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It is shown that the attractive nuclear forces between p and push out the Coulomb levels if the depth of 
the nuclear potential well is large enough for a bound state to appear. The case of a complete atomic- 
spectrum restructuring which occurs at a critical value of the attractive nuclear potential (threshold for the 
appearance of the nuclear bound state) is examined. It is shown that the region of critical values is very 
narrow and is determined by the small parameter R / a ,  where a is the Bohr radius and R the range of 
nuclear forces. In the post-critical region, the shift is again small and the Coulomb spectrum is restored. 
The results do not depend on the detailed shape of the nuclear potential. 

PACS numbers: 36.10.G~ 

8 1. INTRODUCTION 
structure a re  negligible in the 1S state. 

The nucleon-antinucleon interaction at low energies 
has recently attracted considerable attention among both 
theoreticians and experimentalists. Despite the pre- 
sence of the annihilation interaction between the nucleon 
and the antinucleon, the potential approach can be used 
to analyze the properties of the N'S system because the 
size of the N x  annihilation region is much smaller than 
the characteristic size of the nucleon-antinucleon sys- 
tems under ~onsideration.~']  Detailed theoretical anal- 
yses show that, because of the presence of the strong 
attractive interaction between the nucleon and the anti- 
nucleon, the N'S system has a rich spectrum of bound 
and resonant quasinuclear states with mass defects up 
to a few hundred M~v.[ ']  These theoretical predictions 
have been confirmed experimentally in recent years a s  
a result of studies of the annihilation of slow antiprotons 
in hydrogen and de~ te r ium. '~ ]  

Theoretical calculations of the ( p a  level shifts due 
to the nuclear in teryt ion have been reported by . 

Dal'karw and ~ a m o i l o v . ~ ~ ]  The level shifts were found 
by solving the Schriidinger equation for the $p system 
with the Coulomb and nuclear interactions included 
(the latter were described with the aid of the one-boson 
exchange potential OBEP). The 1s level shifts obtained 
in this way were found to lie between +0.5 and +1.1 keV 
(i.e., the level was "pushed out"). The atomic level 
shifts and widths were also calculated by Caser and 
~ m n e s , [ ~ '  who started with the Fp amplitude corre- 
sponding to the complex optical-model potential. This 
also resulted in a positive 1s level shift of the order of 
1 keV. It is, however, important to emphasize that the 
positive value obtained for AE,, by these workersc5] is 
of completely different origin and is a trivial conse- 
quence of the fact that all the levels a re  pushed out in 

The properties of the antiproton atoms @p) and ( p d )  
<he optical model (because of the highly ion-~ermi t i an  
nature of the Hamiltonian which is introduced to take 

are  particularly interesting. Studies of cascade pro- 
annihilation into account). 

cesses in 5 atoms (x-ray transitions between atomic 
levels and the annihilatibn of antiprotons in bound It has been shownce1 that the optical model which, in 
atomic states) may provide valuable information on the this case, is a semiempirical model describing the fi5 
nucleon-antinucleon i n t e r a ~ t i o n . ~ ~ ]  The immediate interaction cross  sections, is not generally suitable 
problem is to determine for the ($p) and ( 3 d )  atoms for calculations of discrete levels. The annihilation- 
the level shifts and widths due to the strong interaction. interaction range Y, is roughly one-tenth of the range R 

When only the Coulomb interaction is taken into ac- 
count, the (Fp) atom has a ground-state binding energy 
(-EE,) =nza2/4 = 12.5 keV and first  Bohr radius a =  57.5 
fm. The levels of this atom a re  shifted relative to the 
values given by the well-known formulas of quantum 
mechanics (including the fine and hyperfine structures) 
because of the presence of the strong interaction be- 
tween p and and the corrections due to  quantum 
electrodynamics (QED). The main QED correction is 
vacuum polarization, due to the creation of the virtual 
pairs e'e', which appears separately from the Lamb 
shift because the radius of the first  Bohr orbit of the 
atom is less than the Compton wavelength of the elec- 
tron, s o  that the particles lie in the region where 
screening due to vacuum polarization is, in general, 
important. However, the shift of the 1S state due to 
vacuum polarization is numerically small: AE,, =El, 
-E;, = -0.038 keV. The Lamb shift and the hyperfine 

of nuclear f o r c i s  d i e  to light-meson exchange in the 
t - ~ h a n n e l . ~ ' ~ ~ ~  The level shift due to the annihilation 
interaction must, therefore, contain an additional 
small factor of the order of (V,/R)~ - 10". Annihilation 
corrections will be neglected in our calculations of 
atomic level shifts. 

