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The Bore1 method of summation of a perturbation-theory series with factorially increasing coefficients is 
considered. The connection between the asymptotic form of the coefficients a, of this series for k-+m and 
the nature of the singularity of the sum is established. An improved perturbation theory is constructed and 
the limits of its region of applicability are found. The results obtained are verified for a number of 
physical problems (the Lagrange function in the nonlinear electrodynamics of the vacuum, the energy 
levels of an electron in the Coulomb field of a nucleus with Z> 137, the screening of the nuclear charge 
by the vacuum shell of a supercritical atom, and the Stark effect in the hydrogen atom) for which the 
coefficients of the perturbation-theory series increase factorially and for which, at the same time, 
(analytically or numerically) exact solutions are known. Application of the improved perturbation theory to 
the g$n4/41 scalar field theory makes it possible to establish the behavior of the Gell-Mann-Low function 
$(g) for O<g/16rrzS0.3. In this interval $(g) is a monotonically increasing function of the coupling 
constant g .  

PACS numbers: 03.65.Db, 11.20.Dj, ll.lO.Jj, 02.30.Lt 

1. INTRODUCTION AND FORMULATION OF THE the scalar theory with internal-symmetry group O ( n ) ,  

PROBLEM where 

In recent years effective ways of calculating higher 
orders of perturbation theory (PT) in quantum mechan- 
ics and statistical physics have been found;["41 the 
structure of the PT series for the energy levels of the 
anharmonic oscillator has been investigated in particu- 
lar  detai1.[2'41 In quantum field theory L i p a t o ~ [ ~ * ~ ]  has 
developed a semi-classical method of calculating the 
functional integral, in which an important role is played 
by the classical solutions of the field equations, and has 
applied this technique to the renormalizable scalar 
field theory with interaction 

In Ref. 5 the case n - m was considered and the first  
term of the l /n  expansion for the Gell-Mann-Low 
function (GLF) $(g) was found; in Ref. 6 the asymptotic 
form, for k - 03, of the coefficients of the PT ser ies  

was calculated for arbitrary n. Intensive developments 
a r e  being made in this direction a t  the present time.[7-161 
Lipatov's method has been applied to the following prob- 
lems: the n-dimensional anharmonic oscillatorc71 

the theory of fermions with a Yukawa interaction,['] 
scalar electrodynamicsc121 and reggeon field theory in 
the strong- coupling region. [I3] The calculations of the 
asymptotic forms of PT ser ies  in more-realistic field- 
theory models (quantum electrodynamics, Yang-Mills 
theory, and so forth) await their turn. In this connec- 
tion, the following question becomes urgent: what in- 
formation can be obtained about the behavior of the 
exact solutions if we know the first  few coefficients a, 
of the PT series and their asymptotic form a s  h - m ?  

The present article i s  devoted to elucidating this 
question. 

Let f(z) be a function representable by a divergent 
power series 

that is asymptotic for z - 0 (in field-theory problems 
the variable z i s  usually the coupling constant, but it 
can also have another physical meaning-see Sec. 5). 
In most of the theories ~ o n s i d e r e d [ ~ - ' ~ ~  the asymptotic 
form of a, is 

a . = ( ~ a ) ~ n ~ ~ ~  &+-L+$+ ...), k+w, ( : (2) 

where z !  = r ( z +  I ) ,  and a, p, a and c, a r e  calculable 
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constants ( a ,  a > 0). For  a one-dimensional anharmonic 
oscillator with nonlinearity gx4 ten coefficients c ,  in the 
expansion (2) have been found by numerical methods.[31 
In field theory, however, the calculation of these coef- 
ficients is  a more complicated problem, and up to now 
it has been possible to obtain only the first  term of the 
series (2), which we denote by ii,: 

Knowledge of the first  N coefficients a, and of the 
asymptotic form (3) makes it possible to construct not 
only the PT polynomials pN(z) but also the improved 
perturbation theory (IPT) functions f ,(z): 

Here, 

i s  the sum of the series (1) with the asymptotic coef- 
ficients a, (in view of the factorial increase of 5, a s  
k - w this sum must be understood in the generalized 
sense, applying one of the methods of summation of 
divergent series).c171 The f i rs t  N coefficients in the 
function f ,(z) coincide with the exact coefficients, and 
the distant "tail" of the PT series is also taken into 
account. Therefore, i t  is natural to expect that a s  N 
increases the functions f,(z) will give a better approxi- 
mation to the exact solution than will the PT polyno- 
mials p,(z), and will enable us to establish it in a 
wider range of z. These qualitative arguments can be 
given a more exact meaning, and this will be done 
below. 

