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Analytic expressions are obtained for the integral numbor of x-ray quanta emitted by a charged particle 
as it pag~es through a perfect or a mosaic crystal. The question of the disthgukhlng feat- of the 
radiation in mosaic crystals is considered for the first time. It is shown that the integral cbmcterhtics of 
the radiation in pufGct and in mosaic crystals differ little. 

PACS numbers: 61.80. - x 

1. 1NTRODUCTION fact, for the transverse component we have 

A s  shown by Garibyan et al., C'*21 when a charged q'"'(k, O )  = . - i ~  - S(a-kv) - lk .  I-pz+ez X (1) ultrarelativistic particle passes through a perfect crys- 
tal a new channel for radiation from the particle is 
opened, besides the transition radiation (see, e.g., [=I).  

Here D= 8raev/w, and the remaining symbols are 

This channel is due to the periodicity of the crystal standard (see, e.g., ['I). In the case of an ultrarela- 
tivistic particle 1 - f12 = ( ~ C ~ / E ) ~  << 1 the entire distribu- structure. A" similar conclusion was reached by 

Baryshevskii and ~ e r a n c h u k . ~ ~ " ~  " 
tion of ~ p ' ( k ,  w) is concentrated in the narrow angle 
interval 8-(1- $)'I2. 

A fast charged particle carries with it an electro- 
If the particle lands in an amorphous medium, the magnetic field which is very close to the free radiation 

polarization of the medium alters the particle field. field. The particle field can be diffracted in the crystal 
at Bragg angles. This produces radiation in the fre- We shall be interested henceforth in a field E,,(k, w) 

quency band corresponding to the x-ray frequencies, at x-ray frequencies w. In this case the polarization 

and this radiation, as shown in C'*21, is concentrated in xo(w) of the medium is weak, i.e., I x0(w) I << 1, and it 

narrow angle and frequency interval and has an appre- can be readily shown that 

ciable intensity that can be readily observed in eGeri- 8 x 
ment. The extent to which the degree of perfection of Ezd(k,  o) =-iD 6 (a -kv) -- 

l-pz+B'-x. X (2) 
the crystal affects this radiation, however, has not 
been determined to this day. The present study was i.e., a slight redistribution of the Fourier components 
undertaken precisely to investigate the specific features over the directions takes place. 
of this radiation process in mosaic c rysGs .  In the We consider now the field of a charge moving in a 
course of the investigation of this question we succeed- 

The presence of translational symmetry in the 
ed also in obtaining simple analytic expressions for the crystal obviously leads to a stronger realignment of the 
integral intensity of this radiation in the case of a per- particle field than in an amorphous medium. In a 
fect crystal. This question is the subject of all of Sec. crystal, the susceptibility is a periodic function of the 
3. Radiation from mosaic crystals is considered in coordinates, i.e., x "(r)= x "(r+ a), where a is the 
Sec. 4. Our results show that the integral intensity of translation vector, which we represent in the form of 
the radiation is not very sensitive to the degree of an expansion in the reciprocal-lattice vectors K,: 
perfection of the crystal. 

X" (1, a )  -x xi' (K, o)erp(iK,r). 

2. FIELD OF CHARGED ULTRARELATIVISTIC 
PARTICLE IN A CRYSTAL At x-ray frequencies the interaction of the electromag- 

netic field with the crystal atoms is predominantly of 
We consider an ultrarelativistic particle having an dipole type, so that the susceptibility tensor takes the 

energy E >> mc2, where m is the particle rest mass, form 
and a charge e. The electromagnetic field of such a xu(&, a )  =SL'x(IL, o ) .  
particle in vacuum is given by 

ev-ke' An explicit expression for the Fourier components of 
E,&, a) -8inae - 8 (a-kv) .  

k'c2-ox the susceptibility x(K,, w) can be found, for example, 
in A charged particle produces in a crystal a field 

A s  seen from this expression, the distribution of the with Fourier components of k not only in the direction 
Fourier component of the electromagnetic-field vector k, close to the direction of its motion, but also in di- 
E,(k, w) has a sharp peak in the k direction, which is rections k, that differ from k,, by the reciprocal-lattice 
close to the direction of the particle velocity V, and vectors K,. In realistic situations, the only nonzero 
furthermore the field is practically transverse. In Fourier components, besides E,,&,, w), are those for 
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which Bragg-scattering direction (see C1*a*4"1 1 . 

