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The problem of electrophotodisintegration of molecules and impurity centers in crystals, followed by 
emission and absorption of vibrational quanta (phonons), is solved analytically for the principal model of 
multiphonon transitions. Limiting cases are considered, limits are established for the applicability of the 
approximate expressions, and the singularities in the manifestation of the vibronic interaction in strong 
and weak fields are elucidated. Field-induced disintegration of impurity centers of doped luminors is used 
as an example in a comparison between theory and experiment. The dependence of the field intensity on 
the applied voltage and estimates of the electron-vibrational interaction are obtained for ZnS:(A), where 
A = Cu, Ag, and Pb. 
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1. INTRODUCTION 

Multiphonon processes that accompany optical transi- 
tions of localized electrons determine the main features 
of the absorption and luminescence spectra of impurity 
crystals. These processes have been diligently studied 
starting with the known papers of the Fifties, and abun- 
dant experimental and theoretical material has by now 
been accumulated.c1v21 similar problems a re  being 
solved also in connection with the electron-vibrational 
interaction in polyatomic molecules.c31 A characteris- 
tic feature of the mentioned processes is  that the elec- 

Single-phonon processes that accompany interband 
tunneling of an electron in an electric field were taken 
into account by ~ e l d ~ s h . [ ' ~ l  Multiphonon processes 
that occur in electro-optical disintegration of impurity 
levels were considered phonomenologically by Tima- 
SheVC17'181 and ~ u d z h m a u s k a s . ~ ' ~  lgl In these papers 
they used essentially for the optical-absorption line 
shape (for the distribution function of the vibrational 
transitions), a quas iclassical (Gaussian) approximation 
for which there is  a well-known applicability condition: 

tron matrix elements that enter in the calculated quan- 
(Here T is the system temperature, and n a r e  the 

tities a re  independent of energy. An energy dependence 
equilibrium occupation numbers of the normal oscilla- 

appears, obviously, in the case of electron detachment. tors. We use e = h  = m  = k  = 1 throughout.) 
The influence of the electron-vibrational interaction 

on photodisintegration (ionization) processes was inves- 
tigated inc4-']. It was established that energy exchange 
between the released electron and the vibrational de- 
grees of freedom alters noticeably the frequency depen- 
dences of the photoionization, which a re  used in prac- 
tice for spectroscopic purposes. 

The dynamic coupling with the vibrational subsystem 
is even more significant for processes that include a 
stage of slow tunneling of an electron-field-induced 
ionization of molecules and impurity centers, as well 
a s  in the case of low-frequency electro-absorption. If 
the electric field is  strong and the condition w I T / < <  1 is 
satisfied (w is the characteristic oscillation frequency 
of the nuclear subsystem and 7 is  the imaginary tunnel- 
ing time), the electron detachment is an instantaneous 
process relative to the vibrational degrees of freedom, 
and the electron-vibrational coupling is negligible.') 
Under these conditions the field-induced ionization and 
the electro-absorption of multicenter systems a re  de- 
scribed by the formulas previously derived inc8391. The 
situation is qualitatively different in weaker fields 
w 17 12 1, for which the presence of pronounced temper- 
ature dependences has been e s t a b l i ~ h e d . ~ ' * ~ ~ ~  This is  
evidence that in this case the outward tunneling of the 
electron is connected with the production and absorption 
of vibrational quanta (phonons). 

The condition (1) is  not satisfied in the published ex- 
periments.[ For optical transitions, which corre- 
spond to a larger heat release, the Gaussian approxi- 
mation of the true line shape can be used (in the funda- 
mental frequency region) also if T - w. For tunnel pro- 
cesses, however, which a r e  characterized by an expo- 
nential dependence of the decay rate on the energy of 
the released electrons, this approximation not only 
lacks amethodologicalfoundation, but is inapplicable in 
a number of cases from physical considerations. It is 
obvious that in a sufficiently weak field, and also in the 
case of low temperatures, the energy spectrum of the 
emitted electrons corresponds not to a normal but to a 
Poisson distribution of the vibrational transitions. In 
fact, in the former case penetration of the electron 
through the field barr ier  i s  possible only after absorp- 
tion of a sufficient number of vibrational quanta, a 
number that can exceed the average value typical of 
non-tunneling optical transitions. At n << 1, on the con- 
trary, the emission of the electron is inevitably ac- 
companied by excitation of vibrational degrees of free- 
dom, and here the situation is similar to the one known 
in quantum electrodynamics,c201 p. 449 [p. 350 of trans- 
lation]. The average energy of the released electrons 
depends in a complicated manner on all  the energy pa- 
rameters of the system: the electron binding energy A, 