We shall describe the content of the paper (a brief 
account of the results obtained was published earlier).[16] 
In Sec. 2 the ser ies  (1) with coefficients of the form (3) 
i s  summed using qne of the variants of the Bore11 
method; the sum f (z) i s  obtained in explicit form. In 
Sec. 3 the connection i s  found between the asymptotic 
form of n, a s  k - 00 and the character of the singularity 
of the sum at the point z = 0. In Sec. 4 the limits of the 
region of applicability of the IPT a r e  found. These 
results a re  verified in Sec. 5 for several examples for 
which the coefficients of the PT ser ies  increase factor- 
ially and for which, at the same time, exact solutions 
a re  known. In the concluding section (Sec. 6) the IPT 
method is applied to the g(p4/4! scalar field theory, and 
enables us to determine the GLF $(g) in the interval 
0 <g/16s2<0.3. 

Appendix A contains a summary of the formulas that 
make it possible to sum series of the form (1) with 
coefficients of the form (2). Appendix B contains a com- 
parison of the analyti? properties of the exact solution 
f(z) and the function f(z), which i s  the Borel sum of the 
series (1) with the asymptotic coefficients ii,. 

2. THE BOREL METHOD OF SUMMATION 

This method places the divergent series (1) in cor- 
respondence with the generalized sum 

By choosing the parameter p 3 ff i t  is possible to quench 
the factorial growth of a, and make the series for 
cp,,(z, t )  convergent. For  the Borel method to be appli- 
cable i t  i s  sufficientc171 that the function ~ a , ( - ~ ) ~ / ( k ~ ) !  
be regular for small I wl and not have singularities on 
the semi-axis O<w<w. Usually one considers the case 
v =  0; in accordance with Hardy,c171 this method of 
summation is designated as the (B', p) method. For 
p = 1 this method has been treated by Bender and WuC2] 
in an application to the anharmonic oscillator, by 
S h i r k o ~ [ ~ ~ ]  for the g(p4/4! field theory, and also in a 
paper by one of the authors.c151 We shall find i t  conven- 
ient to generalize this definition, introducing the two 
parameters p and v in (5). In the case when the series 
is  summable by the Borel method (i.e., under the con- 
dition that the ser ies  for cp,, and the integral in (5) a re  
convergent), the sum f (z), naturally, does not depend 
on the values of p and v. 

To calculate the sum (1) it i s  convenient to use a 
representation differing from (2) for the asymptotic 
form of a, a s  k -9 

The coefficients C and c a re  related by the linear trans- 
formation 

etc. General formulas for the elements of the matrices 
S and S" a r e  given in Appendix A. Substituting (6) into 
(5) and assuming that lz,= 0, we find (see also Ref. 15) 

0 

( i - r n ) !  Cm(i+azta)m-p-l 
m-0 (7) 

j(z)-(az)-(*+L'ella* (B-m)! C(az)"I(ax:a,m-B), 2 ,"-a 

where 

This integral has the following behavior: Z m  e-ltX x '" 
for x-0, and for x - a  

I,xla-IIIP-ll for p)l-a-I, 
I~ox-blnx for $-I-a-', I-X-@ for B<1-a-'. 

In the frequently encountered cases CY = 1 and a = 2 it is 
expressed in terms of familiar special functions. For 
example, for CY = 1, 

233 Sov. Phys. JETP 47(2), Feb. 1978 



where r (a ,  x )  is the incomplete gamma function. It can 
be shown that the same result (7') i s  given by summing 
the series (1) with the coefficients (6) with the aid of 
the Sommerfeld-Watson integral transform, a s  suggest- 
ed by L i p a t o ~ . ~ ~ '  The possibility of obtaining an answer 
for the sum (1) in a closed form containing standard 
functions is the advantage of the parametrization (6) a s  
compated with (2), except for the case of integer values 
of P. 

3. CONNECTION BETWEEN THE ASYMPTOTIC FORM 
OF a, FOR k -+ - AND THE SINGULARITY OF THE 
SUM 

The function f(z) has a branch point z = 0 and a cut 
along z <O. We shall calculate its discontinuity across 
the cut. Using the known analytic properties of the 
function r (a ,  x ) ,  from (7') we obtain 

where 5 = -2. If the series Z,Cmzm has a finite radius 
of convergence, o r  even if it is asymptotic for z = 0 
(which, evidently, occurs in the majority of physically 
interesting cases), the asymptotic form of a, for 
,?z - determines the behavior of the discontinuity 
Af (z) a s  z - -0. 

In the case of arbitrary a! this result ar ises  from the 
following considerations.'' From (2) and (5) we find 
that the singularity of the function cp,,,(w) nearest to 

: zero is located at  w = -aztu = 1: 

The integral 

is  an analytic function of z that acquires a singularity 
when the point to(z) falls on the integration contour 
O<t<w. This happens whenz=-[*i0, {>O. Since 
to = (a[)"Ia - m a s  5 - 0, the discontinuity Af (- 5) is 
determined by the behavior of cp,,,(w) in the vicinity of 
the singular point w= 1, which is known. The elemen- 
tary calculation of the integral that arises gives 

~ j ( - t )  --nc,a-cD+lj (aE) -c5+11fa exp (-(aE)-'fa), E+O (10) 

(for a = 1 this formula coincides with the first  term of 
the series (9)). Comparison of the formulas (2) and 
(10) shows that the faster the increase of the coeffi- 
cients a, the weaker is the singularity of the function 
f (z) at  the point z =  0. We note that 811 derivatives of the 
discontinuity Af (- 5) vanish at 5 = 0. 