We consider for simplicity the case when the condi- 
tion (3), at specified w and k, is satisfied only for one 
vector K,. Reccgnizing that in our case I X ( ~ , ,  w) I<< 1, 
and also that the particle field remains practically 
transverse in the crystal, i.e., k E,(k, w) is equal to 
zero with high accuracy, we can write for the trans- 
verse field components the following system of equa- 
tions: 

v (z-I-XO) E cr(ko, a )  -xolEcr ( k t ,  a )  =a - 6 ( a - k v ) ,  

where 

This is a system of four equations, since each field 
E,,($) and Em&,) is specified by two amplitudes cor- 
responding to different polarization. By choosing the 
n and 6 polarization vectors (see C1*21 and C441 we can 
separate this system into two subsystems of two equa- 
tions each. After simple transformations we can write 
the solution in the form 

where 

= ( 1. 
for o polarization. 

cos 2 0 ~ .  for n polarization. 

The function 6(w - k g  v) in the right-hand side of (4) 
relates the longitudinal projection of the vector k to the 
frequency. Taking this relation into account, we define 
the Fourier components of the field only in terms of the 
frequency w and the transverse component of x. We 
have therefore left out of (7) the factor 6(w - k g  v). 
Formulas (6)-(8) solve completely the problem of the 
field of an ultrarelativistic particle in a regular crystal. 

3. RADIATION I N  A CRYSTAL 

It is easily seen that the field, defined by formulas 
(1) and (7), of a particle in vacuum and in a crystal, i s  
not continuous on the interface. This means that on 
going through the boundary the particle radiates a free 
electromagnetic field, which will henceforth be desig- 
nated E,,. Whereas passage through the boundary 
between the vacuum and an amorphous medium produces 
a radiation field in a direction close to the direction of 
motion of the charge, in the case of a vacuum-crystal 
interface there is produced additional radiation in the 

We consider for the sake of argument the case when 
the Bragg-reflected wave propagates into the interior of 
the crystal. This scattering geometry is known as the 
Laue case. From the condition that the total electro- 
magnetic field be continuous we find that passage 
through the first boundary produces a radiation field 
both in the ko and in the k, direction, with respective 
amplitudes 

Relations (9) hold for each of the polarizations r and 6 
separately. We shall consider henceforth only one of 
the polarizations and omit the superscript s.  Summa- 
tion of the end result over the polarizations is trivial. 
The radiation fields Erd1(k0) and Era1(k1) will propagate 
into the interior of the crystal and will experience 
multiple diffraction scattering and absorption. By virtue 
of these processes, the radiation field immediately 
ahead of the second boundary will be determined by the 
following formulas: 

The coefficients Aim(l) have here the following meaning: 
Aim(l) determines the amplitude of the field in the i 
direction on the exit surface if a field of unit amplitude 
is incident on the crystal in the m direction. The de- 
termination of these coefficients i s  the task of the theory 
of dynamic scattering of x rays, and in the case of the 
two-wave approximation their calculation entails no 
special difficulty. When the particle emerges from the 
crystal, an additional radiation i s  produced: 

The resultant radiation field past the crystal is obvi- 
ously the sum of (10) and (11), i.e., 

Era* ( 0 )  = (Ecr (0)-E" ( 0 ) )  (I-AI.OO(l))-Ecr !l)A'O1(l), 

Gad ( I )  = (E,  (0)-Ecr ( 0 )  ) ArlO(l) f Ecr ( 1 )  ( I - ~ ~ " ( 1 )  ). 
(12) 

Formulas (12) solve the problem of radiation by a 
particle passing through a crystal, provided that the 
coefficients A',m(l) are known. In a number of cases, 
however, which a re  of greatest interest from the ex- 
perimental viewpoint, the radiation field can be ob- 
tained also without knowing the actual form of these 
coefficients. In fact, let us consider a thick crystal, 
one that absorbs all the incident radiation. In the case 
of x-ray quanta, absorption takes place in practice in 
a thickness on the order of several dozen microns. The 
coefficients ALm(l), in accord with their definition, 
should then vanish and the radiation fields are cor- 
respondingly determined by formulas (11). 