We shall give a theoretical analysis of the spectrum 
of bound states in the system in which both Coulomb 
forces and short-range attractive forces (with range 
much smaller than the Bohr radius) a re  present. Our 
main aim is to elucidate the mechanism responsible 
for  the shifts of atomic levels due to  the presence of 
the strong short-range attraction between the particles. 
I t  turns out that this problem will also involve the 
analysis of the complete rearrangement of the Coulomb 
spectrum when the atom becomes "unrecognizable" 
because of the presence of additional attractive forces 
with range R much smaller than the Bohr radius a. 
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The parameter R/a has, however, the effect that the 
"critical" values of the depth of the nuclear potential 
well lie within very narruw bands (they are proportional 
to R/a). Provided these bands are avoided, the atom 
remains practically unaffected, however strong the 
nuclear interaction, and the level shifts due to the 
short-range forces turn out to be small, The critical 
points themselves, on the other hand, correspond to 
the appearance of S levels in the short-range potential 
well (with different numbers of radial nodes). 

It was found in the course of the solution of the prob- 
lem that these results are valid not only for  the atomic- 
level shifts but are general physical results in the 
sense that they are encountered whenever a two-parti- 
cle quantum-mechanical system has two types of at- 
tractive force with different ranges. Accordingly, to 
bring to light the physical features of the problem, we 
begin by considering some general relationships and 
illustrate them by simple examples. 

In Sec. 2, we consider the general relationship be- 
tween the energy-level shift and the mass operator for 
short-range forces. In Sec. 3, we consider the simple 
example of two rectangular wells to demonstrate the 
effect of the strong interaction on the energies of 
bound states in a potential well of large radius. In 
Secs. 4 and 5, we give the results of calculations of the 
(pa-atom level shifts for two strong interaction poten- 
tials, namely, the separable potential and the rectan- 
gular potential well. 

52. MASS OPERATOR AND LEVEL SHIFT 

Let f (k, kt, E) be the scattering amplitude due to the 
short-range nuclear potential. This amplitude is taken 
outside the energy surface (k2 + kt2 * mE, where k, k' 
are the momenta of 2ne of the particles in the C.M.S.). 
The mass operator M(E) is related to f as follows: 

4n dk dk' 
Q,.(E)=-- m jcpw(k)f(k,kf,~)vv(k')- ( ~ J T ) ~  ' 

where E is the kinetic energy of p and in the CM sys- 
tem, m is the mass of the nucleon, and cp,(k) is the 
wave function for the discrete state with energy Ep'. 

The wave functions cp, correspond to the Hamiltonian 
for the "long-range" forces. In the case of the ( p a  
atom (or other hadron atom), the wave functions cp, 
correspond to the Coulomb problem unperturbed by the 
nuclear interaction. We note further that, strictly 
speaking, the amplitude f will also contain terms due 
to the Coulomb interaction between the particles when 
they are within the range of the nuclear forces. The 
amplitude f does not coincide with the scattering ampli- 
tude for three particles interacting through electro- 
magnetic and nuclear forces even if it is taken on the 
energy surface. This difference occurs because the 
Coulomb interaction is turned on in f only in virtual 
states between nuclear interactions, but not in the 
initial and final states of the entire scattering process. 
This is illustrated in Fig. la,  where the rectangular 
block corresponds to the pure nuclear scattering am- 

plitude and the oval block to the Coulomb amplitude. 
The Coulomb corrections to f are proportional to a and 
are small in comparison with the contribution due to 
the pure nuclear interactions. We may therefore 
suppose that f is practically equal to the amplitude for 
pure nuclear scattering. 