The expression (10) contains the only information 
about the PT sum that can be extracted from the asymp- 

totic form of the coefficients a,, irrespective of the way 
of parametrizing the corrections in powers of k-' 
(formula (2) o r  (6)) and of the summation method 
applied.2' We note that the asymptotic form of a, for 
k - m can be obtained from (10) by means of dispersion 
 relation^.^^*^*^*^] The arguments presented above show 
that it is possible to find the discontinuity of the sum a s  
z - -0 from the form of Z,, i.e., the connection between 
the asymptotic form of a, and the character of the sing- 
ularity off  (z) is reciprocal. This will be used below. 

4. THE IMPROVED PERTURBATION THEORY 

Turning to consider the IPT, we shall investigate 
the question of the intervals 0 < z <z, in which the func- 
tions f,(z) give good approximations to the exact 
solution. 

Rewriting (4) in the form 

we note that for N >> 1 we also have k >> 1 in this sum. 
Therefore, a, - a,- r(ka + P)ak, whence 

js ( z )  2: j ( z )  - ( -az)  N+b 

0 

The value z = z, at which the last term i s  comparable in 
magnitude with f (z) can be regarded a s  the upper limit 
of applicability of the IPT. Calculating the integral for 
N >> 1 by the method of steepest descents, we arrive at  
the following equation of z,: 

where b is a certain constant. Hence, for N - m  we find 

We note that the value of z, does not depend on the 
parameter f i  in (2) and is insensitive to the form of 
f (2). The latter is explained by the fact that [ f (z)] 'IN - 1 if N - 0 0 ,  while f (z) is finite o r  has a power behavior 
a s  z -0. 

In certain cases the corrections to the leading term 
Z, of the asymptotic form may decrease with increase 
of k not by a power law (as in (2)) but exponentially: 

(see the examples I and 11 in Sec. 5). Then the region of 
applicability of the IPT is expanded by a factor of q-': 

The general conclusion is that the region in which the 
IPT approximates the exact solution contracts with 
increase of N in accordance with the law z, mN-,, i.e., 
it contracts more rapidly the greater the parameter a 
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determining the factorial growth of a,. Increase of the 
number of exact coefficients of the PT series and know- 
ledge of the asymptotic form Z, do not give the possi- 
bility of establishing f (z) for z 2 z, by means of (4). On 
the other hand, in the interval 0 < z 5 z, the function 
f,(z) i s  closer to f(z) the larger is N. 

5. SOME EXAMPLES 

We shall compare the PT and IPT with the exact 
solutions for a number of examples fo r  which the PT 
coefficients have the form (2). 

I. The Heisenberg-Euler lagrangian 

The interaction of an electromagnetic field with the 
vacuum of charged particles (spin s, mass rn) leads to a 
nonlinear correction L ' to the Maxwell Lagrangian 
Lo= (E2 - If)/2. In the case of constant and uniform 
fields E and H exact expressionsclg~zO1 for L' are  known. 
We shall confine ourselves to the case of crossed fields 
(E . H = O), when L ' depends only on the invariant 
z = e2(@ - ~ ' ) / n z ~ :  

z/sh z-l+'/.x2, s=O 
x * ( x ) = { ~ + , /  ,x"zcthx, s='/, ' 

For x -  0, 

where B, are  the Bernoulli numbers (the series for 
x,(x) converges absolutely for I x 1 < 71). Substituting 
these expansions into (13) and integrating term by term, 
we obtain the PT series: 

The asymptotic form of the coefficients a:' does not 
depend on the spin s: 

and, a s  can be seen from Fig. 1, is established very 
rapidly. Therefore, the IPT has good accuracy in the 
present case. Applying the formula (5) with p = 2, 
v = -3 ,  we have 

2 - e-Pl -- f - tdt  
pz, l+t 

- 
A comparison of f(2) with f,(z) for example of spin 

FIG. 1. Ratio of the co- 
efficients d ,/ak for the 
Heisenberg-Euler Lag- 
rangian. 

s = i s  given in Fig. 2, in which the PT polynomials 

and the IPT functions f ,(z) a r e  also depicted. The 
change from p ,  to f, extends considerably the region of 
approximation of the exact solution f(z). We note that 
in the given problem the Bore1 sum j (z )  is close to the 
exact solution. Even for z - m, 

(however, the analytic properties of these functions a re  
different- see Appendix B). Such similarity between f 
and j i s  rarely encountered and i s  connected with the 
fact that the coefficients ii, are  very close to a, even for 
small h ,  and corrections of order k-' are  absent (for- 
mula (12) holds, with q = t). 

