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Absorption of obliquely incident sound in the intermediate 
state 
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The absorption of shortwave sound kRo> 1 in the intermediate state in superconductors is investigated for 
oblique incidence of the sound on the interface of the two phases. It is shown that the magnitude and the 
character of the absorption depend very strongly on the angle of incidence a, so that at a<Ro and angles 
a satisfying the condition 4.26 k ( a ~ ~ ) " ~ s i n a > l ,  the sound absorption becomes of the order of the 
absorption in a normal metal in zero magnetic field (a is the thickness of the nonnal layer, R, is the 
Larmor radius). The contribution of surface electrons to the sound absorption is investigated; it is 
significant at a > 2R,. It is shown that in this case magnetoacoustic oscillations are generated with a new 
period, strongly dependent on the angle a, on which frequent oscillations, due to electron-hole geometric 
resonance, are superimposed. 

PACS numbers: 74.30.-e, 43.35.R~ 

I. INTRODUCTION 

The absorption of sound in the intermediate state un- 
der  various experimental conditions has been studied 
theoretically by A. F. Andreev. In particular, he inves- 
tigated the sound absorption in pure samples, when 1 
>>R, (1 is the f ree  path length of the electrons, R, is 
their Larmor radius in the critical magnetic field), a t  
low temperatures, a t  normal incidence of sound on the 
N-S interface.[" It was shown by him that the sound 
absorption coefficient r is an oscillating function of the 
ratio Ro/a, where a i s  the thickness of the normal lay- 
e r  and the monotonic part  of r remains of the order  of 
the absorption coefficient in the normal metal in a cri t-  
ical magnetic field, multiplied by the specific volume 
of the normal phase a/d (d is the period of the struc- 
ture). Ledenev et al.c21 made an  attempt to find the pre- 
dicted effect experimentally. However, the observed 
picture was extraordinarily complicated and actually did 
not admit of a unique interpretation. 

e m .  We f i rs t  consider the case of large magnetic 
fields, when a >2R0. In this case, a l l  the electrons in 
the normal layer can be divided into two groups ( ~ i g .  1): 
1) volume electrons, whose orbits do not touch the N-S 
interface (type c in Fig. I), 2) surface electrons, which 
undergo Andreev reflection (types a and b). Corres- 
pondingly, the sound absorption coefficient consists of 
two parts: r, and r,, where 

2R, sin (2kRo-n/4) 
4Ro + 1-- 

r* - r (~*)+{(  '-TI ( a I (nmelth 

Here I'(H,) i s  the monotonic part  of the sound absorp- 
tion coefficient in the normal metal a t  H =H,. The first  
component in the curly brackets is the fraction of the 
volume electrons, the second component describes the 
geometric resonance by volume electrons, and the co- 
efficient in front of it i s  the fraction of resonance vol- 
ume electrons. It is clear that r, cannot depend on the 
angle of incidence of the wave a. The surface elec- 
trons, due to reflection from the N-S interfaces, drift 

In the present paper we shall show that the sound ab- along the wave. In one period, they a r e  displaced by 
sorption coefficient depends strongly on the angle a be- the vector A, A, = 4R sincp (Fig. 1). At normal incidence 
tween the sound-wave vector k and the normal to the of the sound wave, this drift does not affect the sound 
N-S interface. Furthermore, even a t  very smal l  an- absorption and the appearance of new drift trajectories 
gles, both the value of the monotonic part  of the ab- 

does not lead to the appearance of oscillations since, 
sorption coefficient and the character of the oscillations 

upon averaging over the center of the Larmor orbit, changes qualitatively. We shall  assume everywhere 
that klH,kRo>> 1,ka>> 1. they a r e  strongly diminished and turn out to be of the 

order of l/kRo << 1 in comparison with the volume elec- 
We shall discuss qualitatively the observed phenom- trons. As a result, 
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FIG. 1. Types of trajectories in the normal layer at a > 2 R o :  
a) extremal surface trajectory; b) arbitrary surface trajec- 
tory; c) interior trajectory. The points 1 , 2 ,  lr are points of 
stationary phase. The vector A (from point 1 to point 1') is 
the drift of the electron in the period T. The vector B-from 
point 1 to point 2 .  a is the angle of incidence of the wave on 
the N-S interface. The motion is periodic with period T =2r /a 
= 2 r  mc/eH,, xo =R c o q  is the distance between the center of 
the orbit and the N-S interface. 