The mass operator (1) corresponds to the diagram 
shown in Fig. l b  to within the factor i ( 2 1 r ) ~ .  The shaded 
square in this figure is the amplitude (4n/m) f (k, k', E). 
The vertex parts y,(k) in this diagram are related to 
cp,(k) by 

Since the amplitude f is a scalar, the integral in (1) 
is nonzero only when the states cp, and cp, have equal 
quantum numbers. In the case of the p p  atom, this 
means that the mass operator may mix states (n, 2 )  
with different principal quantum numbers n but equal 
orbital angular momenta I .  Henceforth, we shall con- 
fine our attention mainly to the nuclear shifts of the S 
levels. We shall therefore consider matrix elements 
of the mass operator between the S states. With this in 
mind, we begin by noting that, because of the presence 
of the short-range nuclear forces, the scattering am- 
plitude f, expressed as  a function of the momenta k and 
kt, will, in general, vary more slowly than the wave 
functions cp. In point of fact, the nuclear amplitude f 
can vary appreciably over momentum intervals of the 
order of R-I whereas, for the atomic wave functions, 
the characteristic interval is of the order of a''<< R'l. 

The exception to this rule is the case where the am- 
plitude f has a pole in E corresponding to nuclear 
levels. When this is so, then, in addition to the range 
R, there is one further parameter with the dimensions 
of length, namely, the state radius r, = (m I r ,  \)- ' I2, 
where r ,  is the nuclear level energy. When the latter 
is small enough in absoIute magnitude, so that the 
state radius re is  comparable with the Bohr radius, the 
amplitude f will vary appreciably over the same mo- 
mentum interval as  the atomic wave functions cp . 

It  is precisely this case that will be considered below. 
Here, however, we shall assume that the poles off lie 
well away from atomic levels (re =R<< a). In view of 
the foregoing, the slowly-varying amplitude f can be 
taken outside the integral sign in (1) and, if we note that 

where *,(r) are the wave functions in the coordinate 
representation, we obtain 

FIG. 1. 
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where k,, ki  are  certain values of the momenta k, k' 
and lie in the effective integration interval (0 -C k(kt) 
< a-l). 

Equations (1) and (3) a re  not based on any potential 
model for the scattering amplitude. The understanding 
of this point is particularly important for  applications 
to the theory of nucleon-antinucleon systems which a re  
characterized by annihilation into hadrons. The influ- 
ence of annihilation on the spectrum of discrete states, 
on the other hand, cannot be taken into account with the 
aid of a potential well (such a s  the optical potential). 
We therefore emphasize once again that the only condi- 
tion for the validity of (3) is that the amplitude f should 
be a slowly-varying function of the momenta a s  com- 
pared with the wave functions cp (this is the only condi- 
tion expressing the short-range character of the 
forces), 

Let us now estimate the order of magnitude of the 
matrix elements M,, in the case of the ( p a  atom. 
Since we a re  interested in negative energies E close to 
the atomic-level energies, we may suppose, in very 
approximate calculations, that E = 0, s o  that the 
interval in which f changes appreciably a s  a function of 
E i s  determined by the range R of the forces and by the 
position of the nuclear levels (which we assume to be 
sufficiently distant from the atomic levels). On the 
same basis, we may suppose that k, = ki= 0. The am- 
plitude f (k,, k:, E) in (3) is therefore close to the nu- 
clear pp scattering length. To within an order of mag- 
nitude, we may suppose that f = R  = 1 fm. Next, for the 
1s state, we have *,,(0) = (na5)112 and, if we substitute 
these values in (Z), we obtain the following approximate 
result for the diagonal matrix element of the mass 
operator for the 1s state of the ( p a  atom: I M ~ ~ ~ ~  I 
~ 4 . 2  x 10'6(fm)'1 = 0.84 keV. This amounts to about 1% 
of the separation between the 2s  and 1s levels. The 
nondiagonal matrix elements a re  smaller still: 

Hence, it follows that 

This inequality simplifies the determination of the 
nuclear shift of the 1s level from the given scattering 
amplitud_e f. The mass operator determines the Green 
matrix D(E): 

where 2 is  the diagonal matrix 

The nuclear-shifted l$vels are  the poles of the eigen- 
values of the matrix D(E). It is readily shown that, 
when (4) is satisfied, the n~ndiagonal~matrix elements 
in (6) can be neglected. The matrix D(E) therefore be- 

comes diagonal and i ts  matrix elements a re  given by 

D-d/(l-d.V) (7) 

where, for  brevity, we have omitted the subscripts. 