Let us analyze now the structure of the radiation 
field for this case in greater detail. We are interested 
only in the field in the k, direction, since it i s  easiest 
to investigate experimentally. 

In accordance with (7) and (8) we have for the inten- 
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sity of the radiation field past the crystal, with allow- 
ance for ( l l ) ,  

where 

Here = g - (1 -pa + 02), and xLg and XS are the real 
and imaginary parts of the polarizability of the crystal. 
In the case of a monatomic crystal (see C7l), 

X: = pc/w, and x;: can be represented with high ac- 
curacy in the form 

Here ed-W(K,)] is the Debye-Waller factor, and the 
remaining symbols are standard. 

We consider now in greater detail the quantity a in 
(13). In accord with its definition 

We now define the frequency wo in such a way that 
a - a:'= 0 at x = 0. It is easily seen that 

I J ) ~ = I C , C / ~  siu on, (20) 

where n/2+ 0, is the angle between the particle-motion 
direction and the vector K,. In the vicinity of w= wo 
and x= 0 we have for a the expansion 

Ao . 
a-a?' -4 sin 0. - - sm e.+O eos O cos On . ( a. 1 (21) 

(@ = 3 (x, [k,, X k,] )). We note now that expression (13), 
as a function of a, has an unusually sharp peak whose 
width is of the order of #, and we can replace the ex- 
pression la -~ jp) - ip . I -~  by 

We can thus represent (13) in the form 

This formula describes completely the distribution of 
the radiation over the angles and frequencies near the 
direction corresponding to diffraction scattering along 
the vector K,. 

For the integral number of quanta emitted by one 
particle on passing through the crystal, we readily ob- 

t ain 

e2 xorl N ( k , ) - - - -  
1 

hc 8 sin' On xa" a 

(23) 

where 

The quantity N(k,) was determined earlierc2] by numer- 
ical integration. The results of calculations by formula 
(23) and the results of numerical integration agree 
with good accuracy. 

It must be noted first that N(k,) tends to infinity if the 
absorption of the medium is decreased (the coefficient 
x:). This means that radiation is generated in the 
entire volume of the crystal, and not at the boundary, 
as  might appear in the course of the derivation of this 
formula. We have thus in this case an analog of 
Cerenkov radiation. In an amorphous medium, in the 
frequency region where the polarizability is x,(w) < 0, 
there is no Cerenkov radiation, since the conditions of 
simultaneous satisfaction of the energy and momentum 
conservation law, which are needed for the radiation 
process, are not satisfied. In a crystal, as  is well 
known, the momentum should be conserved accurate to 
the reciprocal-lattice vector, and this uncovers a pos- 
sibility of volume radiation in the frequency region with 
xo(w) < 0. 

It  follows also from (23) that the dependence of N(k,) 
on the energy of the incident particle is weak. An 
analogous procedure is used to solve the problem of 
radiation by a charged particle in a crystal in the case 
when the diffracted wave travels not into but out of the 
crystal (the so-called case of Bragg diffraction). We 
then have for the field of the radiation emerging from 
the crystal 

For the radiation field in the direction of motion of the 
charged particle, on the other hand, we have 

The coefficients A km(l) have a physical meaning similar 
to that in Laue-geometry scattering, but different 
values. Aim(l) determines the amplitude of the field in 
the "is' direction on the exit surface under the condition 
when a field of unit amplitude is  incident in the direc- 
tion "m" on the entrance surface. Here the exit sur- 
face for  the field in the direction 1 is the surface I, and 
the entrance surface is 11, with the reverse for the 
direction 0. For a thick crystal, the coefficients 
A:'(-) vanish but the coefficients A:(-) and A:(-) are  
no longer equal to zero. The radiation fields are there- 
fore determined by the formulas 
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Just a s  in the Laue case, let us analyze the radiation 
field in the k, direction. For  AiO(m), neglecting the 
small imaginary parts xG, we can obtain 