Thus, in the case of normal incidence, a l l  electrons 
of the normal phase make a contribution to the mono- 
tonic part of the sound absorption coefficient, but only 
the volume resonance electrons make such a contribu- 
tion to the oscillating part: 

r=r*+r,=r(~~)A ! I  + (1 - 3) sin (2kRo-n/4) 
d 1 a (nkRo)Ih 

In a time T , the electron moves from the point 1 to the 
point 1'. Here the phase change of the sound wave is 
k A. When the phase shift in the time 7 between colli- 
sions is  k*A7/T<< 1, the drift of the particles is  insig- 
nificant. Therefore, a s  long a s  the angle a! << l/kl<< 1, 
we have the case of normal incidence. In the opposite 
case (a! >> l/kl), the electrons for which ke A = 2 m  with 
accuracy to T/T << 1 absorb the sound effectively. 
Therefore, the sound absorption coefficient i s  of the 
order of 

This means that if we disregard the singular oscilla- 
tions, then the surface electrons absorb the sound in 
the same way a s  in a normal metal without a magnetic 
field. 

The exact expression for the sound absorption coeffi- 
cient has the form 

4Re r.-r(0)- f (4kRn sin a, a). 
nd 

We note that the quantity &R,sina! is the maximum 

I I I 

2 n 4n bn f 

FIG. 2 .  Dependence of the normal sound absorption coefficient 
due to surface electrons on the quantity t =4kR sincr at cu << 1 .  

value of k * A  which is achieved on extremal trajectories 
of the type a (Fig. 1). 

The function f ( t )  is shown in Fig. 2. It is seen from 
the drawing that when the phase lag k0A,, for  the ex- 
tremal trajectory becomes equal to 2m, the sound ab- 
sorption coefficient undergoes a jump whose magnitude 
is Wn=r/2n. The situation here i s  similar to the mag- 
netoacoustic oscillations in the normal metal. More- 
over, near the jumps, there a r e  rapid oscillations, 
which a r e  connected with electron-hole resonances be- 
tween the points 1 and 2 (Fig. 1). Similar phenomena in 
the normal metal in an oblique magnetic field were ob- 
served by Kaner and ~ a 1 ' k o . c ~ ~ ~ '  

A comparison of the amplitudes of the absorption-co- 
efficient oscillations connected with the surface elec- 
trons and the volume electrons shows that a t  
2r"kRosina! 21, 

Therefore, in the experiment, a basic contribution to 
the oscillations as a function of the parameters can be 
made by both the volume and the surface electrons, but 
the contribution of the surface electrons is small in the 
ratio T/T. Upon decrease in the external magnetic 
field, the thickness of the normal layers decreases, 
and a t  some field the layer thickness becomes equal to 
the diameter of the Larmor orbit. At this point, the 
character of the motion of the electron changes: elec- 
trons with p ,  = 0, which make a small contribution t to 
the sound absorption, begin to be reflected from both 
N-S boundaries (examples of such trajectories a r e  
shown in Fig. 3). 

We now discuss what happens when a << 2R,. Because 
of the Andreev reflection from the boundaries of the 
normal layer, the electrons drift parallel to the bound- 

FIG. 3. Trajectory of the 
X 

motion in the normal layer 
at a < 2R0 : a) "standing" 
trajectory (A = 0), b) "trav- 
eling" trajectory. 

