 we show the depen- 
dence of the relative volume of the r9(,,,, phases, p(,,,, 
=v~ll l , / (~( l l l  ,+ v;,~~,), which is identified with the field 
dependence of the ratio, [l(al) + l(an)]/[l(al) + l(an) 
+l(aL)], of the intensities of the lines. The measure- 
ments were performed both in increasing, and in de- 
creasing, field. It can be seen that the width of the 
hysteresis loop is quite small (about 300 Oe). The main 
cause of the hysteresis phenomena in the transitional 
state is, in our opinion, the retardation of the domain 
boundaries by the defects during the reconstruction of 
the TDS. Some experimental data given below a r e  in 
accord with such a conjecture. 

FIG. 7. Theoretical phase 
diagram for  Ho 11 011) (Kz > 0) 
together with experimental 
data for the iron garnet 
Sm3Fepi2. Temperature 
range: 56 - 63 K. The 
mean values of the errors ,  
not including the system- 
atic measurement e r rors  
discussed in the text, a r e  
given. 

on samarium-iron-garnet (Sm,Fe,O,,) samples a re  
much smaller (down to 0.18M0). F o r  this reason the 
anomalies in the magnetization curves of Sm,Fe,O,, a r e  
more feebly marked, which leads to a reduction in the 
accuracy with which the transition fields can be deter- 
mined. In Fig. 7 we show the theoretical orientation 
phase diagram for the transition @(,,,, (K, >O). 
The stability-loss and phase-equilibrium lines were 
computed from Eqs. (21)-(24). In the same figure we 
have plotted experimental points corresponding to the 
anomalies in the magnetization curves of monocrystal- 
line spheres of Sm3Fe501,. It can be seen that, a s  q in- 
creases (the temperature decreases), the experimental 
data systematically deviate downwards from the phase- 
equilibrium curve. Apparently, the cause of this dis- 
crepancy is, besides the indicated reduction in the 
transition-field measurement accuracy, the substantial 
systematic e r ro r s  made in the measurement of the fair- 
ly large magnetic-anisotropy constants of Sm3Fe,01, a t  
T < 77 K in fields of moderate strength, something which 
is assumed in Ref. 27. For  example, a t  T =56 K the 
anisotropy constants, measured in a 10-kOe field, have 
the following values: K, = -2 X lo6 erg/cm3, K, = 8.3 
x lo6 erg/cm3. To these constants correspond an aniso- 
tropy field HA = 33 kOe, which is higher than the exter- 
nal field. In such a situation, the sample may turn out 
to be unsaturated in the difficult directions during the 
measurement of K, and K, by the torque method, and 
this will lead to systematic errors .  Unfortunately, the 
variation range of the parameter q of the ferri te 

The investigated @;,,,* a(,,, , transition is the most 
Sm,Fe501, does not allow passage through the isolated 

suitable transition for a quantitative comparison of the CP and the investigation of the first-order transitions 
theory with experiment, since the maximum magnitude 
of the magnetization jump is quite substantial (up to * ~ l O O ~ = @ c l l l >  and @&lo)=  *(Ioo)- 

. - 

0.42M0) a id  the region of metastable states is wide. More favorable is the case of the investigation of the 
The maximum magnetization jumps expected in the in- first-order transitions9 ;,,,, = 9c11,) (K, > 0, Fig. If), since 
vestigation of the first-order SFPT @;,,,,* @(,,,, and this transition is investigated a t  higher temperatures, 
Gf,,, ,t +(,,,, (K, >O, the cases E and F of 51 of Sec. I) where the anisotropy constants have beenmeasuredmore 

6 7 
FIG. 8. Dependence of the 
differential susceptibility 
xlI of the iron garnet 
Sm3Fe5OI2 on the external 
magnetic field intensity 
for the case of a spherical 
sample and Ho 11 011).  The 
curves were recorded in 
increasing fields at  T K: 
1) 68.3; 2) 71.3; 3) 71.8; 
4)72.3; 5) 72.5; 6) 72.6; 