Here 
2e-~o=1/2[x-i(4b~~XoI'x1~'-ztj'~l 

- if 12 1 c 2  ( ~ c . ~ x ~ , ' x , ~ ' ) ' " ,  (294 
2r-Xo=i/r[z+z)x~ -' ( X ~ - ~ ~ C . ' X ~ , ' X , ~ ' )  '"I, 

if 121 >2 ( b c ~ ~ ~ ~ x , ~ ) ' " ;  (29b) 
z=ba-$(l+b), b= 1 ro/y, 1 ,  r,=cos(n, k,), 

n is a unit vector normal to the crystal surface. Using 
formulas (6)-(8), we obtain f o r  the field of the charge 
in the crystal in the k,, direction 

E,(:' (O)=E;;,(O) + AE;",(o), (30) 

where 

Substituting (30) and (28) in Eq. (27) for the radiation 
field intensity in the direction 1, with allowance for the 
fact that here, too, we have a function lo! -a:) - 
with a sharp peak a s  a function of a, we get 

I, (0, O) = D = O ~  -- I I' 
+ 

(l-p2+0=-xo)2 
(32) 

x o 2  

~ l P ' s ' c . ~ , o l ~  
X q (Xa'-Gc.'~a~~~o) ------- 6 (a-a!" ), 

P. ( 0 )  

where q(x)=l  a t x 2 O  andq(x)=O a t x s 0 .  

The first term in (32) is that part of the transition 
radiation which is reflected in the direction 1. It i s  
easily seen that it is smaller than the second term by 
a factor X: and can be neglected. The interference 
term is proportional to a -a:', and owing to the pre- 
sence of 6(a -a:)) it makes a zero contribution after 
integration; it was therefore left out. We have thus for 
the intensity of the radiation field, with allowance for 
the two polarizations, 

D'02 nlP"'c.x,ol2 
I, (0, O) = TC 

x , P a  

~ C ~ ~ I X I O  )'q (% . (01 

(33) 
X I-- ( x*' 

- c . ' x ~ ~ Y . ~ ~ ) ~  (a-a. 1. 

For the integral number of quanta emitted by one par- 
ticle a s  it passes through the crystal we have 

where 

The exact expression for this integral is quite compli- 
cated. We present therefore approximate expressions 
for a number of cases. We assume f i rs t  that b s 1. 
Then, if z, >> x, and z,>> y, we have with logarithmic 
accuracy 

where 5, and 5, are  certain numerical constants of the 
order of unity. 

We consider now the case b >> 1. The lower limit in 
the integral (34) is no longer zero, but x,,,= b1/2c, I x,,, I 
- 2,. Assuming that x,,,>> z,, x,, y, we can put 
x,= 0, y, = 0, z,  = 0 in the integral of (34). As a result 
of these simplifications we get 

Thus, the formulas (34)- (37) obtained by us solve 
completely the problem of radiation from a thick crys- 
tal in the case of Bragg geometry. As seen from these 
formulas, the radiation does not differ greatly here 
from the case of Laue geometry. 

4. RADIATION FROM MOSAIC CRYSTALS 

Before we proceed to the case of a mosaic crystal 
consisting of small blocks of characteristic thickness 
do<< y , c  /w 1 xlo I, we consider the radiation from a thin 
crystal. To be specific, we shall deal with Laue 
geometry. The radiation field past the crystal is de- 
termined by formulas (12). We write out the coeffi- 
cients Aim(l) in explicit form for a crystal of arbitrary 
thickness: 

2e:*)-jio 2eiL'-io 
'4; (1) = 2E;1-2c~,1 exp(izy1 -2e;1-2Ew exp (it:"), (38) 

I 

Here z?)= E ~ ~ ) W Z / C ~ ,  and 

2e!::='/,{(l+b)ji0-ba*[ ((l+b)ji,-ba)'-4bA's']'!r}, (39) 

where A(,) is given by (14). 