It follows from (6) and (7) that the equation for the 
shifted levels is 

The condition for  the validity of (8) is that, a s  indicated 
above, the shifts must be small'in comparison with the 
S-level separation. Moreover, we have seen that M(E) 
is a very slowly-varying function of E on intervals of 
the order of the separation between the atomic levels, 
s o  that we may substitute M(E) =M(EO,) = M(0) in (8). If 
we then use (3), we obtain the following expression for 
the energy of the 1s state: 

where El, is the complex energy of the 1S state. 

From (9), we obtain the level shift and width: 

where v is the relative velocity of the annihilating 
particles and a, is the cross  section for the annihilation 
of f r e e p  and5. 

Equation (9) has been known and used, for example, 
in the theory of "exotic" atoms (see, for  example, the 
paper by Caser and ~ m n e s ) . ~ ~ '  However, the conditions 
for the validity of these formulas were not always 
properly understood. Firstly, the fact that (9)-(11) a re  
valid in the case of small shifts was frequently inter- 
preted as a consequence of the use of perturbation 
theory in the interaction generating the scattering am- 
plitude f. Secondly, (9) was usually obtained within the 
framework of a model potential for f.c7] The first  of 
these misunderstandings is closely related to the 
widely held view that the short-range forces of attrac- 
tion will necessarily lead to  a negative shift hE in 
those cases where (9) can be used, i.e., that these 
forces increase the binding energy relative to  the un- 
perturbed value. The validity of perturbation theory 
in the case of short-range forces mean that the scat- 
tering length f and the potential V of these forces are  
related by the Born formula 

Hence, and from ( l l ) ,  it follows that the sign of A E  is 
the same as that of V (i.e., it is negative for attractive 
forces). On the other hand, the idea that the potential 
approximation must be used for  f when (9) is employed 
suggests the use of the optical model (complex poten- 
tial) in order that the influence of inelastic channels, 
for example, annihilation in the case of ( p a  atoms, 
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can be taken into account in (10). In reality, however, 
it is clear from the foregoing that (9) is in no way 
connected with perturbation theory in the strength of 
the short-range forces, nor with the potential approach 
to the evaluation of the scattering length f. The 
formula given by (9) and the equivalent expressions 
given by (10) and (11) are valid whenever the shifts are 
small and when the scattering amplitude f varies very 
slowly as a function of momenta as  compared with the 
wave functions cp or, what amounts to the same, in 
comparison with the vertex parts y [formula (2)] in 
Fig. lb. 

It follows from the foregoing that the levels are 
pushed out, as mentioned in Sec. 1, even in the case 
of a strong-range attraction, or in the absence of in- 
elastic processes (i.e., for real scattering length f ). 
In point of fact, it is clear from (10) that the sign of 
the shift depends on the sign of Ref, and this is not 
determined by the sign of the potential when the Born 
approximation (12) is not valid. Moreover, it is easily 
seen that, if the short-range potential well is suffi- 
ciently deep, so  that a bound nuclear state appears, the 
scattering length f may be negative and, correspond- 
ingly, the shift AE is positive. A good example of this 
is the neutron-proton scattering length. In this case, 
the triplet scattering length is negative because there 
is the bound 3S, state (the deuteron). The singlet length, 
on the other hand, is positive because the corresponding 
potential well is too shallow and the 'So state does not 
appear in the neutron-proton system. It is readily 
shown analytically that the atomic level will be pushed 
out as a result of the presence of the nuclear bound 
state. Let us suppose that the amplitude f (E) has a 
pole at E =EN - i ra/2, which corresponds to the nuclear 
bound state of pF with an annihilation width r,. 

