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The density of phonons incident on a planar geometry detector is calculated, with account tskcn of the 
anisotropy of a crystalline anthraccne plate. It is shown that the minimum time of flight satisfactorily 
agree with the time observed experimentally for different groups of nonequilibrium phonons. 

1. INTRODUCTION. 
FEATURES OF THE PLANAR GEOMETRY 

Several works have appeared on the Here we have introduced the function rj(k)-the time of 
propagation of thermal pulses in solids with a planar arrival at the rear  wall of the phonon of the jth branch 
geometry of the experiment. In the usual situation with wave vector k. The physical meaning of Eq. (1) is 
(Fig. la),  the dimensions of both the source and the obvious; the phonon makes a contribution to the density 
detector are  small in comparison with the distance at the same instant when it reaches the rear  wall. 
between them, i.e., with the dimensions of the crystal. 
This means that the direction of propagation of the 
phonons which are  recorded by the detector is known 
beforehand. In the most general case, there a re  sev- 
eral groups of such phonons. The situation is entirely 
different in the case of planar geometry (Fig. lb). Here, 
at D >z d, phonons reach the detector from arbitrary 
directions. Therefore the problem-to predict theoreti- 
cally the shape of the response for a given shape of the 
excitation pulse-is much more complicated. It is also 
not clear initially which phonons first reach the detec- 
tor and when this happens. 

There exist many different types of phonon detectors: 
thermal bolometers, superconducting films, optical 
detectors. In a rough approximation, they all respond 
to the total phonon density in the region of the detector. 
We shall be concerned with the analysis of this impor- 
tant characteristic in the case of planar geometry and 
an anisotropic crystal. 

2. PHONON.DENSITY AT THE DETECTOR 

Let a certain quantity of phonons be generated at the 
left wall of a crystal, which serves as  a heater (H), in 
the form of a pulse that is delta-shaped in time. Let 
the distribution function of these phonons by iPj(k), 
where k is the quasimomentum and j characterizes the 
phonon branch, the consideration being limited to the 
three acoustical branches. How does the total phonon 
density depend on the time in this case at the detector, 
i.e., at the right wall? For simplification of the 
problem, we neglect reflection of the phonons from the 
walls, i.e., we limit ourselves to the first arrival of 
phonons at the rear wall. Physically, this corresponds 
to an absolutely matched detector, which absorbs all 
the phonons incident on it. This part of the phonon 
density-the response function G(t)- is  given by the 
expression 

It i s  not possible for a specific case to use Eq. (1) to 
calculate the function G(t). This is first of all connected 
with the fact that in many experiments we know almost 
nothing about the initial phonon distribution function 
@,(It). Therefore, assuming iPj(k) to be not too different 
from isotropic and a sufficiently smooth function (in 
experiments of Refs. 2 and 3, there was no evidence 
that this was not so), we shall seek the more important 
features of the function G(t). Here we limit ourselves 
to small k, i.e., lkl << k,, the Brillouin wave vector. 
Then, a s  is well known,[41 the group velocities of the 
phonons, and consequently, ~ ( k )  also, depend only on 
the direction n of the wave vector, but not on its magni- 
tude. Then only integration over n remains in (1) and it 
i s  seen that the features of G(t) a re  connected with the 
points at which the first derivatives of the Tj(n) with 
respect to n vanish. These a re  the maxima, minima, 
and saddle points. 

It is not difficult to see that at t = T,', where t,' is any of 
the minimaof the function rj(n), the respopse G(t) under- 
goes a finite positive jump. For this, it is sufficient 
to expand rj(n) in a series in the region of the minimum 
up to terms of second order and to carry out the inte- 
gration in (1) over n in explicit form. At points of the 
maxima, jumps with the opposite sign a re  encountered 
similarly. The saddle points lead to logarithmic singu- 
larities of the form -In 1 t - 7; I , 7; is the value of 
at the saddle point. 

FIG. 1. The usual (a) and 
plane (b) geometry of the 

H experiments. Det-detec- 
tor. H-heater (source). 
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In the case of a pulse with the form g(t) of finite 
duration t,, we have, in place of (I), 

We now denote by A the absolute value of the jump at 
the minima and maxima. We denote by this same letter 
the coefficient of the logarithm at the saddle points. 
Let G*'(t) be the derivative of the smooth part of the 
function G(t) in the region of the singularity. At not too 
large t,, and in particular at t, s A/] G*'! , the function 
S(t) will have inflection points near the extremum points 
of 7,(n), and maxima near the saddle points. In order 
that the singularities of S(t) be observed separately, it 
is necessary that t,S AT, where A7 i s  the distance 
between the corresponding singularities of T,(n). To 
find the functions rj(n) in which we are  interested, it 
is natural to use the well knownc4' procedure of calcula- 
tion of the group velocities from the elastic constants 
of the crystal. 

3. THE ANTHRACENE CRYSTAL 

Further calculations were carried out for the anthra- 
cene crystal in the geometry of the experiments of Refs. 
2 and 3. In this geometry, our choice of Oz perpendicu- 
lar to the plane of the plate (Fig. lb) corresponds to the 
standard choice of axes in the anthracene crystal 
(Fig. 2). 