the temperature T, the constant-electric field intensity 
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F, the frequency o of the vibrational quantum, and the 
electron-vibrational interaction constant a (the Stokes- 
loss parameter). The solution of the problem must thus 
not depend on some particular approximation of the dis- 
tribution function of the vibrational transitions. It is 
shown below that within the framework of the principal 
m ~ d e l ~ " ~ I  i t  becomes possible to obtain for the electro- 
optical disintegration probability a single analytic ex- 
pression (formula (13)) that admits of a lucid interpre- 
tation and makes it possible to trace transitions to all  
possible particular and limiting cases. These cases a re  
analyzed in Sec. 3. Theory and experiment a r e  com- 
pared in Sec. 4. 

2. FORMULATION OF PROBLEM. GENERAL 

SOLUTION 

We consider multiphonon processes that accompany 
the electrophotodisintegration of molecular systems and 
impurity centers of crystals. The experimentally ob- 
servable quantities, such a s  the coefficients of electro- 
absorption of light,c101 the intensity of the electrolumi- 
nescence and the current pulse a t  the in- 
stant when the field is  turned on.[15' a r e  proportional 
to the summary averaged electron-detachment rate - 
W ( T ,  F),  the calculation of which is the main task of 
the theory. 

In accord with the general formulation of the problem 
of multiphonon transitions we have 

Here c =a + ~ o , ( n ~  -n{), 

is the electronic factor of the disintegration rate, 
(n: In;) a r e  the overlap integrals (the Franck-Condon 
factors) of the wave functions of the normal oscillators, 
v , ( n f )  is the distribution function over the vibrational 
levels nj in the initial state, s is the index of the nor- 
mal coordinate, and the summation is over all  possible 
combinations of the vibrational quantum number. We 
consider below the principal model of multiphonon tran- 
~ i t i o n s . ~ "  s] Allowance for the frequency effect, an- 
harmonicity, degeneracy, and the more complicated 
dispersion law of the states of the electron continuum is 
of independent interest and requires a separate analy- 
sis. 

In formula (3), r is  the electron radius vector, f is 
the intensity of the light-wave field, S2 is the photon 
frequency, ti) is the wave function of the localized 
electron, and I%, E,)  i s  the wave function of a free 
electron in a uniform electric field (x is the transverse 
momentum and E, is the longitudinal energy). For the 
sake of argument we confine ourselves to the case of 
longitudinal polarization of the light (f 1 I F). Formula 
(2) contains, a s  a particular case, also the rate of dis- 
integration of the system by a constant field. To find 
this rate it suffices to put S2 = O  and replace intensity of 

the electromagnetic wave by intensity F of the constant 
field. We put 

i.e., we shall treat systems of the negative-ion type.c21 

The problem is solved in two stages-calculation of 
the function W(E, F )  and subsequent summation over the 
vibrational quantum numbers. The electron factor is  
not calculated analytically in the usual case. It can be 
shown that a t  E = O  (elastic tunneling) the calculation of 
the function W(0, F )  reduces to the construction of the 
imaginary part  of the field Green's function. This prob- 
lem was solved inc8'211. In another limiting case, when 
the elastic-decay channel is ineffective (c >> m), the 
electron factors can be found from the formulas of C91. 

At arbitrary E ,  the function W(E,F) can be calculated 
asymptotically, in a higher-order approximation in 
terms of the small parameter F(A - It must be 
emphasized that this is  the only case of interest for a l l  
the processes considered below. In fact, for the case 
of electro-absorption, the inequality F << (A - de- 
termines the necessary condition for observing the most 
interesting (exponential) temperature and field effects. 
For field ionization, the condition F << i s  implied 
already in the formulation of the problem. 

Integrating with respect to the transverse coordinates 
and taking into account the equation of motion in a uni- 
form field, we express the electronic matrix element in 
the form 

(i~ir~xEz)=Ar,(a/2n)"~l(a'+x', Ex, F ) ,  
J ( a z + x 2 ,  E,,  F )  

Here Ng= (2n3(2F)lr3)-' is the normalization factor of the 
function IxE,), and Go(-(03+%"; 0,Z) is  the one-di- 
mensional Green's function of the free motion. We use 
the integral representation of the Airy function (C221, p. 
736) and shift the integration contour to the upper half- 
plane to make it pass through the point i G ( x  = - 2E,/ 
(ZF)"~>> 1. We omit small terms (-Y3I4) and carry  out 
the rest  of the integration exactly. The result is 

Here y = 2</(2F)'I3, @(5) is  the e r r o r  integral, and 5 
= Q /(2F)11 '(- 2E,)11 4. 