From (16) we find the discontinuity: 

which coincides with the f i rs t  term of the exact expres- 

FIG. 2. Comparison of perturbation theory with the exact solu- 
tion. The dashed curves are the PT polynomials and the solid 
curves are the IPT functions (the numbers on the curves cor- 
respond to the values of N ) .  For N  s 5 the functions f ,,(z) co- 
incide with the exact solution f (2) within the limits of error of 
the Figure. 
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sion following from the for ZWL L' in the 
case of particles with spin s: 

Here, j3,= (-1)"" for bosons, P,= 1 for fermions, and 
E, = m2/e is the characteristic field intensity at which 
nonlinear corrections to Lo become important and pair 
creation in the electric field ceases to be an exponen- 
tially small effect. When 5 - 0 the formula (17') goes 
over into (17). In this region (E << E,) the discontinuity 
of the Lagrangian L' depends on the spin s of the part- 
icles in a trivial manner: 

ImL'=  
(2s+l)m6 

S exp (-nz-"). 
4x2 

I I. Electron energy levels for Z > 137 

The energy c of a level near the edge of the lower 
continuum is determined by the equationc2z1 

which i s  valid in the limit of small nuclear radius: 
I l n ~  I >> 1. For  the lowest level Is, ,,, 

where z =c" - 1, 6=Ze2-Zj137, Z i s  the nuclear 
charge, 5,,= Z,,eZ and $(x) = r'(x)/r(x). Hence, 

(see curve 1 in Fig. 3). The factorial growth of a, a s  
k -a and the divergence of the PT series a r e  explained 
by the fact that Eq. (18) for f > t, describes a quasi- 
stationary positron level, the imaginary part of which i s  
determined by the penetrability of the Coulomb barrier 
and tends to zero exponentially a t  the positron-creation 
threshold: r231 

The Borel sum ( p  = 2, v = 0) i s  equal to 

FIG. 3. Approach of the coefficients ak to their asymptotic 
form for the problems 11-W. 

The behavior of pN(z) and fN(z) is analogous to that in 
example I. The principal difference i s  that the function 
f(z) and f(z) a r e  far from each other for z > O  (see F:g. 
2 ir, Ref. 16). In part:calar, 

f ( 2 )  =n-'z'!'+ . . . , f ( 2 )  =n-' In zt . . . for 3-+m. 

At the same time, the Borel sum accounts well for 
the discontinuity on the left cut z = - 5 :  

Af ( - 5 )  ='I2  ( c t l ~  nz-";-I) = ( e sp  { 2 ~ 3 - ' ' ~ }  -- I)-', 
A f (-g) =esp { -3~ : - "~} .  

For the analytic properties of the functions f(z) arid 
J(z) see Appendix B. 

Equation (18) determines the dependence of the energy 
of a level on the nuclear charge. For Z close to Z,, 
this dependence can be represented in the form of a PT 
series: 

The coefficients e k  can be expressed in terms of ( I , ,  

1 1 c k. As follows from (10) and (20), the asymptotic 
form of eh is  

(the quantity b appearing here i s  determined by the 
slope of the level at the edge of the lower continuum).c231 
Comparison with (19) shows that in the expansions of the 
functions f (z)  and €(Z) the parameters (Y and j3 are  the 
same. The factorial growth of the coefficients C ,  leads 
to the result that the PT ser ies  for ~ ( 2 )  has zero radius 
of convergence. 

II I. The relativistic Thomas-Fermi equation 

The self-consistent potential V(r) in the vacuum shell 
of a supercritical (Ze2 >> 1) atom obeys the e q ~ a t i o n [ ~ ~ * ~ ~ ]  

where n,(r) is the density of protons in the nucleus, and 
R = c = m , = l .  We put 

where Z, =Z-  N ,  is the charge of the supercritical atom 
for an external observer. Let p << 1 (the case of weak 
screeningcz5]). The solutions of Eq. (23) in the region 
r<< 1 possess the property of renormalizability; C261 

((r, p) plays the role of the invariant charge and has a 
pole at r = r , ( ~ ) ,  the position of which is determined by 
the GLFP(p) = -8 [(r, p)/8lnr 1 ,,,, (r, =Z,e2/2 is the radi- 
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us of the vacuum shell). F o r  O(p) i t  is possible to obtain 
a differential equation, C2s' which, by means of the sub- 
stitution p =gz/4, p(g) = 2g-lp(g2/4), is brought to the 
form 

We shall study the properties of this equation. The 
boundary condition for q(g) follows from PT: <(r, p )  
= ~ ( 1 -  8plnr+.  . .), whence p(g)=g3+ O(g5). For 
g -0  the functions p(g) and p(p) can be represented in 
the form of PT series: 

with b,= ZZk-'a,. Substituting (26) into (25) we arrive at 
the recursion relations 

by means of which the coefficients a, up to k = 200 were 
calculated on a computer. They increase rapidly (see 
Table I) and have the asymptotic form:3' 

with c, = 0.04551. . . . . Unlike the preceding examples, 
this expansion contains terms k - ' ,  b-z , .  . . , and the 
slow approach of a, to the asymptotic form 5 ,  (see 
curve 2 in Fig. 3) i s  connected with this. Therefore, 
other representations were tried: 

and the best of these, with p =  2 (curve 3 in Fig. 3), was 
chosen. The Borel sum &), corresponding to coeffi- 
cients 5:'' with integer p, is  calculated from the for- 
mulas (A.6) and (A.8). The lPT functions a re  shown in 
Fig. 4; they enable us to establish q(g)  for g <0.5. We 
note that in this region q(g) is  of the order of 
thus, in the examples I1 and 111, in contrast to the 
example I, the Borel sums -F(z) a r e  far from the exact 
solutions. 