Next, we assume that the pole part of the amplitude 
predominates, in which case 

Here g is a real positive quantity (this follows from the 
fact that Imf >O in the presence of inelastic processes 
even for E < 0). Substituting (13) in (lo), we obtain 

4g E::'-E~ 4g I E ~ I  
r\E ( I S )  = - a- 

ma1 (Et:j-EN)z+ r2/4  ma' ENz+ r.214 ' (14) 

It is also clear from this expression that the fact that 
the nuclear level has an annihilation width does not in- 
crease, and may even reduce, the shift of the atomic 
level (contrary to the results obtained with the aid of 
the optical model,c51 according to which absorption 
facilitates the pushing out of the level). We note, how- 
ever, that the presence of the nuclear level does not in 
itself ensure that the shift AE(1S) will be positive. 
Equation (14) was, in fact, dbtained on the assumption 
that the pole term (13) predominates in the amplitude f 
for E = El, < 0. If the level EN lies too f a r  from El,, 
this assumption may not correspond to reality, and the 
sign of the shift may, in principle, be different. 

The above discussion has shown that sufficiently 

strong nuclear attraction may lead to the pushing out of 
the atomic level. On the other hand, it follows from 
(10) and (12) that a weak nuclear attraction will depress 
the atomic level. The question therefore is: what is 
the mechanism responsible for the change in the sign 
of AE(1S) as the nuclear attraction is reduced? For- 
mally, it may be concluded from (14) that sign AE(1S) 
=sign (E:O,' -EN). In reality, however, Eq. (14) ceases 
to be valid if the shift AE(1S) becomes comparable in 
order of magnitude with the 2s-1S level separation. If 
the annihil3ion width r, were to be zero, or very 
small, this would follw unavoidably for sufficiently 
small I E ~  I .  The annihilation widths of nuclear levels 
of the pp system are definitely nonzero, but they de- 
crease with increasing state radius (in inverse propor- 
tion to the cube of this radiusc1]). This is why, when 
]EN I is small, the width r, may also turn out to be 
small. Hence, it follows that, to settle the level shift 
question for EN= El,, we mu_st use :he general formulas 
(1) and (5) for the matrices M and D. Since annihilation 
effects in the atomic level-shift problem play, as we 
have seen, a secondary role, it is  reasonable to neglect 
annihilation altogether when the essence of the situation 
is to be elucidated, and use a suitable potential model 
to calculate the nuclear scattering amplitude f. How- 
ever, the evaluation of the matrices fi and 3 in this 
case is no simpler than the solution of the Schrijdinger 
eigenvalue problem with interaction Hamiltonian in the 
form of the sum of the Coulomb and nuclear (short- 
range) potentials. 

83. ENERGY LEVELS FOR RECTANGULAR WELLS 

It should be clear from the foregoing that the level 
shift due to the influence of short-range forces is not 
connected specifically with the Coulomb interaction. 
The characteristic features of this effect should be seen 
in all cases, whenever there are two potentials that 
have different ranges and are not too singular at short 
distances (so that the center cannot be reached). 

The simplest example of the effect of a short-range 
potential on the energies of bound states due to longer- 
range forces is  the level spectrum associated with the 
potential in the form of two rectangular wells with dif- 
ferent radii: V(r) = Vl( r )  + V,(r), where 

We shall assume that the potential V,(r) is deep enough 
for several bound states with energies Em (n= 1, . . . , N) 
to appear for Vl0= 0. Moreover, we assume that 
rl<< r, and V,,<< l /mr  f . The latter condition is intro- 
duced to eliminate bound states with radial nodes at 
distances of the order of the range rl of the short- 
range forces for Vlo= 0. 

The set of equations whose solution gives the posi- 
tion of the levels E in the potential V(r) has the follow- 
ing form for -V,,<E <O: 

kctg kr,-q ctg (qr ,+6) ,  q ctg (qrz+6) =- (--mE)'", 

q = [ m ( ~ 2 0 + ~ )  I,", k = [ m ( ~ , . + v , , + ' ~ )  I", (1 6)  
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of the optical model." 

FIG. 2.  

where 6 is the unknown phase. 