When integrating with respect to x and E ,  in (3) we 
recognize that the exponential factor varies rapidly 
over distances FA-'", whereas the remaining part of 
the function (i Ifr 1 % ~ ~ )  varies slowly in the scale of A. 
We then get for W(E, F )  

2 
W ( & . F ) = w ( ~ , F ) e r p  ( - 3 F ( 2 ( 8 - r ) ) ' h ) .  (7) 

Here 
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At € = 0, formula (7) coincides exactly with the known 
expression for the rate of field-induced disintegration 
of an atomic negative ion,c211 and a t  E >> (QF)'/ it goes 
over into the corresponding expression ofcg'. 

The summation over the vibrational quantum num- 
bers, which is called for by the formulation of the prob- 
lem, will be carried out assuming the equilibrium con- 
ditions 

The electronic factor depends only on the difference 
between the vibrational quantum numbers, so  that the 
summation over {na is  carried out in the usual manner 
(see, e.g.,Cs]). We then obtain 

Here a, = $ wp& is the parameter of the electron-vibra- 
tional interaction in the sth mode (q, is the displace- 
ment of the equilibrium position along the sth normal 
coordinate), and I&) a r e  Bessel functions of imaginary 
argument. The function W(E,F) has no singularities a t  
zero; we expand it in powers of 0 - c and introduce a 
differential operator with respect to an auxiliary pa- 
rameter 8: 

We then have for W(T,F) 

The operator $(a/ap, $ T) is defined by the relation 

where w'" is the kth derivative of the function W(E, F)  
with respect to 0 - E. The most important function 
W(c, F )  is  the dependence of the exponential factor. The 
c_orresponding terms of the expansion of the operator 
W(a/a@, $ T) a r e  proportional to the parameter 
T(A - 0 ) 1 ' 2 / ~ ,  which i s  not small in general. On the 
other hand, if the operator a/ap is taken into account in 
the function w(a/~P,  F) ,  additional small  terms -T/A 
appear. We therefore have, accurate to small terms 
proportional to the asymptotic parameter 

We now interchange the order of the operations in (10) 
and use the known expression for the generator of the 

Bessel function. As a result we get 

(13) 
As a,-0, and W(T, F) - w ( ~ , F ) ,  the condition 

determines in this manner the fields for which the elec- 
tron-vibrational coupling is insignificant. An estimate 
of the intensity Fo yields Fo-8  x 106V/cm(w =0.1 eV, Af 
=5 e ~ ) ,  for the case of electron detachment from a 
molecule and Fo - 106V/cm for an impurity center (w 
= 0.04 eV, Af = 0.5 e ~ ) .  

3. ANALYSIS OF PARTICULAR CASES 

Formula (13) is  exact and provides in conjunction with 
(7) the solution of our problem in general form. Its 
practical applications a r e  determined by the methods 
used to realize the differential operator (121, and these 
depend on the ratio of the characteristic energy param- 
eters of the system and on the concrete form of the fre- 
quency dispersion function, o r  more accurately of the 
functions 

We consider several examples, assuming S-2 = 0. 

Let the electron-vibrational coupling be weak. Then, 
taking single-quantum absorption and emission into ac- 
count, we obtain 

I P ( T , F ) = ~ ( Q , F ) ~ ~ ~ [ -  ~ a . ( ~ n , + l ) ]  

The f i rs t  term determines the contribution of the elastic 
(relative to the vibrational subsystem) disintegration 
channel, while the second and third correspond to in- 
elastic tunneling accompanied by production o r  absorp- 
tion of one vibrational quantum. As expected, apart 
from the pre-exponential factor, the probability of 
field-induced disintegration of a localized state agrees 
with the known expression for single-phonon interband 
tunnel transitions.c161 

Formula (13) allows us to write down any term of the 
expansion of W(T, F) in terms of the electron-vibration- 
a1 coupling, but in the general case the corresponding 
expressions a r e  quite cumbersome. We neglect for 
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simplicity the frequency dispersion, i.e., we consider a 
diatomic molecule o r  an "Einstein" crystal. We expand 
exp[a cosh(j3o)] in a series and perform al l  the opera- 
tions called for by the operator 6'(8/8~, $ TI. We then 
obtain - k-. . (n+i)  'nb-4 
W(T.F) -ex*[ -a (~n+i ) ]  x C a * - -  

k! ( s -k )  ! w ( Q + o  (s-Zk), F) .  