IV. The Stark effect 

In an electric field F the level of an atom (with energy 
eo = - u2/2, A= M Z  = e = 1) is transformed into a quasi- 
stationary state with complex energy E = < - iy/2. For 
F << F, the Stark shift of the level can be expanded in a 

TABLE I. The coefficients ak for the function Jl(g). 

I a k l k  I 'k I] k I I k I 

Note: Fork S10 the exact values of a, are given; for larger 
k the first five significant figures are given. The figures in 
brackets indicate the power of ten by which the number given 
must be multiplied. 

FIG. 4. The exact solution p (g), the PT polynomials (the 
dashed lines) and IPT functions (the solid curves) for the rela- 
tivistic Thomas-Fermi equation. 

PT series:  

- 
E-E ~ = C n ~ ( - z ) " ,  

Eo 
n-l 

( F ,  = K 3  is  the characteristic atomic field). The discon- 
tinuity of E(z) across the cut z <O is equal to the prob- 
ability y of ionization of the level. In the semi-classical 
a p p r o x i m a t i ~ n , ~ ~ ~ * ~ ~ ~  

where q = Z / K  i s  the Coulomb parameter and Z i s  the 
charge of the atomic core. The asymptotic form of a,  
follows from (29) and (10): 

A comparison of (30) with numerical calculationsczg' for 
the hydrogen atom (the 1s level, for which K =  q =  1, 
A = 8) is shown in Fig. 3, curve 4. 

The problem of the Stark effect admits an exact solu- 
tion in the case of a one-dimensional 6-potential. The 
energy E =  E - iy/2 i s  determined from the equationc301 

where t = ( E / E , ) ~ / ~  and x =P(-z)" 12/3. From this we 
find P as a function of z ,  i.e., E and y a s  functions 01 
the field F. We obtain the equation determining the po- 
larizabilities a,: 

which was solved numerically. A comparison of a ,  with 
the asymptotic form (30) is shown in Fig. 3 (curve 5). 

Thus, the asymptotic form of the high-order polari- 
zabilities a, i s  determined by the probability of ioniza- 
tion of the atom in weak ( F < <  F,) fields. Unlike the 
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preceding examples, the PT ser ies  for the energy 
r = ~ o ~ ( r , ( ~ / ~ o ) 2 n  is not alternating in sign (a, > 0). 

V. The zerodimensional field-theory model 

We consider the integral 

corresponding to the "zero-dimensional model" of field 
theory.['] Here, n = 4,6,8, .  . . ; 

whence 

(34) 
We have investigated the case n =  4. In this case the 
integral (33) can be calculated analytically: 

and the discontinuity a t  g= - 5 <O i s  equal to 

For < - 0 we obtain Af (- 5) = -Z-112e-3/2c, in complete 
correspondence with formula (10). The convergence of 
the PT and IPT functions to the exact function f (g) has 
also been investigated. The results a re  analogous to 
those obtained in the preceding examples. 

With increase of g the function f(g) decreases mono- 
tonically, remaining positive for 0 < g <  m. When g- m, 
f (g) - 0 like g-1/4. On the other hand, the Bore1 sum 

vanishes at g"230 and then becomes negative: j(g) 
--2-112 - -1 n lng for g- m. Thus, for this example too, 
the functions f(g) and J(g) have different behavior for 
g- m. 

The results of the investigation of the asymptotic 
forms of the PT series a re  collected in Table 11, in 
which the parameters a, 8 ,  and a for the examples 
I-V a re  given. For comparison, the values of these 
constants for the energy of the ground level of a d- 

TABLE 11. Parameters of the 
asymptotic forms of a, for dif- 
ferent ~roblems. 

Problem I a 1 6  1 

dimensional anharmonic o s ~ i l l a t o r ~ ~ * ~ '  with nonlinearity 
g(C:s,d)2, and also for the GLF in g(p4/4! scalar field 
t h e ~ r y , ~ "  a r e  also given in the table. We call attention 
to the analogy between the structure of the series for 
the GLF in the g(p4/4! theory and in the relativistic 
Thomas-Fermi equation. 

I 
I1 

I11 
IV 
V 

Anharmonic 
oscillator 

gcp4/41 

On the basis of the examples considered we arrive a t  
the following conclusions. 