L 

S 4' 
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ary. In spite of the complicated character of the mo- 
tion, it is  periodic with a period T. However, if the 
wave is incident a t  the angle a, then the phase lag in , 
one period will be k * ~ - k ( a R , ) ~ s i n a .  Therefore, a t  
angles a << ( l /k l ) (~, /a)"~,  just as in the case of surface 
electrons, the sound absorption is the same a s  in nor- 
mal incidence, and is described by the expressions ob- 
tained by ~ n d r e e v . ~ "  At large angles, only the reso- 
nance trajectories for which k g  A = 2 m  a r e  again impor- 
tant. 

We first  consider the behavior of l? for angles such 
that 

Here the basic contribution to the absorption is made by 
electrons which over a single period a r e  not displaced 
perpendicular to the magnetic field (type a in Fig. 3). 
Here k o  A,= 4.26k(aR0)lr2 sina.  In this case, 

rl=r(o)A + ~ r ,  
d k(nR.)" sin a 

where C is a number of the order of unity, and A r  is  a 
small correction, which oscillates as a function of the 
ratio R,/a with a period of unity. The ratio ~ r / r ,  - (U/R, ) '~~  << 1. 

At large sound-wave incidence angles such that 
k .  A,> 277, ri changes in a complicated way, remain- 
ing all the time of the order of (a/d)r(O), and when the 
angles become so large that k A,, >> 2a, the absorp- 
tion coefficient ceases to depend on the angle of inci- 
dence: r, = (a/d)r(O). This is  a consequence of the in- 
finite electron motion due to reflection from the bound- 
ar ies  of the normal layer. 

Thus, even beginning with angles a - l / k ( a ~ , ) ' / ~ < <  1, 
the quantity r, becomes of the order of the absorption 
coefficient in the normal metal without a magnetic 
field, while the oscillations turn out to be small of the 
order of ( a / ~ , ) ' ~ ~ < <  1. However, even a t  a <<R,, there 
exist volume electrons with p,# 0, whose trajectories 
do not touch the bouhdaries. These electrons make a 
contribution 

to the absorption, and 

while the total absorption coefficient is the sum of a l l  
the contributions: 

2. SOUND ABSORPTION COEFFICIENT 

For the calculation of I' we use the kinetic equation. 
In the case of longitudinal sound, the interaction of the 
electrons with the field of the sound wave is described 
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by the deformation potential tensor Xi&). The equation 
has the form 

3s atp atp rp -+v-+-+-=g, 
d t  ar at, T 

where 

is the deformation tensor in the sound 
wave, the bar indicates averaging over the directions of 
the momentum, t ,  is the time on the trajectory, and JI 
is  a nonequilibrium contribution to the electron distri- 
bution function, determined by the condition 

a10 
i - io-  9. 

As usual, the term 8$/8t can be neglected in compari- 
son with v8$/8r in terms of the smallness of s/v, (s is 
the sound velocity). 

The boundary condition corresponding to the Andreev . 
reflection a t  the N-S interfacec5' is 

J. in. E) +IP (-n3 - 5 )  Ion the boundary =0, (9) 

where n=p/ lp l ,  5 = c  - p,  v, i s  the Fermi velocity. 
This boundary condition guarantees the equality of the 
flux of electrons reaching a given point on the interface 
a t  a fixed angle to the flux of holes leaving it a t  the 
same angle. 

The solution of Eq. (8) with the boundary condition (9) 
is  of the form 

where the plus sign is chosen if the particle is  located 
on the electron part of the trajectory a t  the time t ,  (the 
solid lines in Figs. 1 and 3), and the minus sign if it is  
on the hole part  (dashed lines). 