The obtained series has a perfectly lucid physical . 
meaning andl corresponds to expansion of the function 
W(T,F) in terms of the number of phonon "production" 
and "absorption" acts. According to (16), the most 
probable decay channel is determined by the competi- 
tion between four dimensionless factors: the electron- 
vibrational interaction constant a, the field-barrier 
penetrability exp[- $ (2(Af - w(s - 2k))3/2], the relative 
probability n/(n + 1) of absorption of a quantum, and the 
statistical factor (k l(s - k)! 1". 

We consider now low temperatures, when the main 
contribution in the sum over k is made by terms with k 
=s. Under these conditions the decay has a Poisson 
distribution that describes the successive acts of pro- 
duction of the vibrational quanta. Taking singb-quan- 
tum absorption into account, and summing over all  pro- 
msses  with emission, we obtain for W(T,F) 

The last term in (17) is a correction, i.e., the "low" 
temperature limit corresponds to the restriction 

T a o / l n  ae". (18) 

Formula (17) determines the rate of detachment of an 
electron in a sufficiently strong field and shows that a t  
low temperatures the coupling of the electron with the 
vibrational subsystem always decreases the decay 
probability. If the frequency dispersion is appreciable, 
then it suffices to make in (17) the substitutions 

We consider now the case of sufficiently high temper- 
atures and weak fields, when the decay is accompanied 
only by absorption of vibrational quanta. In this case, 
the contribution of the terms k = O  predominates in the 
expansion (16), and 

The decay follows then a Poisson distribution. In a 
weak field the number of absorbed quanta is high 
enough. This enables us to change from summation 
over s to integration and to use the saddle point method. 
As a result we get 

Here 
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so is the most probable (average) number of absorbed 
quanta (so =meWT>>l) and is obtained from the equation 

According to (20)-(221, in a weak electric field the pos- 
sibility of inelastic tunneling greatly increases the rate 
of electron detachment. 

The case of high temperatures and of a strong field is  
easiest to investigate by _using the general formula (13). 
We expand the operator W(8/8fl, $ T) in a series and ap- 
ply it in the following manner: 

It can be verified that (23) is exactly equivalent to aver- 
aging the electronic factor W(E,F) over a Gaussian dis- 
tribution: 

The terms omitted in the derivation of (24) a r e  of order 
of smallness rw,/n;, i.e., the quasiclassical approach 
to the calculation of ~ ( T , F )  is justified only under the 
condition 

Let us examine, finally, the limit of "quasielastic" 
tunneling, which corresponds to a low value of the en- 
ergy exchanged by the electron with the vibrational sub- 
system. The average number 7 of the exchanged quanta 
can be shown to be the solution of the transcendental 
equation (we neglect for simplicity the frequency dis- 
persion) 

which has a t  t = $ T, i.e., at  

F=4T (2A)'", 

a root v = 0. Relation (27) determines the "critical 
field" for which processes with emission and absorp- 
tion of phonons a r e  equally probable. At T < w the 
terms with phonon emission have practically no temper- 
ature dependence, whereas the terms with absorption 
depend on the temperature exponentially. It follows 
therefore that at  a fixed F a strong temperature depen- 
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dence takes place only under the condition T > ~ / 4 6 .  
The available experimental data confirm well this con- 
clusion of the theory (see, e.g., Fig. 4 ofCH1 and Fig. 6 
O P ~ ~ ] ) .  

Under conditions of quasielastic tunneling, the opera- 
tor t@(8/9~, $TI i s  realized in the following manner. We 
expand the exponential of the formula for  $(a/ap, $ T) 
in a ser ies  and apply the shift operator e-*la6 in accord 
with the known rules. Then, accurate to quadratic 
terms of the argument of the exponential, we have for 
%T, F) 

The obtained expression permits a consistent account of 
the corrections to the quasielastic-tunneling rate, which 
is equal to 

(29) 

The correction terms in (29) a r e  of relative order of 
smallness 6A-', where 6 is the variance of the energy 
distribution of the released electrons. 

In concluding this section, let u s  examine the suffi- 
cient addition that can be introduced in (29) to take into 
account the interaction of the electron with a selected 
(local) oscillation with a nonequilibrium distribution 
over the levels. A concrete example may be the calcu- 
lation of the autoionization width of a fixed electron-vi- 
brational level li,no) of an  impurity-center molecule o r  
an adsorbed atom. Expanding W ( < , F )  in a ser ies  up to 
averaging over the equilibrium degrees of freedom, we 
obtain when account is taken of the higher-order terms 

- 
1i7.,(T, F)=A, , , , , ( t s ) ro (T ,  F ) .  

