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It is shown within the framework of relativistic field models of the aN interaction that the instability of 
nuclear matter to a condensation becomes stronger when the Fermi velocity tends to the relativistic limit. 
The results agree with Migdal's theory and point to the need for taking a condensation into account in 
the Lee and Wick model for abnormal states of atomic nuclei. 

PACS numbers: 21.65. +f 

1. INTRODUCTION 
There have been discussions in recent years of the 

possible existence, a t  nuclear density, of an energy bar- 
r ier  whose surmounting (e.g., in collisions of heavy nu- 
clei) may be the next step towards a genuine ground 
state of a system of N nucleons. Thus, for example, 
calculation of the dependence of the nuclear energy on 
the effective mass M* of the nucleon, carried out in the 
a model by Lee and wickr" (see also r21) points to the 
existence of a local energy minimum at  M* s 0. An in- 
crease in the density of nuclear matter may make this 
minimum absolutera1-the nucleus may go over via a 
relativistic phase transition into an abnormal state with 
M* =O. 

Campbell, and Manassah. [51 The nonrelativistic approx- 
imation used by them does not explain, however, the 
role of IT condensation in  the model of abnormal states 
with M* =O. 

We have investigated the stability of nuclear matter 
to the appearance in i t  of a classical pion field,using the 
relativistic quasiclassical approach employed by Lee 
and Wick. In this approach the solution of the problem 
is similar to finding the energy E = - ( 1 / 2 ) ~ ~ '  of an elec- 
tron gas in an external magnetic field ( X  is the magnetic 
susceptibility). It is known that the susceptibility of an 
electron gas is positive, but since the electromagnetic- 
interaction constant is small, the susceptibility i s  small 
compared with unity. Therefore the decrease of the en- 
ergy of a metal in  a n  external magnetic field is small 

On the other hand, Migdal's theory of n condensa- compared with the self-energy H2/8n of the field. 
tion13] (see also later DaDers by Migdal and co-work- - - - - 
ersL4]) predicts, at a certain density, the onset of an in- The situation changes in theories with strong con- 
homogeneous classical pion field in the ground state of stants. In particular, the gain in the energy of nucleons 
nuclear matter, situated in  a classical pion field can exceed the self-en- 

ergy of the field and may favor the formation of the n 
The possibility of n condensation was not considered condensate. 

bv Lee and Wick in connection with the ~ r o b l e m  of ab- 
normal states. The formation of a n condensate in nu- Starting with Dirac's equation, we find the energy of a 
clear matter was investigated later,  within the frame- relativistic nucleon in an inhomogeneous classical 
work of the u model of strong interactions, by Dashen, ((n) #O) pion field of small amplitude. We construct next 
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the single-particle density matrix and calculate the 
change in the energy of a relativistic gas of nucleons in 
the field of the n condensate. Comparison of this change 
with the self-energy of the classical pion field shows 
that the stability of incompressible nuclear matter rela- 
tive to n condensation is due to  the fact that the param- 
eter 

is positive ( g  is the rN-coupling and v, is the top Fer- 
mi velocity), and is lost a t  v, = vc= 0.11. 

When nuclear matter is considered within the frame- 
work of the field approach, i t  is necessary to  give pre- 
ference to models that take into account the approxi- 
mate chiral invariance of the strong interaction of non- 
strange particles. The simplest model of this type is 
the o model of strong interactions with spontaneous 
breaking of the SU(2)@Su(2) chiral symmetry. Pro- 
ceeding to the investigation of the o model, we shall 
show that, depending on the relation between the con- 
stants of the model, an  increase in the density of the 
nuclear matter can lead to phase transitions of various 
types, one of which was considered by Lee and wick.['] 
In the absence of a r condensate, the increase of the 
density is accompanied in accord with the conclusions 
of Lee and Wick by a decrease of the effective mass  of 
the nucleon. The corresponding increase of the Fermi 
velocity leads, however, to a strong enhancement of the 
instability of the nucleon gas to n condensation, and this 
instability must be taken into account when calculating 
the ground-state energy. Consideration of abnormal 
states of nuclear matter with M* = O  and (r) = 0 is there- 
fore inconsistent. 