To determine rj(n) with a computer (M-222) we used 
the elastic constants of anthracene from the work of 
L ~ t z . [ ~ ]  TO put the results of the calculations in con- 
venient form, we choose the usual spherical set of 
coordinates for n: I3 is the angle between Ox, and n, and 
cp is the angle between Ox, andthe projection of n on the 
plane Ox,x, and i s  measured in the direction toward Ox,. 
Each vector n of the hemisphere I3 > 0 can be represent- 
ed by a point on such a diagram (Fig. 3): the angle cp i s  
plotted in explicit fashion; in place of 13 we introduce 
the radius r= 2sin2(8/2). Such a diagram is convenient 
in that it preserves the area of the hemisphere. 

The angles I3 and cp were scanned with variable inter- 
vals such that the points filled the area of the diagram 
uniformly. Owing to the presence of a plane of sym- 
metry perpendicular to Ox,, it suffices to investigate 
the semicircle 0 G cp c 180'. The original picture con- 
tains 630 points on the semicircle (the computer calcu- 
lation time of a single point amounted to 10 sec). The 

k$; FIG. 2. Unit cell of anthra- 
cene (crystal of monoclinic 
syngony). Parameters : 
f3 = 124.7'. a=8.56 A, 
b=6.941(, c=11.6A. The 
plane a b  is  the cleavage 

u plane. 

/ 

Or,  rz 

FIG. 3. Map of the time of arrival for the quasi-longitudinal 
(L) and two quasi-transverse (TI, T2) branches. The continu- 
ous curves connect points with the same times of arrival (in 
nanoseconds, for a crystal of thickness 45p), denoted by the 
numbers at  the lines. The dashed curve indicates points 
rj(n) =m . The maxima and minima a re  denoted by the boldface 
points, the saddle points by the crosses. All the singularities 
are identified by Greek symbols. This notation is repeated in 
Fig. 4 and the table. 

regions of the singularities were investigated in more 
detail, with the intervals 2-3 times smaller. 

The values obtained for 7,' are given in the table. 
For illustration, Fig. 3, shows the diagrams for all 
three acoustic branches, as  well a s  the lines of equal 
arrival times and the locations of the singular points. 

4. COMPARISON WITH EXPERIMENT 

Figure 4 shows the experimental curve from Ref. 3. 
It shows also the values T,' of the singular points of the 
function rj(n) a s  calculated in the present work. It i s  
seen that the minimum a on the quasi-longitudinal branch 

TABLE I. Singular points* of the function r,b) 

thy&y;t~g&t 

-- 
105 
124 
141 I Maximum 

12.8 
20.2 
20.2 
22.2 
22.5 
23.2 
23.3 
27 
27 
46 
58 

*The designations of the singular points a, /3 
etc. correspond to those of Figs. 3 and 4. 
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FIG. 4. Experimental curve of the temperature-sensitive ratio 
of the intensities of two lines in the anthracene spectrum.cs1 
The time t is measured from the beginning of the excitation 
pulse. Below the arrows, the times corresponding to the found 
singular point rj(n) a r e  marked by Greek symbols. The values 
of for the singular points p ,  v, !, are  beyond the limits of 
the experiment (the thickness of the crystal d=  4 5 ~ ) ;  the dashed 
curve shows the shape of the pump pulse. 

corresponds to the first arrival of phonons at the detec- 
tor. A small delay ( ~ 3  nanosec) of the experimental 
step relative to the calculated value ?:, corresponding 
to the point a, can be attributed to the duration of the 
process of generation of longwave phonons from exci- 
tons via shortwave phonon~ .~~]  With account of this 
delay, the second group of arriving phonons (the second 
step) can be connected with the series of singular points 
from B to q (minima and one saddle). The points of this  
series are  not resolved experimentally because of the 
long duration of the excitation pulse. 

The third step is close in time (with account of the 
delay) to the saddles 9 and i .  However, it is scarcely 
connected with them. The point is that the experimen- 
tally measured signal is proportional to the tempera- 
ture, i.e., the fourth root of the phonon concentration. 
Therefore the last step corresponds to the arrival of a 
substantially larger number of phonons than the first 
two. Yet the singularities of 8 and i are not separated 
in the calculation against the background ,of the other 
singularities. 
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There exist two possibilities of explanation of the 
last arrival. The f i rs t  is as follows. This arrival is 
connected with the hydrodynamic pr~paga t ion ,~~]  and the 
first  two with the acoustic precursors, i.e., with the 
phonons which avoid phonon-phonon collisions. The 
number of such phonons is -exd-d/l}, where 1 is the 
free path length relative to phonon-phonon processes; it 
is entirely possible that this number is not very small 
(the exact value of 1 is unknown). The second possibility 
can be connected with the fact that the thickness of the 
crystal is not sufficient to let the bulk of the decay pro- 
ducts reach the acoustic limit in the process of spon- 
taneous decay of the shortwave p h o n o n ~ . ~ ~ ~  Then, 
because of the dispersion of the group velocity, the bulk 
of the phonons arrive with effective velocities slower 
than acoustic. However, in the decay process, a small 
(power-law) number of longwave phonons is produced 
and these play the role of precursors and cause the 
first  two steps of the experimental curve. 

It is not possible to make a direct choice between the 
two proposed variants. In any case, however, the first 
two steps are  well explained by the acoustical precur- 
sors. 

The authors thank V. L. Broude and the members of 
his laboratory for acquainting them with the results of 
an experiment before its publication, and for stimula- 
tion of the research. 
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