I I I I 

1.5 2.0 SO 7) 72.8; 8) 73.0; 9) 73.3; 
25 Ho , kOe 10) 73.6; 11) 74.2. 
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accurately, and, morewer ,  the variation range of q allows 
passage through the CP of f irst-  and second-order transi- 
tions and the observation of a second-order transition. 
The phase diagram was constructed from the results  of the 
study of the field dependences of the magnetic-suscepti- 
bility components x,, and x,. I t  is not difficult to deduce 
within the framework of the phenomenological approxi- 
mation that in crossing a second-order phase-transition 
curve the component X, of an unbounded sample di- 
verges, while x,, has a singularity, but that a t  the C P  x,, 
also diverges . 
In Fig. 8 we show experimental x,,(H,) dependences, 

obtained on a monocrystalline sphere of SqFe,Ol, for 
&lKl10) in the temperature range 68-74 K. It can be 
seen that both the first- and the second-order phase 
transition a r e  characterized by susceptibility peaks, 
although these peaks differ totally in character. In the 
case of the f irst-order transitions the x,, peak is mainly 
due to the DB-displacement processes that occur during 
the reconstruction of the domain structure in the inter- 
mediate state of the ferromagnet, i.e., to the redistri- 
bution of the phase volumes. This is indicated, for ex- 
ample, by the irregular kinks in the low-temperature 
x,,(H,) dependences, kinks which a r e  well reproduced in 
experiment after experiment. The cause of such irreg- 
ularities may be the hindrance of the DB by the crystal 
defects. It is clear that a x,,(H,) peak corresponds to a 
point of inflection of the dependence &,,,,(H,), while the 
magnetic-field strength a t  the point of the peak can 
roughly be taken a s  the first-order phase-transition 
field. At the same time, the high-temperature x,,(H,) 
dependences a r e  smooth, and the magnetic field corre- 
sponding to a x,, peak can be regarded a s  a second-order 
phase-transition field. And, finally, since x,, diverges 
at the CP, while it has a maximum of finite height for 
q #  q,, we assumed that to the critical temperature 
should correspond to the x,, (H,) dependence with the 
highest peak. The curve 6 in Fig. 8, which is consistent 
with this assumption, was used to determine the coor- 
dinates of the CP  on the phase diagram. 

The behavior of the susceptibility X, is similar, but 
from the x,(H,) curves the coordinates of the C P  can be 
determined with less  accuracy, since the dependence of 
the height of the X, maximum on q is less critical. We 
can indicate two causes of such behavior of x,(H,,q). 
First ,  x,(H,) of an infinite crystal diverges not only a t  
the CP, but everywhere on the second-order phase- 
transition curve. Secondly, the susceptibility X, van- 
ishes when H, is precisely oriented along a (110) direc- 
tion, since the contributions of the equivalent @ill,, 
phase cancel out. Only when the field is inclined at an 
angle of several degrees to a (110)-type axis is i t  possi- 
ble to measure a x,(H,) dependence, but then the phase 
transition ceases to be a second-order transition. 

In Fig. 9 we show the theoretical phase diagram [ E ~ s .  
(27) and (28)] and a number of experimental points ob- 
tained from the susceptibility anomalies. It can be seen 
that the agreement between the experimental data and 
the theoretical diagram is satisfactory, although the or- 
dinate of the C P  is smaller than its theoretical value by 
roughly 15%. The cause of such a discrepancy is, ap- 

FIG. 9. Theoretical phase diagram for HoII 011) 6 ' 0 )  to- 
gether with experimental data obtained for the ferrite 
Sm3Fe5OI2 from susceptibility measurements on a spherical 
sample: A) &, (Ha) measurements; 0) measurements; 0 )  

critical point obtained from the family of &,(Ho, q) curves. 
Temperature range: 68 - 74 K. Typical measurement errors 
are shown. 

parently, the above-discussed inaccuracy of the mea- 
surement of the anisotropy constants and the influence 
of the susceptibility of the para-process. 