In the last section of this article we discuss the in- 
fluence of short-range nucleon-nucleon interaction on 
the parameters that describe the instability of nuclear 
matter. Allowance for the effect of screening by the in- 
teraction on the classical pion field is apparently incap- 
able of changing the conclusion drawn for a nucleon gas, 
but increases the critical value of the Fermi velocity to  
vc=0.28. 

2. QUASICLASSICAL RELATIVISTIC MODEL OF 
r CONDENSATION 

The relativistic Lagrangian that describes the inter- 
action of nucleons with the pseudoscalar pion field is 
given by 

9'='/, (d,n)z-1/2p.';7'+$ {iy,,a,,-41 - i g r S ~ n }  q, (1) 

where p, and M a r e  the masses of the pion and nucleon, 
and g is the RN-coupling constant. 

We consider a model of an incompressible nucleon 
liquid, in which the short-range forces between the nu- 
cleons lead to independence of the nuclear-matter den- 
sity of the long-wave structure of the ground state. In 
the absence of n condensate, the nucleon-gas energy is 

where E ~ +  (p2 +M')'/' and n:) is the single-particle den- 
sity mat r ix  In isotopically symmetrical nucleon mat- 
ter ,  n r )  coincides with the Fermi distribution function 
n,. In neutron matter we have 

nr'-=f/z ( I-T~) n,. (3) 

The presence of n condensate corresponds to the ap- 
pearance, in the system, of a pion field whose mean val- 
ue over the ground state differs from zero, (n) =n(x). 
The corresponding change of the nucleon energy is 

where h, and n, a r e  the single-particle energy and the 
single-particle density matrix in the n-condensate field. 

To avoid monitoring the constancy of the local den- 
sity of the nucleons, we calculate their thermodynamical 
potential 51 = 6, - p.N, where N is the total number of 
particles: 

and p is the chemical potential determined from the 
equation 

d3e spas I-(np-ny') =o. 
(In)' 

(6) 

The instability of nuclear matter to  the appearance of 
the n condensate se ts  in when the gain 66, of the nu- 
cleon energy in the field n ( ~ )  exceeds the self-energy of 
this field 

To study the stability i t  suffices to consider fields 
n(x) of small amplitude. In this case the change of the 
Fermi density matrix can be expanded in powers of the 
perturbations of the single-particle energy 

where 6p is the change of the chemical potential and, by 
virtue of the matrix structure of the perturbation, is of 
second order of smallness in the amplitude n(x). Using 
the property an,/acp = -ti(€, - p,,) (p,, is the Fermi en- 
ergy) of the Fermi distribution function, i t  i s  easily 
shown that the change of the thermodynamic potential of 
the nucleons in the r-condensate field is given by, ac- 
curate to  t e rms  quadratic in dx) ,  

The problem thus reduces to a determination of the sin- 
gle-particle energy h,. 

Energy of relativistic nucleon in a classical pion field 

The Dirac equation for a nucleon in a classical pion 
field is 
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(we use the standard representation of the Dirac matri- 
ces). 

We consider the quasiclassical case, when the char- 
acteristic inhomogeneity dimension q-l of the field r(x) 
is large in comparison with the uncertainty p-' of the 
nucleon position. In the calculation of the quasiclassical 
energy of the nucleon l z ,  in  the field r(x) i t  is convenient 
to  change over to the Foldy-Wouthuysen (FW) represen- 
tation. In this representation the operators of the phys- 
ical quantities have simple classical analogs (see, e.g., 
r51). In particular, the operator of the particle average 
position i s  the usual coordinate operator i = ia/ap. 

Changing over in (10) to the momentum representation 
and carrying out the FW transformation with the aid of 
the unitary operator 

we obtain 
H ewe -C'liC'+=$e,+ ig~y5rn(xw),  (12) 

where x,:, is the coordinate operator in the FW repre- 
sentation: 

The transition from the FW representation to the quasi- 
classical Hamiltonian corresponds to replacement of the 
operator of the average particle position %by the coor- 
dinate x. Introducing the pseudoscalar singlet1) a(B,,,) 
we have in the case of weak inhomogeneity of the clas- 
sical pion field 

When this expansion is taken into account the Hamilto- 
nian (12) takes the form 

~ , + g b , n '  -ig[n+6zn'+'/2(d12+6ZL) nu] 
H ~ w -  ( igin+a,nr+v2(aI2+a.., n u ]  -eP+g6,n' ) .  