Using the periodicity of the functiong(t,) and the 
smallness of y =T/r<< 1, we can transform (10) to the 
form 

As ~ s u a l , ~ ' "  the condition kR >> 1 allows us to use the 
method of stationary phase for the calculation of the in- 
tegral in (1 11, which leads to the following final expres- 
sion for $: 

where t, a r e  the points of stationary phase, 
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In the case of a spherical Fermi surface, which we sever%l limiting cases. We note that if we a r e  interest- 
ehall consider, we have ed in the oscillating contribution to r, due to the com- 

ponent sin@ in the square brackets, then, for (17) to be 
valid we must have the stronger condition a >>y.  

There exist two points of stationary phase, a t  which A. Larp magnetic fields (a > 2Ro ) 

so  that in this case, 

where Q. = k 0 B  if the instants of time t, and t, pertain 
both to the electron o r  both to the hole parts of the tra- 
jectory, and @=k*B+r /2 ,  if one of the instants pertaiHs 
to the electron and the other to the hole part of the tra- 
jectory (the vector 3 is shown in Figs. 1 and 3). 

The surface electrons a r e  those electrons whose or- 
bit centers lie a t  a distance x, that is less than their 
radius R from the boundary. It is clear that a i l  the 
quantities entering into (17) depend on x,, and not ex- 
plicitly on the coordinate x and the time on the trajec- 
tory. We therefore introduce new variables (Fig. 1) 

zp=Ro sin 8 cos cp, R-Ro sin 0, 

t-ze-Ro sin 0 cos Pt,. 

The quantity k W A  in this case becomes simply 

AS i s  well known,[61 kA-4kR, sin a sin cp sin 8, 

and k *  B =2kR0 sinO(cp - a) .  As a result, we get for r,, 
after integration over t,, with account of the two bound- 

where I = pw%is/2 is the energy flux in the sound wave aries, 

(s is the sound velocity). The absorption coefficient is +- t I 

measured experimentally, averaged over the period of r, -- " r(0)  j d c o s 0  I dcosp 
d 

the structure; therefore, after integration over E and r--- -1 -I 

transformation to a new variable R = (p: -p2,)112/mCb, x (.i-cos[2kR,sin8 cos (cp-a)])6(4kRo sin a sincpsin 0-bn) .  (19) 
we obtain 

4r(0) ' & ' dt " dR I+sin 0 r=- Carrying out the integration over cp and transforming IeI (Ro'-RI)*h ~ ~ * k k ~ - ~  1. 
0 0 0  (I4) the resultant integral, we get the expression 

4Ro 
r11m1 I du 

where r(0)=m2A2u/4npsZii3 is the absorption coefficient rS==-r(0) x a t a n j  
nd "-0 ." [ (I-u2) (u2-anz) 

in the normal metal in the absence of a magnetic field. 

{ ( 
(20) 

We can immediately separate the contribution of the x i - ( - i ) n ~ ~ s  nnctga- 

volume electrons from Eq. (14). For them 

kA-0, Q-a-2kR-2kRo sin 8, where a, =m/2kRo sina.  [x] is the integer part of x .  

Integration of the first  component in (20) gives therefore, 

The limits of integration a r e  0 s  O s r/2 in the case a where K(x) is a complete elliptic integral of the first 
> m 0 ,  and 0 G 0 arcsin (a/2Ro) in the case a <2Ro. kind. The second integral is easily transformed to the 

form 
Carrying out the integration, we arrive at  the expres- 

sion (1) in the case a >2Ro and in the case a << 2Ro we I-u 2 -v, 
have ( i++rz)  a ., cos(?(i-a,,')",t). (22) 

(''I At a << 1, but such that a l l  the inequalities given above 
a re  satisfied, the expression (22) is  simplified to the 

As has already been noted above, we assume every- form 
where that ka >> 1. In the case of oblique incidence, 
when k* A,, >> y, the expression (14) can be trans- Z - ( - I ) * ~ J ~  2 ( ~ ( ~ - a ~ z n ~ ) ' ~ ) ;  (23) 
formed to the form 