Substituting (38) and (7) in formulas (12) we obtain 
after simple transformations 
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It is easily seen that for a thin crystal of thickness 
I<< yy,c/w (xlo I we can neglect the term AE in (39). In 
fact, assuming el<< 1 and z,<< 1 we get (accurate to 
terms cubic in I) 

It is also important here that the strong dependence of 
E,,(l) on a, due to the denominator A(=), disappears in 
the case of a thin crystal. 

Thus, the radiation from a thin crystal in the direc- 
tion 1 is determined entirely by the first term of (40), 
which is linear in I. We can then use for the coefficient 
AiO(I) the approximate expression 

We can similarly neglect also the second term of (41). 
The first  term then describes radiation that does not 
depend on the crystal structure and corresponds to the 
ordinary transition radiation. 

We proceed now to the mosaic crystal. The blocks 
located in the immediate vicinity of the surface produce 
radiation described by formulas (40)-(42). In the in- 
terior of the crystal, however, the situation changes 
somewhat. In fact, the average field of the particle is 
now described not by E,(O) but by E,,(O). Consequently, 
to determine the radiation from a block located far 
from the surface we must replace E,(O) in (40) and (41) 
by E,,(O). Then E,(O) vanishes (accurate to the 
second term), a physically obvious fact. Indeed, the 
transition radiation vanishes in the interior of the 
medium. The radiation field in direction 1 is deter- 
mined in accordance with (40), (44), and (30) by the ex- 
pression 

c.xlo i - exp(-iokal/2y,c) 
E,,, (1) = - iP("D8 - 

XQ ad 

Here a t  determine the deviation from the exact satis- 
faction of the Bragg condition on the i-th block, and 
this quantity changes from block to block. For the 
radiation-field intensity integrated over the frequencies 
Aw we readily get 

where 

no.Ic.xroll 
r = 

4y,c sin' 8. ' 

A s  seen from (46), the intensity of the radiation field 
in the direction 1 does not depend on the concrete 
orientation of the block (under the natural condition 
that the degree of mosaic disorientation in the crystal 
is not large) and is proportional to the block thickness. 

We can therefore introduce the radiation intensity per 
unit length, given by 

Thus, a charged particle traveling through a mosaic 
crystal generates continuously radiation in the direc- 
tion 1. This radiation will, on the one hand, be ab- 
sorbed in the crystal, and on the other hand it will be 
diffraction-scattered in the direction 0. A l l  these pro- 
cesses can be described by a system of equations that 
describe diffraction in thick crystals (see, e.g., 

Here y is the linear absorption coefficient [see (17)], 
6 is a parameter that characterizes the "mosaicity" of 
the crystal, i.e., the average disorientation of the 
blocks, expressed in units of the width of the Bragg 
"flat." In our case we assume that 6>> 1. 

We write dawn the solution of this system directly 
for the case of a thick crystal: 

Since usually y >> r ,  we get from (48) 

'71 nze'o 1, (0) = -- Jo(f,) = D T.01 c*'02 
2e sin' Os z(l--B2+~?-x,)' ' I' 

For the number of quanta per incident particle, inte- 
grated over all angles 0, we readily obtain 

Precisely the same results are  obtained in the case of 
radiation from a mosaic crystal and Bragg scattering 
geometry (although in the case of perfect crystals, as 
shown in Sec. 3, there is some quantitative difference). 

We compare now expression (49) with the expression 
(23) that describes radiation from a perfect crystal. 
It is easily seen that the radiations from perfect and 
mosaic crystals do not differ greatly. The only differ- 
ence is in the factor under the logarithm sign, and is 
small by virtue of this fact. For particles with not too 
high an energy, 1 - p2 > I x0 I ,  these expressions prac- 
tically coincide. For ultrarelativistic particles, 
1 - @2 << I XO 1, a slight difference is observed in the 
character of the radiation, but even in the case of 
electrons with energy on the order of 1 GeV this dif- 
ference can be neglected. Thus, our analysis shows 
that from the point of view of radiation intensity a 
perfect crystal offers, in fact, no advantages over a 
mosaic crystal. 

"~nfortunatel~, errors have crept into C4*61. A correction is  
contained in C63. 
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