Figure 2 shows the bound-state energies in the poten- 
tial V(r) as functions of the depth of Vl(r) for rl/r, 
=0.01 (solid line). The broken lines show the values of 
the depth of Vl(r)  for which the next levels appear. The 
rearrangement of the spectrum occurs for Vlo= V:;), 
which corresponds to the appearance of eigenstates in 
the potential Vl(r). The former ground state in V2(r) 
is then localized in the narrow and deep well V,(r), and 
the corresponding energy level shifts downward to a 
much deeper position (curve 1). It is replaced by the 
first excited state (curve 2), and so on. After the re- 
arrangement, the lowest energy state localized in the 
wide well now has a radial node. Outside the rear- 
rangement region (the corridor defined by the broken 
lines in Fig. 2), the spectrum is always similar to the 
level spectrum in the potential V2(r), and the level 
shift AE can be positive or negative. 

The important feature of the above rearrangement of 
the spectrum is that it occurs in a narrow, near- 
critical region of values of V,,. The reason for this is  
that the range of Vl(r) is small in comparison with the 
"size" of states localized in V,(r). 

The behavior of the levels in a potential such as (14) 
has been analyzed by Koch et al., also in connection 
with the problem of the spectrum of hadron atoms 
(they were concerned with the levels of K-mesic atoms) 
In contrast to the formulation of the problem given 
here, Koch et at.[*' used the complex short-range po- 
tential. The presence of the imaginary part of the po- 
tential led to the appearance of a trivial level shift due 
to absorption. The complete rearrangement of the 
spectrum, which occurs when discrete levels appear in 
the short-range potential, has an effect on the results 
obtained by Koch et  al. in that the shifts obtained by 
them exhibit oscillations (these shifts are always posi- 
tive because of strong absorption). Similar oscillations 
in the K-mesic level shifts were reported by Eric- 

We have already mentioned that the model involving 
a complex potential is hardly valid for the evaluation 
of level shifts when strong absorption is taken into 
account. What is required in such cases is  the solution 
of the coupled-channels problem, which leads to re- 
sults quite different from those obtained on the basis 

54. EVALUATION OF THE ATOMIC LEVEL SHIFTS 
IN  THE CASE OF A SEPARABLE SHORT-RANGE 

POTENTIAL 

We shall now show that the shift and rearrangement 
of the spectrum of levels of the ( p 3 )  atom due to the 
presence of short-range nuclear forces is of exactly 
the same nature a s  in the above example of two rectan- 
gular wells. To show this analytically, we use the 
separable model for the short-range forces. We as- 
sume that the interaction Harniltonian corresponding to 
these forces is 

fiY (r)= J v ( ~ ,  r') Y (rt)dr', V=hE(r)E(r'). IEladr=i: (17) 

Since is a short-range interaction, we must have 
I 5(r) I < e"IR for r - -. Since we are interested in the 

S-level shifts, we must assume2) that 5 is a function of 
only Irl=r. 

Our aim is to find the eigenvalues of the Hamiltonian 

where k0 is the Hamiltonian for the free particles and 
V, is the Coulomb interaction energy. The operator kc 
is the Hamiltonian for the "usual" Coulomb problem 
(without the nuclear interaction between p and B. The 
SchrSdinger equation corresponding to the Hamiltonian 
given by (18), whose solution gives the exact wave 
function 19) of a bound state of energy E, will be 
written in the form 

( E - ~ ) - % E ( ~ ) ( E I Y ) = I Y ) ,  ( ~ I Y ) = ~ E ' Y  dr. (19) 

Since V is separable, the wave function 19) is  unknown 
and is eliminated by multiplying (19) from the left by 
[(r) and then integrating with respect to r: 

We shall use the spectral representation of the 
Coulomb Green function 

lIp",",)(~",'"l lIp.)<Ip.l 
(E-H,) -I = 

E-Enc 'J E-k2lm+iO ' 
n.1.m 

where cp, ,, and cp, are the Coulomb functions for the 
discrete and continuous spectra, respectively, and EC, 
are the energies of the unperturbed atomic states. 
Substituting (21) in (20), we obtain 