4r(03 +- ' br dti dR [I+sincD]6(kA-bn). (17) 
here J,(x) is the Bessel function. r-- E la l y  I (Roz-R*) 

- a o We note that the oscillations described by this com- 
ponent a r e  most important just in the region of small 

This latter expression will be considered by us below in angles, since their amplitude falls off a t  large angles. 
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Substituting (21) and (23) in (20), we finally obtain 

a- n c t g a  4Ro 
- ( - I ) - -  2 Jo a1 ( - ( i - a ~ n a ) ' h ) ] - - r ( ~ ) j ( 4 k ~ a s i n a ) .  nd 

A plot off as a function of 4kR,sina =2r/a is shown 
in Fig. 2. At large angles, when %kn'lR, sina >> 1, the 
contribution of the surface electrons turns out to be 
equal to (4Ro/rd)r(0) and is small in comparison with 
the contribution of the volume electrons in terms of the 
parameter T/T. At angles a > (n /2k~ , ) ' /~ ,  ordinary ge- 
ometric resonance sets in on the surface trajectories, 
i.e., when both resonance points a r e  located on a single 
electron o r  hole trajectory. Just  a s  for the monotonic 
part, a t  large a this oscillating contribution I?, is  small 
in the parameter T/T in comparison with the oscillating 
contribution of the volume electrons. However, in the 
narrow region of magnetic fields, when (a - 2R0)/ 
a << T/T, the contribution r, turns out to be the principal 
one, since the volume electrons disappear: 

4R sin(2kR -n/4)  p, = L r ( o ) - . L -  (1-cos a ) .  
d (nkR,) " 

B. Weak magnetic fields (a << 2Ro ) 

If a << 2R0, then the electron is multiply reflected 
from both boundaries. For the calculation of the sound 
absorption coefficient in the expression (17) it is con- 
venient to transform to the new variables r, t ,  such that 

z=a [ zo - r  cos Q t , ] ,  R=ar, r,=Ro/a. (25) 

As a result, with account of the transformation of the 
regions of integration and the periodicity of [ $ I  with 
period a a s  a function of R ,  we obtain 

Calculation shows (see the ~ppendix)  that a << 2R0, 
i.e., a t  r>> 1, 

liA-.qr" [F(r-2,) +F(r+zo)  1, (27) 

where 

4 ' s i n n z c h t - w s n z s h t  - 
~ ( . z ) = -  I t  dt. 

nK , sinx nz+sha t 
(28) 

[ ~ h e f u n c t i o n ~ ( z )  is shown in Fig. 41, q =ka sina. At 
ar1fZ>> 1, 

kB-qr"F (r-z , )  -kaar">i, (29a) 

and at ar112<< 1, 

l i8-kawi.  (29b) 

Since F(z + 1) = - F(z), one of the roots of the equation 
k A = 0 is x, =i. Then, integrating over x,, we obtain 

Here x,(r) is the root of the equation 

The prime on the sum indicates that the term with x, =i 
a t  n = 0 is omitted. If r *  < r  - [Y] < i ,  where Y* is deter- 
mined from the relation F(r*) = 0, then there is still 
another root in the equation (31) with n = 0 in addition to 
x, =i. Equation (31) a t  n # 0 at  different r can have one, 
several, o r  no solutions. In particular, a t  

~ - - 4 . 2 6 k a r :  sin aC2n (32) 

Eq. (31) has no roots. We first  consider just this case. 

Equation (32) along with the condition ka>> 1 shows 
that ar1I2<< 1. Here k*B-ka>>1  and represents a 
piecewise-linear function of r with period 2. There- 
fore, the oscillations connected with the term propor- 
tional to sin* will be small  in comparison with the 
monotonic part in the parameter l/&. This compo- 
nent does not generally make a contribution to the 
monotonic part. 