CONCLUSION 

The above-performed theoretical investigations of the 
spin-reorientation phase diagrams of a cubic ferromag- 
net in a magnetic field have revealed a wide variety of 
magnetic phase transitions. The appreciable effect of 
the transitional domain structure on the character of 
first-order SFPT in samples of finite dimensions has 
been elucidated. Experimental magnetization, suscepti- 
bility, and NMR investigations on iron garnets have con- 
firmed the results of the theory. 

The authors a r e  grateful to B. V. Mill' and A. G. Tit- 
ova for growing the iron-garnet single crystals, a s  well 
a s  to S. F. Ivanov for his help in the measurements. 

"~llowance for the third anisotropy constant (i.e.. for the 
eighth-order term) eliminates this inconsistency, but leads 
to a significant complication of the situation: in zero field, 
besides the enumerated phases, which correspond to the ori- 
entation of M along the principal directions of the type 000). 
(lll), and (110), angular phases for which M lies in planes of 
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Effective exchange interaction in magnetic semiconductors is deduced by taking into account various 
factors: hybridization of the f-electron states with the valence and conduction bands, total interatomic 
exchange including the interband interaction of the electrons, Coulomb repulsion effect, and the effect of 
the finite f-level width. The calculated values of the exchange constants I ,  and I,  for europium 
chalcogenides are in good agreement with the experimental values. 

PACS numbers: 75.30.Et 

1. In the  description of t h e  p roper t i es  of magnetic di- 
electrics and semiconductors  based on transition and 
r a r e - e a r t h  meta l s  (REM), var ious  mechanisms of ex- 
change interaction are r e s o r t e d  to. Whereas  t h e  Kra-  
mers superexchange interaction mechanism[ll suffices 
to explain the  magnet ism of magnetic dielectr ics ,  which 
are antiferromagnetic in  mos t  cases, t h e  situation is 
m o r e  complicated i n  the  case of magnetic semiconduc- 
tors based on REM. Thus, f o r  example, in  t h e  series of 
of europium-chalcogenides, which have a more compli- 
cated electronic structure,  one observes  a broad spec- 
t r u m  of magnetic p roper t i es  on going f r o m  compound to 
compound or when t h e  lattice parameter  is a l te red  by 
p r e s s ~ r e . ~ ~ * ~ ~  Xavier and d e  G r ~ i a f [ ~ * ~ ]  attempted to ex- 
plain both t h e  ferromagnet ic  and antiferromagnetic ex- 
change interactions in EuO and EuS by using only t h e  
Bloembergen-Rowland interband-interaction mechan- 
ism.[=] The i r  overstated va lues  of t h e  interband-inter- 
action constants can, however, not be regarded  as ac- 
ceptable. 

An analogous mechanism, due to excitation of elec- 
trons f r o m  localized f~ orbits of anions into t h e  conduc- 
tion band, w a s  proposed by Berdyshev and ~ e t f u l o v ~ ~ ]  
and by ~ a z a k o v . ~ ~ '  T h e  d a t a  they used, however, w e r e  
taken f r o m  experimental   paper^^^*'^] whose authors  in- 
cor rec t ly  identified t h e  forbidden gap width B with t h e  
f-level1' binding energy A. T h e  real va lues  of t h e  para -  
m e t e r s  B (see  Table I) in europium chalcogenides are 
2-6 t i m e s  larger than those  assumed in t h e  aforemen- 
tioned theoret ical  so that  t h e  obtained ex- 
change integrals are s m a l l e r  by one or two o r d e r s  of 
magnitude than those  given in Table11 of [I1. Thus, t h e  
interband-interaction mechanism alone is not sufficient 
to obtain good agreement  with t h e  experimental  data. 

It follows f r o m  magneto-optical measurements  and 
f r o m  calculations of the  band s t r u c t u r e  with allowance 
for  the  s t rong  f-electron correlation[121 and t h e  lattice 
polarizationc1s1 that  in europium chalcogenides t h e  lo- 
calized weakly s m e a r e d  f level lies i n  the  forbidden gap 
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