(16) 
where 

The spectrum of the particles and antiparticles in  a 
weakly inhomogeneous pion field is determined by the 
equation for the eigenvalues h, of the matrix (16) 

Assuming the field amplitude a small, we obtain for the 
particle spectrum, accurate to terms quadratic in II/E, 
and p / ~ ,  

€! top) (pq) + =:+ (n! l [pXql" 
h ~ = ~ ~ + ~ n r [ o q - c , , ( ~ , , + , q l ~ I  - e n  Y e , , {  ( % , , J ? ( F  p-.li)! 

In the nonrelativistic limit (p  < < M )  the energy incre- 
ment goes over into the well-known expression for the 
relativistic aN-interaction Hamiltonian 

n condensation in a relativistic nucleon gas 

Substituting (9) i n  (19) and recognizing that for per- 
turbations bounded in  space we have 

we obtain for the total change of the thermodynamic po- 
tential 6 0 =  60,+ 60, of isotopically symmetrical mat- 
ter ,  after simple calculations, 

where 

v,=p ,/;(p,) is the Fermi velocity of the nucleons,p, 
= (3/,s2n)1'3 is the limiting Fermi momentum, and n is 
the nucleon density. 

In neutron matter, 5 - 1 goes over into (g - 1)/2, and 
the Fermi momentum is equal to (3r,n)1/3. 

In the nonrelativistic limit (up<< 1) the expression for 
5 coincides with that obtained by Migdal, Markin, and 
M i s h u ~ t i n . ~ ~ ]  We note that when g is expanded in powers 
of v, relativistic corrections appear only in the fifth 
order : 

Therefore the nonrelativistic formula ofr4] is in  fact 
valid up to v, = 0.6. 

The renormalization of the pion mass (24) has a sim- 
ple physical meaning and i s  connected with the change 
of the effective mass of the nucleon in a classical pion 
field. Indeed, the nucleon energy, in the limit of a con- 
stant field, takes in  accordance with the Dirac equation 
the form 

epa= (pZ+iVz+gZn2) '"ME, (26) 

By calculating from (2) the energy increment due to  the 
change of the nucleon mass  and proportional to a2, we 
obtain for the pion effective mass the expression (24). 

Proceeding to a discussion of the relativistic formula, 
we note that the relativism conditionp,2 M can be sat- 
isfied both a s  a result of the high density of the nucle- 
ons (it is more reasonable to refer this case to neutron 
matter) and a s  a result of the low effectiveness of the 
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nucleon mass. 

The function l;(v,) for g2/4n = 14.6 is plotted in Fig. 1. 
The reversal of the sign of l; a t  v,=u,=O.ll points to 
instability to  n condensation a t  u, > u,. For nuclear 
matter we have v,=0.3. We note, however, that when no 
account is taken of the short-range nucleon-nucleon in- 
teraction, a quantitative estimate of the lower limit of 
the instability can not be correct in our approach. A 
more accurate estimate will be made a t  the end of the 
article. 

Owing to the finite pion mass, instability a t  a given 
t < 0 develops only a t  pion-field gradients exceeding a 
certain critical value 

The validity of (22) is restricted by the conditions for 
the applicability of the quasiclassical approximation 

In the limit of a low effective nucleon mass, the effec- 
tive pion mass tends to a constant limit p:' = p: +g%;/n2 
that depends only on the nucleon density. If the density 
increases a t  a fixed nucleon effective mass, the in- 
crease of p,+ follows a faster law than for [(v,), and in- 
equality (28) does not hold. 

In connection with the foregoing, we call attention to 
the fact that the renormalization of the masses of the 
nucleon and the pion in nucleon matter depends substan- 
tially on how the bare masses a re  introduced into the 
theory. The successes of current algebra and of PCAC 
in the description of hadron scattering and decays (see, 
e.g., r71) point to an approximate chiral invariance of the 
strong interaction, a t  least for non-strange particles. 
In chiral theories, the pion is a Goldstone particle, and 
i ts  mass is introduced on account of "soft" violation of 
the chiral invariance. One can therefore expect in such 
theories (as we shall show below) that in nucleon mat- 
ter ,  in a phase with spontaneously violated chiral invar- 
iance, the pion, remaining a Goldstone particle, can 
have a low effective mass even if renormalization is 
taken into account. The simplest model of SU(2) 8 SU(2) 
chiral-invariant pion-nucleon interaction is the a model 
of strong  interaction^,^^' which we now proceed to con- 
sider. 