2 
2 
i 
2 

nI2-1 
i 

1 

As a rule, the functions fN(z) approximate the exact 
solution ftz) in a wider4' interval of z than do the PT 
polynomials of the same degree N. For  those z for 
which neighboring IPT curves ( fN and fN,) a re  close to 
each other, they approximate f (z) well and thereby 
make it possible to reproduce the exact solution in the 
interval 0 < z  5 2,. The upper bounds obtained in Sec. 4 
for zN a re  confirmed in all  the examples we have con- 
sidered (this question is analyzed in detail in Ref. 31). 

6. CONCLUSION 

The application of the IPT to problems in quantum 
field theory, where exact solutions a re  absent, i s  of 
special interest. Calculation of Feynman graphs gives 
the first  few coefficients a, of the PT series,  and 
Lipatov's method determines their asymptotic form for 
k -a. For the g(p4/4! scalar field theory the first  three 
coefficients of the GLFL3'] and the asymptotic form iikCB1 
are  known, and this makes it possible to calculate5' the 
functions $(g) and $,(g) for N = 1,2,3. The general pic- 
ture (see Fig. 5) is analogous to the examples consider- 
ed above, especially the examples I1 and 111. For 0 <g 
2 50 the curves +,(g) a re  extremely close to each 
~ t h e r . ~ '  From this it is possible to conclude that the 
exact GLF is also close to them in this range of g. It 
differs considerably, therefore, from the curve L ob- 
tained by LipatovLsl by expanding in l /n  in the g(pn/n! 
theory (this difference can be seen clearly from Fig. 6), 
and this indicates the poor accuracy of the l /n  expan- 
sion when n = 4. In view of this the conclusion in Ref. 5 
that a zero of the GLF exists at g - 100 appears to us to 
be doubtful. 

Application of the Pad6 method gives results analo- 
gous to those of the IPT. Let p,,,,,(g) be the Pad6 
approximate7' constructed from the PT coefficients a,. 
On the other hand, in the IPT functions (cf. (4)) we can 
replace the polynomial C(a,- iid(-g)' by the corres- 
ponding pad6 approximant; we denote such functions by 
~ ) [ ~ , ~ , ( g ) .  It i s  obvious that 

The three known coefficients a,, a,, and a, permit us to 
construct the approximants [2,0] and [I, 11 for the GLF. 
Of these $,2,01 possesses the best accuracy (see Fig. 5). 
In the given case the Pad6 method does not lead to the 
determination of g(g) in a wider range of g than does the 
IPT. Possibly, this is explained by the fact that the 
number of known coefficients a, i s  too small. 

The calculations presented do not enable us to reach 
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field theory we have1'] 

FIG. 5. The Gell-Mann-Low function in g(04/4! scalar field 
theory. The dashed curves correspond to the PT polynomials 
pN(g) and the solid curves to the IPT functions ?jN(g) ; pr2 
and I & ~ , ~ ~  are Pad6 approximants; the curve L is taken from 
Ref. 5. 

definite conclusions about the form of the GLF for 
g > 5 0  (in particular, one must not assign values to the 
zeros of the functions &(g) and J13(g), a s  i s  clear from 
a comparison of Fig. 5 with Figs. 2 and 4; see also 
Ref. 14). Where the GLF i s  reliably determined with 
the aid of the IPT it is  a monotonically increasing func- 
tion of g. We note that in the case of the relativistic 
Thomas-Fermi equation (for which the asymptotic form 
of a, has the same structure a s  in the g(p4/4! theory) 
the GLF increases monotonically and is without zeros 
for all 0 <g<m (cf. Ref. 26). 

The information that can be extracted unambigously 
from the asymptotic form of a, concerns the character 
of the singularity of the GLF. For the gcpn/n! scalar 

FIG. 6. Ratio of $(g) calculated by means of the lh expansion 
to the IPT functions $N(g). For g< 50 the curves for N =2 and 
N = 3  merge, within the limits of error of the Figure. 

whence, with the aid of ( lo),  we find the discontinuity 
of dg) across  the cut for g- -0: 

where 

(for n = 4  we have p=9/2, o=l andA=16nZ;  this case 
has been considered previously).cg1 

According to L i p a t o ~ , ~ ~ '  for n =  4 the zero of the GLF 
is go = 103, i.e., go is not f a r  from the weak-coupling 
region: ago=go/16n2-0.65. Therefore, the situation 
with the zero of the GLF in the g(p4/4! theory can be 
clarified if the next few coefficients of the PT ser ies  
a r e  calculated and a method i s  found that enables us to 
establish $(g) in a wider range of g than does the IPT 
(the pad6 method i s  a possible candidate). However, 
the behavior of $(g)  in the strong-coupling region (ag 
>> 1) i s  not connected with the asymptotic form of the 
coefficients a, for k -a. 

The authors a r e  grateful to B. L. Ioffe, M. S. 
Marinov and M. A. Shifman for discussinguthe results 
of the work, and also to E. B. Bogomol'nyi for the 
suggestion that we investigate the function (3.3). We 
should like to express special gratitude to L. B. Okun' 
for a detailed discussion of the work and a number of 
valuable comments. 