Thus, 

One can easily calculate the monotonic part  by using 
the fact that [ ~ ' ( r )  1 and I~ ' [ r+x,( r ) ]  - F t [ r  -x,(Y)] a r e  
periodic functions of r with period 1. We have 

Finally, we obtain 

where 

FIG. 4. P lot  of the functionF (2). 
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We emphasize that this result is true a t  

T / ~ a k ( a R , ) ' "  sin u<2n. 

So far a s  the oscillating part  r, is concerned, it is 
small in comparison with the monotonic in terms of the 
parameter ( a / ~ , ) ' ~ ~ .  This part  is periodic in R ,  with 
period a and undergoes jumps a t  the points R, = a(r* +n). 
However, it has not been possible to calculate the ex- 
plicit form of the oscillating part. 

In the opposite limiting case, when k A,>> 2r, we 
can substitute integration for summation in Eq. (26): 

Thus, in this case the presence of the magnetic field is 
not reflected in the absorption coefficient, which is 
equal to the absorption coefficient in the normal metal 
in the absence of the magnetic field. 

In the intermediate case k A, 3 2n, 

and besides the monotonic part the sound absorption co- 
efficient contains numerous oscillations with small am- 
plitudes of the order of (a/R0)lr2 and jumps when the 
magnetic field satisfies the condition 

We thus see that a t  large angles of incidence of the 
sound wave, the periodicity of the motion becomes un- 
important and the specifics of the Andreev reflection, 
with accuracy to small oscillations, do not appear. 

APPENDI-X 

For the calculation of the quantity k *  A we note that 
because of the peculiar character of the Andreev reflec- 
tion the vector A can be represented a s  (Fig. 5) 

FIG. 5.  Illustration for calculation of the vector A at a <<2Ro. 
The displacement between the nth and the (n +l)st  reflection 
from the interface is (-1)" 1,; p - (a k)i/2 << 1 is the angle in 
which lie the important 1,; zo is the distance from the N-S 
interface to the center of curvature of the orbit near the point 
1. 

FIG. 6.  Contour of inte- 
gration C in the integral of 
(A .3), consisting of the 
two straight lines L+ and 
L,. 

It is evident that, because of the periodicity of the mo- 
tion, A, = 0 and only the y -component differs from zero. 
Then A, can be represented a s  the sum of chords join- 
ing the ends of the vectors 1,: 

x, is shown in Fig. 5. 

We can transform the sum on the definition ( ~ 2 )  into 
the contour integral, shown in Fig. 6: 

When r >> 1, Eq. (A.3) can be put in the form (27) by a 
change of variables. We note that only 1, lying in the 
narrow angular range f l - f ' I2<< 1 make a contribution 
to A, (Fig. 5). For the calculation of B, we sum 1, from 
the point 1 to the point 2. When a >> fl-r"12, both these 
points lie outside the important region of summation, 
and therefore B can be represented a s  the sum of 1, 
over the upper semicircle, which corresponds to inte- 
gration over the straight line L (on Fig. 6). This leads 
to the following expression for By: 

Under these conditions ( a  >> r'lI2 )B,-a and therefore 
k * B  i s  given by the expression (29). 

The function F(z) has the property (Fig. 4) 

where E(x) is the Riemann zeta function. 

On the cut 0 c z < 1, F (z) is a monotonically increas- 
ing function. 
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Investigation of the nonequilibrium mixed state of 
superconducting niobium with pinning centers 

I. V. Podgornova and V. A. Tulin 
Institute of Solid State Physics, USSR Academy of Sciences 
(Submitted 1 June 1977) 
Zh. ELsp. Teor. Fiz. 74, 592-599 (February 1978) 

The interaction of magnetic flux vortices that enter the sample upon increase in the magnetic field with 
the frozen-in magnetic flux is studied by using the anisotropy of the impedance of type-I1 
superconductors. If the pinning is effective, the magnetic flux of the sample in the intermediate state 
remains parallel to the frozen-in flux. The manner in which the total magnetic flux is confined by the 
pinned vortices when the magnetic field is rotated relative to an immobile sample is investigated. The 
experimental results can be interpreted in terms of plastic deformation of the vortex lattice. 