FIG. 1. 

3. ?r CONDENSATION IN THE o MODEL OF STRONG 
INTERACTIONS 

The a-model Lagrangian is 

where o is a scalar field; p and X a r e  parameters that 
can be connected with the physical masses of the parti- 
cles; Cb is the part of the Lagrangian that violates ex- 
plicitly the chiral invariance. In the case of exact SU(2) 
8 SU(2) symmetry of the Lagrangian (C, = O), the mini- 
mum of the energy of the system of interacting fields 
a r e  realized in a state with spontaneously broken sym- 
metry of vacuum, when 

<oz+nz)-pzlh'. (30) 

Chiral rotation makes it possible to choose a gauge in 
which (n) = 0, (a) =a, = p/k. In this case the pions a r e  
massless Goldstone particles and the masses of the nu- 
cleon and scalar u meson a r e  equal to  

Relativistic phase transition 

In the absence of a n condensate the energy of a sys- 
tem of nucleons interacting with a homogeneous field o 
is determined in the quasiclassical approximation by 
the expression 

Families of &(a) curves for different values of the nu- 
cleon density n=2p>/3n2 a r e  shown in Fig. 2.['] A rela- 
tion of the type shown in Fig. 2a is obtained a t  not too 
large a u-meson mass, m,? gM- 13 GeV. If m, << gM, 
then at a nucleon density 

1 
nf =- 3,,3"g1 mow (33) 

a first-order phase transition occurs in the system 
(curve a of Fig. 3) into a state with restored chiral . 

symmetry. The average scalar field changes jumpwise 

FIG. 2. a) Plot of &(a) n= n f ,  for mu( gMinthenucleondensity in- 
tervals: 1) n <nE, 2) n : ,  3) n f <n <nm,  4) n m < n .  b) plot of 
&(a) for mu >> gM in the nucleon-density intervals: 1) n <nE1, 
2) n:'<n. 
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determined from the equation 

FIG. 3. Plots of the average scalar field vs. nucleon density: 
a) m,S gM, b) m,  >>gM. 

from the value 

to zero. For a nucleon density in the interval nE < n  
< n,, where 

- 
?I,,,- Y%>, a,,,=a?/)12. (35) 

The state of matter with broken symmetry, according to 
Fig. 2a, is metastable. 

In the limit of a very large u-meson mass m, >>gM, 
the average scalar field decreases smoothly with in- 
creasing n (Fig. 3, curve b), and vanishes a t  a nucleon 
density 

n,"- (1/3fi) rr (mdg) ' (36) 

(second-order phase transition). 

We shall show now that in a phase with spontaneously 
broken symmetry the pion remains massless even with 
allowance for renormalization. Indeed, according to 
(26) and (29), the effective mass of the pion in nucleon 
matter (defined a s  the coefficient of $n2 in the total en- 
ergy of the system) is 

Comparing this expression with formula (32), we find 

Therefore p: = 0 for the extramal energy in the phase 
with broken symmetry (u #O). As a result of the phase 
transition the s and u mesons combine to form a mass- 
degenerate chiral multiplet. 

Abnormal states and n condensation in the a model 

If account is taken in the Lagrangian (29) of terms 
that violate chiral invariance, the dependence of the 
pion effective mass on the nucleon density is sensitive 
to  the manner of this violation. We consider two stand- 
ard forms of non-invariant terms: 

( 1 )  ( 2 )  
pb = - ' / z ~ . r 2 ~ 2 ,  2 b =C,O, (39) 

where C, = p:ao and in the second type of violation a, is 

In the absence of a r condensate the presence of 2:) 
does not change the formulas obtained above. In this 
case p: = ps. When chiral invariance i s  violated by the 
term Sf), the expression of the energy of the nucleons 
interacting with the field u goes over into 

8"'1=-23' (a) --C.a. (41) 