APPENDIX A 

The formulas that make i t  possible for ser ies  with 
factorially growing coefficients to be summed effective- 
ly a r e  collected here. These formulas were used in the 
calculation of the functions T ( z )  and fN(z) presented in 
Figs. 2,4 and 5. 

1. We shall find the sum of the ser ies  (1) with k,=O 
and coefficients 

where n is an integer. If n=O, application of the Bore1 
method (5) with the parameters ,!.I = 1 and v =  0 gives 

f (2)  = $ ! ( a ~ ) - ' ~ + "  erp [ (az)-'IF(-p. (az)- ' ) ,  

where 

is the incomplete gama function.[341 We note the parti- 
cular cases 
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where Ei(-x) is the integral exponential function and 
Erfc(z) i s  the e r ro r  integral: 

For  rn = l ,2 ,3 , .  . . , the formulas 

hold (for rn = 0 the sum over p in the right-hand side 
must be omitted). 

2. Turning in (A.l) to the case n 2 1, we denote 

The function f,(z, @) i s  given by formulas (A.2). Dif- 
ferentiating successively, we obtain 

where P, and Q, are  polynomials of degree n, depend- 
ing parametrically on /3.1311 In the important particular 
cases @ = 0, -+, these formulas can be transformed to 
a more convenient form in which all the coefficients in 
the polynomials a re  integers: 

Here t=z",  and the polynomials U,, etc., a r e  deter- 
mined successively by the recursion relations 

We give the first  few polynomials in explicit form: 

Thus, the sum C(k+ p) !k" ( -~)~  for integer and half- 
integer values of @ is expressed in terms of the stan- 
dard functions Ei(-x) and ~ r f c ( x ' / ~ ) ,  and this i s  con- 
venient for numerical calculations. In the case of arbi- 
trary @ the sum is expressed in terms of the confluent 
hypergeometric function * (a ,  c; x) .  

3. The representation of a, in the form (6) is con- 

venient for summing series,  while the parametrization 
(2) is more intuitive. The transformation from (2) to 
(6) is effected by matrices S and S-l ,  the elements of 
which have the form 

where p,(x) and q,(x) a re  polynomials of degree 2k: 

po=qo=l, p , - - - q , = ' l z x ( x + l ) ,  

p2 - ' / , z ( z2 -1 )  ( x + ~ / ~ ) ,  q Z = i / 8 ~ ( x z - 1 )  ( ~ - ~ / 3 ) ,  . . . ; (A.13) 

The values of these polynomials for integer x = -1,0,1, 
2, .  . . a r e  equal to 

where s(n, k) and S(n, k) a r e  Stirling numbers of the 
first  and second kinds, known from combinatorics. The 
determination of the polynomials p ,  and q ,  for arbitrary 
k, and recursion relations and explicit expressions for 
them for k s 4 ,  can be found in Ref. 31. 

APPENDIX B 

ANALYTIC PROPERTIES OF THE BOREL SUM 
ffz) AND EXACT SOLUTIONS 

The analytic properties of functions of the form (I) ,  
(2) a re  of great interest. We shall consider them for 
the examples of Sec. 5, which has exact solutions. 

1. We write formula (13) in the form 

0 

g, ( x )  - e-"x. ( t ) t - ' d t ,  s-0, '/I. 

0 

Differentiating twice with respect to x and using formula 
3.554 (4) from Ref. 34, we obtain in the case of spin 

= l. 
. 2. 

where $(z )  i s  the logarithmic derivative of the gamma 
function. Hence, 

Integrating this equality and using the expansion of 
Inr(1 +x) near x =  0 (see Ref. 34), we obtain for z - 
(the region of strong fields (H2 - >> m2c3/&) 

0 

/,;a ( z )  =h  ( z )  ln z +C C . Z ' - ~ ~ ~ ,  (B.2) 
"-8 

where h(z )  = ( z  + 3z'I2+ 3/2)/6 and, for n > 3, 

240 SOV. Phys. JETP 47(2), Feb. 1978 Popov eta/. 240 



(the coefficients c,, c,, and c, have a different form, 
but this i s  unimportant for  the following). F o r  sca lar  
particles the answer i s  analogous to (B.2), with 

The ser ies  appearing in (B.2) can be  represented with- 
out difficulty in the fo rm 

where 

From this i t  follows that the sum has singularities on 
the second sheet, of the type (z - z,)ln(z - z,), a t  the 
points z,= 1/4k2 (for sca lar  particles, z,= (2k+ I)-,). 
These singularities bunch toward zero; the complicated 
character  of the singularity of f,(z) a t  this  point is 
connected with this." 

On the other hand, the Borel  sum (16) can be re-  
written in the form 

where cp i s  an entire function. The only singularities of 
j ( z )  a r e  the points z = 0, w. Thus, the singularities a t  
the points z = z, a r e  lost when we go f rom the exact 
function C ~ , ( - Z ) ~  to the Borel  sum Cii,(-2)'. We note 
that the representation (B.5) for  j ( z )  makes it easy to 
find its discontinuity across  the out -a < z < 0, and gives 
formula (17). 