As is  well known, the surface impedance of type-I1 
superconductors depends on the inclination of the 
vortex lattice relative to the surface of the   ample.^'] 
We have used this property for the study of the behavior 
of the vortex lattice in superconducting niobium con- 
taining pinning centers in various concentrations. 
Vinikov et ~ 1 . ~ ~ '  have shown that the critical current 
changes strongly in superconducting niobium subjected 
to chemical polishing, different cooling regimes, and 
annealing in a high vacuum. This change was attributed 
to the formation of niobium hydride. Thus in niobium 
it is easy in practice to change the concentration of 
pinning centers in one and the same sample.c21 

In type-I1 superconductors in the mixed (intermedi- 
ate) state containing pinning centers, a large o r  small  
part of the vortices a r e  pinned, depending on the con- 
centration of the centers. These pinned vortices remain 
a s  a frozen flux upon decrease in the magnetic field to 
zero. In the present work, we have studied the inter- 
action between vortices of the magnetic flux entering 
into the sample upon increase in the magnetic field and 
frozen vortices whose orientation does not coincide with 
the direction of the field. We also studied how the pin- 
ned vortices contain the entire magnetic flux in the 
rotation of a magnetic field of constant magnitude. 

PREPARATION OF THE SAMPLES 

The niobium samples were cut from a single-crystal 
ingot with resistance ratio p,o,K/p4~2,= 250 and were 
subjected to mechanical polishmg. The case-hardened 
surface layer was then removed by chemical polishing 
in a mixture of nitric and fluoric acids. The chemical 
polishing in the present work is important since a signi- 
ficant amount (-1 at.%) of hydrogen is dissolved in the 
niobium because of This dissolved hydrogen was 
used to produce the pinning centers in the niobium. At 
a temperature of T = 245 K , bonding of the hydrogen into 
niobium hydride occurred. Below this temperature, 

inclusions of the hydride phase a r e  observed in the 
niobium matrix; these reached s izes  of to lo-' 
cmCZ1 depending on the cooling rate. The change in 
volume of the hydride phase in comparison with the 
matrix amounted to -10% and led to plastic deformation 
of the niobium near the place of formation, a fact also 
reflected in the present results. Since the niobium 
hydride is not a superconductor in the investigated 
temperature range, i ts  segregations in the matrix con- 
stitute the pinning centers. The concentration of the 
dissolved hydrogen and the corresponding pinning 
centers varied with the temperature of the chemical 
polishing. We have carried out chemical polishing a t  
room temperature (t = 23 "C) and at  a temperature of 
0 "C. After completion of the cycle of measurements, 
the samples were subjected to annealing in a vacuum 
of lo-' T o r r  a t  a temperature of 800°C. This annealing 
had practically no effect on the dislocation structure of 
the niobium, but led to complete removal of the hydro- 
gen f rom the sample. The dislocation clusters remain- 
ing at  the location of hydride formation a r e  also pinning 
centers, but they a r e  less  effective in pinning the mag- 
netic flux vortices. One of the samples was annealed 
immediately after  chemical polishing, i.e., it  did not 
contain "controlled" pinning centers (at T = 4.2 K, 
neither niobium hydride nor clusters of dislocations 
produced by the previously existing formations were 
produced). For  an explanation of the effect of the resi- 
dual impurities on the studied effect, a cycle of mea- 
surements was performed on a sample of niobium with a 
resistance ratio p,o,K/p4.2K= 1500. The results showed 
the insensitivity of the studied effects to the residual 
resistance of our samples. The data on the investigated 
samples a r e  given in the table. 

METHOD OF MEASUREMENT 

We studied the active part  of the surface impedance of 
superconducting niobium in the intermediate state. 
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