Since the range R of the potential V is assumed 
small in comparison with the Bohr radius a, we may 
use the approximate result 
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The constants j3, = 1 are slowly-varying functions of n. 
Next, we have 

which is valid because the main contribution to the in- 
tegral with respect to k is provided by the region with 
k-R". For such values of k, the wave functions cor- 
responding to the continuous spectrum, Ik,, are almost 
plane waves (the condition for the validity of the Bohr 
approximation a2/v = R/a<< 1 is satisfied). In deriving 
(23) and (24), it was assumed that [(Y) = r ' l ( 2 / ~ ) ~ / ~ e ' / ~ .  
The integral in (24) with this form of [(Y) can be eval- 
uated exactly and differs from the estimates given by 
(24) by the presence of a slowly-varying logarithmic 
term which can be replaced by a constant for E -EC,. 

When (23) and (24) are taken into account, Eq. (22) 
simplifies to 

Since the right-hand side of this equation contains the 
large coefficient (a/R)S, the spectrum of the exact Ham- 
iltonian (18) differs appreciably from the Coulomb 
spectrum only in a small neighborhood of the point 
X =  -h, (the size of the rearrangement region 6A/A 
-R/a). The dependence of the energy spectrum of the 
( p a  atom on A is illustrated in Fig. 3 for a/R = 50. 

The value A =  -Ao corresponds to the appearance of an 
eigenstate in the potential. When -X,<X<O, the level 
energies are close to the Coulomb levels and are shiift- 
ed downward: 

After the rearrangement of the spectrum, the atomic 
levels are shifted upward: 

bound state in the separable potential for X< -A,, the 
rearrangement of the spectrum will occur only once as  
A increases. 

55. ATOMIC LEVELSHIFT IN  THE CASE OF A 
SQUARE-WELL NUCLEAR POTENTIAL 

We shall now consider the influence of short-range 
forces on the level spectrum of the (83) atom for a 
more realistic model of the nuclear interaction in the 
pp system. In particular, we shall assume that the nu- 
clear potential can be represented by a rectangular po- 
tential well. Our aim will, therefore, be to obtain the 
bound-state spectrum for the potential 

-lyO, r<R 
Ci ( r )  = 

The bound S-state wave function in the internal (Y < R) 
and external (r>R) regions is 

where E is the required level energy and n= (-me4/ 
262E)1/2. The function G ( a ,  ,9, p) is a confluent hyper- 
geometric function of the second kind which decreases 
exponentially (for E < 0) as p- and is singular as 
p- 0. 

The condition of continuity of the logarithmic deriva- 
tive of O(Y) at r = R  is the equation for the eigenenergies 
E. This equation can be solved numerically. Figure 4 
shows the results of the calculation for R = 1.2 fm. It 
has been shownc1' that one quasinuclear S-state should 
appear in the nucleon-antinucleon potential (for a fixed 
spin and isospin) with a binding energy of at least 10 
MeV. This corresponds to well depths Vo> 90 MeV. It 
follows from Fig. 4 that, for ko=307 MeV/sec (V, 
= 100 MeV), the shift is AE,, =+2 keV. The order of 
magnitude and the sign of this shift are in agreement 
with the work of Dal'karov and ~ a m o i o v . ~ ~ ~  At the same 
time, Fig. 4 clearly exhibits the presence and the 
nature of the "expulsion" of the 1s  level of the (pp) 
atom by the attractive nuclear forces. A s  expected 
from the general theory (Sec. 2), the reason for this is 

and the previous 1 s  level is localized within the range 
of the potential V and is replaced by the previous 2s 
level, and so on (Fig. 3). Since there is  a unique 

FIG. 4. 

FIG. 3. 
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the presence of a bound quasinuclear state of the NN 
system, i.e., precisely the fact that the nuclear attrac- 
tion betweenp and $ is strong enough. There is also 
the striking fact that, a s  the nuclear attraction in- 
creases, the shift AE,, may fall and i ts  sign may be 
reversed for a certain value of V,. At the same time, 
the probability of a complete rearrangement of the 
Coulomb spectrum due to the presence of the nuclear 
forces becomes very small (but finite). For  this to be 
so, the depth V, of the nuclear well must lie in a very 
narrow interval of critical values. A deviation of V, 
from the critical value Vo= 36 MeV by 2% restores the 
overall pattern of the atomic spectrum. 