Here 

is the amplitude of the probability that the system will 
remain in the state In,) after  two sudden changes of the 
inter action U(R) with respect to a selected degree of 
freedom 

In (31), ~ ~ ( t , )  = (i8/8t - Hf(R)r1 i s  the time-dependent 
Green's function of the SchrMinger equation that de- 

F .lo-' , Vlcm 

Iff t 

FIG. 1. Electric field intensity vs. the applied voltage (ZnS lum- 
inor). Points-summed data of Ui"51, solid line-F(U) plot ass- 
umed in the present paper. 

FIG. 2. Temperature de- 
pendence of l n E ( ~ ,  T) for 
ZnS (arbitrary units). 

scribes the motion of the nuclear subsystem after the 
electron detachment. The actual form of the interac- 
tion U,(R) is immaterial here, and it can correspond, 
in particular to repulsion. (This takes place, for ex- 
ample, in field-induced desorption of atoms.) For the 
case of rea l  durations t,, the quantities AnWo(tl) were 
investigated ear l ier  inCZ3l. For  pure imaginary t,, the 
analysis i s  similar. If we assume for  U,(R) and Uf(R) 
the model of a displaced oscillator and average 
W,,(T,F) over the equilibrium distribution, then (31) 
again leads to (29) with an  additional term in the sum 
over s. It follows hence that in the quasielastic approx- 
imation the vibrational disintegration-rate factor is 
equal to the averaged probability amplitude for the ab- 
sence of vibrational transition in a twofold sudden 
change of the interaction (at the instants of time t = O  
and t = t,) with respect to a l l  normal coordinates of the 
system. 

4. COMPARISON OF THEORY WITH EXPERIMENT 

The processes of the destruction of the impurity cen- 
ters  of zinc sulfide by an  electric field were systemat- 
ically investigated recently by Kiveris and ~ i p i n i s . ~ " " ~ ~  
Using mutually complementary procedures of measur- 
ing the electroluminescence f l a ~ h e s ~ " " ~ ~  and of the 
current pulse: 15] they determined, for different applied 
voltages U, the temperature dependence of the loga- 
rithm l n * ~ , ~ ) ,  of the electron detachment probability, 
and estimated (from the formulas the corres- 
ponding fields. The theory expounded in Secs. 2 and 3 
not only accounts for the experimental data,["-15] but 
permits a more accurate reconstruction of the function 
F(u)  (see Fig. 1) and a determination of one of the 
main parameters of the impurity-center theory, name- 
ly the constant a. 

The published data pertain in most cases to condi- 
tions of quasielastic tunneling and can be described by 

FIG. 3. Comparison of theory with experiment for 
ZnS: (A=  0.53 eV, w =  0.043 eV, m = 0.39~~~). Points-experi- 
mentClS1, solid lines-calculation by formula (32): curves 1 
and 2-for U = 6 0  V, 3-U=90 V,  4-U= 150 V ,  5-u=300 V. 
Dashed curve 1-calculation by formula (10) ofti3]. 

25 1 Sov. Phys. JETP 47(2), Feb. 1978 F. I. Dalidchik 25 1 



TABLE I. Parameters of electron- 
vibrational interaction (doped 
ZnS: (A)). - I SOW= of 

fo rmula  (29). I n  the ZnS crys ta l ,  the mos t  significant 
is the interact ion of the e lec t ron  with the longitudinal 
optical phonons, whose d i spers ion  can b e  neglected. 
Taking this into account we t rans form formula  (29) and 
s e p a r a t e  the temperature dependence of in te res t  to us:  

Figure 2 shows the function f(T)  - c o t h ( o / 2 ~ )  f o r  w 
= 0.043 eV (this corresponds t o  the energy of the LO 
phonon of the ZnS lattice). Even  a s imple  comparison 
of Fig. 2 with experiment  ( s e e  Fig. 3) shows that when 
the p a r a m e t e r  d is suitably chosen the curves  can b e  
made  congruent. The  remainder  of the calculation re- 
duces to the choice of a s ingle  function F(U) f o r  all the 
experiments  (the solid l ine in Fig. 3) and reconstruc-  
tion of the p a r a m e t e r s  a, which depend on the individual 
p roper t i es  of the impuri ty  cen te r s .  T h e  accuracy  with 
which the field is reconstructed in  this case is higher 
the lower the voltage. At U = 50 V and A = 0.4 eV, f o r  
example, a 1% variat ion of F changes lnf?(T, F )  by one 
o r d e r  of magnitude. T h e  d e g r e e  of reliability of the en-  
t i r e  calculation is monitored by the relat ive e r r o r  in 
the reconstruct ion of the p a r a m e t e r  a f r o m  the experi-  
mental  lnW(T, F) curves  plotted a t  different  U. T h e  re- 
s u l t s  of the calculations are i l lustrated in Figs. 1-3 
and are a l s o  l is ted in the table. 
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