11. Fo r  the problem of the electron levels for  Z> 137, 
it can be seen directly f rom (19) that the singularities 
of f(z)  a r e  the simple poles of the function ~ ( z - ' ~ ~ ) ,  
located at  the points z,=k-' on the second sheet. Thus, 
in this case too, z = 0 is a point of bunching of singu- 
larities. The Borel  sum y(z) does not have singularities 
a t  z = z,. 

111. For  the relativistic Thomas-Fermi equation i t  can 
be shown that the point g= m i s  a complicated singularity 
of the function cp(g), which has the following expansion: 

The coefficients at i )  a r e  determined from a complicated 
coupled system of recursion relations: 

11)- - -  a~ -413/27, a!" =32i81; a:2'=32~?/3645,. . . 

We shall show, for  the given example, how the be- 
havior of j ( z )  for z - depends on the method of para- 
metrization of the asymptotic form of the coefficients 
a,. If 

it can be  shown that, for  0 <p<9/2  and g - m ,  

- &'(In B)-', P- is not an integer 
q,(g)=gJ x&P) (-gl)' ;+: Bg, p=l, 2, 3, 

*-0 

(B.8) 
Cg', p=4 

where 

The behavior of the functions in the region of large 
g depends essentially on p, although the coefficients 
(B.7) for  k >> 1 differ only by t e rms  of order  1/k. 

Note added in proof (December 15, 1977). We have 
now considered a further example: the perturbation- 
theory se r i e s  for  the energy E,(g) of the ground level 
of an anharmonic oscillator with nonlinearity g{x14 in a 
space of d d imens io~s .  F o r  d =  1 the coefficients of this 
s e r i e s  were calculated by Bender and WU,[~] and this 
permits  u s  t o  construct the PT  polynomials and the IPT 
functions. A comparison of these with the exact values 
of E,&) obtained by numerical solution of the SchrCI- 
dinger equation leads to the same conclusions a s  in Sec. 
5. For  N - w the region of applicability of the N-th 
approximation of perturbation theory contracts: g, - e / 3 ~ .  On the other hand, the calculation by the Pad&- 
approximant method of the energy E[,,,,(g) leads to the 
result  that the region in which the exact solution Eo(g) i s  
approximated increases with increase of N. This i s  an 
important advantage of the Pad6 method in the summa- 
tion of s e r i e s  with factorially increasing coefficients. 
However, this advantage i s  manifested only in cases  
when a sufficient number of the f i r s t  coefficients a, of 
the s e r i e s  a r e  known. 

')see Ref. 18, in which an analogous method was used to estab- 
lish the relationship between the nearest singularity of the 
scattering amplitude f (s , t )  and the asymptotic form of the 
partial amplitudes f, (s) for 1 - m. 

')This statement assumes the absence in the exact solution of 
terms of the type iP (z) =cp (z)exp(- z-"), where v >  0 and cp (2) 
is a function that does not have an essential singularity at 
z =O.  It is obvious that the PT series does not give any in- 
formation about the presence of such terms in the exact solu- 
tion, since all derivatives of the function G (2) vanish as 
z - + 0. The presence of such terms should be established 
from independent considerations (see, e.g., Ref. 7). It is  
hown that the existence of instantons, which are not present 
in the problems we are  considering, lead to the appearance 
of such terms. 

3)The quantities 0 ,  p , a and cI/cO were obtained from the 
recursion relations for ak given above. The coefficient co 
was found by comparing the asymptotic form (27) with the 
exact values of a, for k =I50 - 200. 

4 ) ~ t  should not be thought that the good approximation of f (2) by 
the IPT functions is due to the fact that the Borel sum f(z) 
is close to the exact solution. This occurs only in exceptional 
cases (example I); usually, these functions are very far from 
each other. 

5 ) ~ n  the calculation of $(=) the asymptotic form of the coeffic- 
ients was written in the form d, =cI'(k + i)akk4 and formula 
(A.8) from Appendix A was used. 

6 ) ~ n  the other hand, the polynomials p , ( g )  with N =1, 2 and 3 
are close to each other only in the interval O<g<20. For 
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larger values of g they differ considerably, both from the 
IPT functions and amongst themselves (e.g., for g=50  we 
have ~ ~ / $ ~ = 2 . 7 6  and p3/Pz=4.22, while $3/$~~=0.86). The 
advantage of the IPT over the PT is clear from this. 

')~.e., the fraction PN(g)/Q,(g), whereN and M are  the de- 
grees of the numerator and denominator (33). 

den or (21 > (2s + I ) - ~  the series in (B.2) is convergent, but the 
first term h(z)lnz has a branch point at infinity. The pos- 
sibility of obtaining a convergent expansion for L' in inverse 
powers of the external field was noted earlier (35). 
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