56. CONCLUSIONS 

In conclusion, it may be useful to emphasize the 
general character of the phenomenon which we have 
discovered and of its leading features. 

The restructuring of the spectrum of discrete levels 
due by forces whose range is small in comparison with 
the size of orbits executed in finite motion will always 
occur whenever the strength of the short-range attrac- 
tive forces is in itself sufficient for the appearance of 
a bound state. The interval of critical values of the 
depth of the short-range potential for  which the above 
spectrum rearrangement takes place is very narrow 
and is proportional to the ratio of the range of these 
forces to the radius of the finite-motion orbit in the 
main ("broad") potential well. The level shifts due to 
the short-range forces will therefore be small, inde- 
pendently of the strength of these forces, with t:he ex- 
ception of a finite number of small intervals around the 
critical values. Nevertheless, the small shifts con- 
tain a "trace" of the rearrangement of the spectrum. 
This trace is the sign of the shift which should be posi- 
tive at moderate distances from the critical region 
(i.e., it corresponds to the pushing out of levels despite 
the attractive nature of the short-range forces). 

The above problem in classical nonrelativistic quan- 
tum mechanics could have been formulated and solved 
many years ago. The reason why this was not done 
was probably that, until quite recently, one did not en- 
counter real physical objects whose properties could 
be understood only by solving this problem. 

Such physical systems a r e  now being investigated 
experimentally. They include, above all, the two 
classes of hadron atoms, namely, the K-mesic atom 
and, especially, the 5 atom. The strong short-range 
forces in this case a r e  the nuclear forces. Measure- 
ments of the atomic level shifts and of their signs can, 
a s  shown above, be a source of important information 
on the nuclear interaction between hadrons. 

Other atomic systems in which an effect analogous 
to that discussed above may be important a re  ordinary 
atoms in which the nuclear charge is close to the 
critical value (so that the 1s level enters the lower 
continuum). Atoms of this kind have recently been 
considered by Popov, who showed, in particular, that 
the atomic spectrum could undergo a complete rear- 

rangement f o r  certain critical values of the nuclear 
charge.[lol The characteristic small length in this 
case is the Compton length of the electron, i.e., the 
distance over which relativistic effects associated with 
the interaction between the electron and the external 
electrostatic field of the nucleus become important. 
The interval of critical values of the nuclear charge 
corresponding to this rearrangement of the spectrum 
is, however, proportional to the lcgarithm of the ratio 
of the Compton length to the Bohr radius and not to  the 
ratio itself. This is most likely due to the relativistic 
character of the problem (in particular, the presence 
in the interaction of terms that a re  proportional to 
Y" at the origin and a re  too singular). Nevertheless, 
the overall physical picture of the effect is undoubtedly 
identical with the phenomena investigated here. 

In addition to  the atoms discussed above, the quasi- 
nuclear BB systems (B = baryon) a re  further physical 
objects for  which two types of force of comparable 
strength but different range a r e  important. The "long- 
range" forces in this case a re  the usual nuclear forces 
producing nonrelativistic bound states of the BB system 
with orbit radii of the order of 1 fm. The short-range 
forces, on the other hand, a re  those due to  the a ~ i -  
hilation processes (the range of these forces is of the 
order of the Compton length of the baryon, i.e., 2 0.2 
fm). The fact that the width of the region in which the 
rearrangement of the spectrum due to the presence of 
short-range forces takes place is small is important 
for the physics of quasinuclear systems. In relation to 
the quasinuclear system, this fact implies that the 
probability of an appreciable change in the spectrum of 
quasinuclear levels due to the contribution of the anni- 
hilation interaction is small: the annihilation shifts 
and widths of such levels should, a s  a rule, be small. 
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L. N. Bogdanov, V. A .  Karmanov, B. 0. K e r p o v ,  
V. G. Ksenzov, V. S. Popov, and V. M. Samoilov for 
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 he solution of the multichannel problem with level shifts due 
to the short-range annihilation forces will be given else- 
where. 

2 ) ~ e  recall that states with different orbital angular momenta 
correspond to different potentials in the separable approxima- 
tion. 
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