In this case a calculation of p: similar to the foregoing 
one yields 

The behavior of &(2)(o) at  different values of the nucleon 
density was investigated by Lee and Wick in connection 
with the problem of abnormal states of nuclear mat- 
ter.['] 

When account is taken of a classical weakly inhomo- 
geneous pion field of small amplitude, the energy of the 
nucleon matter a t  a given density takes, in accord with 
the conclusions of the preceding section, for the differ- 
ent types of chiral-invariance violation, the form 

where 5(vF) is determined by formula (25), and the Fer- 
mi velocity is 

In the preceding section i t  was shown that even in the 
nonrelativistic limit we have 5(pF/M) < 0 at nuclear 
density. In the u model the effective nucleon masses 
M* =p is always smaller than the vacuum value M=guo 
(see Fig. 3). Therefore if the condition Q < O  is satisfied 
in  the simplest model of rN interaction (see above) i t  is 
all the more valid, according to formulas (25) and (45), 
in the u model. 

Since 5 is negative a t  u p >  v, (Fig. I), i t  follows that 
the minima on the plots of 8:') = &(o) and 57)(a)  (Fig. 2) 
a r e  saddle points in (u, r )  space, and the system is un- 
stable to formation of r condensate. 

If chiral invariance is violated by the term St), the 
condition (28) that the a condensate be weakly inhomo- 
geneous i s  well satisfied at relativistic values of v,. In 
the second case, satisfaction of this condition depends 
on the relation between the constants of the model. 

In concluding this section we emphasize that inasmuch 
a s  the instability of the nuclear matter arises in the 
nonrelativistic region of values of v, and becomes 
stronger with increasing Fermi velocity, consideration 
of the ground state of relativistic nuclear matter with- 
out allowance for r condensation can not be consistent. 
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EFFECT OF NUCLEON-INTERACTION OM THE 
PARAMETERS THAT CHARACTERIZE THE 
INSTAB1 LlTY 
the classical pion field, which takes place when account 
is taken of the short-range interaction between the nu- 
cleons. For a weakly inhomogeneous n condensate this 
can be done within the framework of the quasiclassical 
method used by us with the aid of the Fermi-liquid the- 
ory .[lo] 

When account is taken of the short-range NN interac- 
tion, the thermodynamic potential of the nucleons in the 
n-condensate field i s  determined by the formula 

d"p  - ( 0 ,  d'p 
dk{Sp:J --6r,,np +SpoT J F ~ ~ p + ~ 6 ~ , , - ~ t ) 6 f 1 p  

(2.) " -2 ) "  

I d ' p d ' p '  (46) + - ~p;,' f - - -  F,,, , .  6n, 6!zp, 
2 ( 2 2 )  

where 6€, = hp - E,, and 6% is the change of the single- 
particle density matrix of the interacting nucleons: 

N 

66, satisfies the integral equation 

and F,,, is the amplitude of the zero-angle nucleon scat- 
tering. 

The function F,,, can be expanded in the invariant 
amplitudes and i t s  form in the nonrelativistic limit for 
isotopically symmetric matter is[''] 

In this case Eq. (48) is readily solved: 

- g a ( r r )  &?= 
6~~=(i ' iq0)-'-0-+(Iff~)-'-n~, 

2 ~ '  ax 2 ~ '  (50) 

where q0 and f o  a r e  the zeroth harmonics of the expan- 
sions of the functions qpp, and f,,, in Legendre polyno- 
mials. 

Substitution of (50) in (46) leads to the following ex- 
pression for the instability parameter 5 in the nonrela- 
tivistic limit: 

(We note that the inequality 1 +qo>O is the condition for 
the stability of the nucleon liquid relative to perturba- 
tions of the Fermi surface in the absence of the pion 
field.) The constant qo in  vacuum is known from exper- 
iments on the scattering of nonrelativistic nucleons, 
170 =0.8.[lo1 For nuclear matter, the value qo = 1.6 can be 
determined from the experimental data on the magnetic 
moments of spherical nuclei.["] The Fermi velocity v, 
at  which reverses sign, is v,=0.28 a t  qo= 1.6 and 
$/41r= 14.6, and is very close to the Fermi velocity of 
the nucleons at normal nuclear density. 
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