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A general theory is constructed of the emission of secondary rays in Bragg diffraction of x rays in an ideal 
crystal and in a crystal with a perturbed surface layer. In the case of photoemission, the angular 
dependence of the photoelectron emission is extremely sensitive to weak displacements of the atoms in the 
surface layer. The question of the possibility of extracting information on the structure of the perturbed 
layer is analyzed in detail. It is shown that in a number of situations the aggregate of the data provided 
by the photmnission curve and the reflection curve permits a complete reconstruction of the structure of 
the perturbations in the surface layer, including both the averaged and random displacements of the atoms 
from their positions in an ideal crystal. 

PACS numbers: 61.10.Dp, 68.20.+t, 79.60.-i 

1. INTRODUCTION 

The diffraction scattering of x rays in thick crystals  
of high degree of perfection, in the so-called dynamic 
regime, is characterized by the formation of a single 
wave field by coherent superposition of the incident 
and diffracted waves. The structure of this field, i.e., 
the distribution of its nodes and antinodes, depends 
strongly on the angle of incidence of the x rays  on the 
crystal. This leads in turn to a strong angular depen- 
dence of the cross  sections of the inelastic processes 
such as the photoeffect, fluorescence, Compton scat- 
tering, and others, which decrease strongly when the 
field nodes are at the crystal atoms, and conversely 

ing work of Batterman,[=] extensive investigations have 
been made of secondary processes ( f l u o r e ~ c e n c e , [ ~ ' ~ ~  
thermal diffuse Compton scatteringf8]) 
that accompany the diffraction of x rays. In al l  cases,  
strongly pronounced anomalies were observed in the 
angular dependence of the secondary emission near the 
Bragg angle. However, in view of the large depths L of 
emergence of the secondary radiations investigated 

which greatly exceed the extinction length L,, 
of the x rays, the observed anomalies took mainly the 
form of dips on the yield curves, and only a small  
asymmetry of the curve reflected the structure of the 
wave field. 

increase when the crystal lattice si tes correspond to The situation changes radically if one registers the 
antinodes of the combined electric field. A reflection emission f rom the crystal  of photoelectrons for which 
of this circumstance is the sharp decrease of the x-ray L i s  always much less than L, . Such investigations 
absorption coefficient in diffraction in the Laue geo- were f i r s t  initiated in the early Seventies at the initia- 
metry, observed by Borrmann in 1941-the so-called tive of 0. N. Efimov at  the Leningrad University. It 
anomalous passage effect (see, e.g. ,[I1). was shown even in the f i rs t   paper^[^.^' that the photo- 

The changes of the intensities of the inelastic proces- 
ses can be investigated also directly, by studying the 
angular dependence of the emission of secondary rays. 
The f i rs t  to choose this procedure, namely measure- 
ment of the angular dependence of the yield of the n-y- 
reaction, was ~ n o w l e s , [ ~ '  in an investigation of the 

electron yield curve reflects primarily the structure 
of the wave field in the crystal, while the extinction of 
the x rays has little effect. This circumstance was the 
basis of a new method of investigating structural  imper- 
fections produced in a crystal  by various types of ex- 
ternal  action.[''- lZ1 

anomalous passage of thermal neutrons in perfect cal- Later on Golovchenko, Batterman, and ~ r o w n [ ' ~ ]  

cite crystals. In the Sixties, starting with the pioneer- found a method of decreasing the parameter L also in 
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the case of fluoresence emission, by introducing impur- 
ities at a small depth; this also enabled them to observe 
the structure of the wave field in the crystal, in full 
analogy with the results of r8191. Quite recently two 
groups working independently-Kruglov and 
S h c h e m e l e ~ ~ ' ~ ~  on photoemission curves, and Anderson, 
Golovchenko, and   air['^] on the fluorescence yield 
curves from impurity atoms at  small depths-have 
demonstrated experimentally that the methods indicated 
above a re  extremely sensitive to very weak distortion 
of the crystal structure, when the total displacement 
of the crystal surface a s  a result of external action 
(say, ion implantation) is a small fraction of the inter- 
atomic distance. This fact is not yet widely known; 
moreover, there is no detailed theoretical analysis 
whatever of this question. 

The high sensitivity of the photoemission curves at a 
small depth of emergence of the photoelectrons to the 
total displacement of the surface layer is more o r  less 
physically obvious, and this idea was already advanced 
by one of us (Afans'ev) in the analysis of the data of ['O1. 

A much more complicated and important theoretical 
problem is to determine how much information on the 
structure of the imperfect layer can be extracted from 
the data on the angular dependence of the photoelectron 
emission. 

The present paper is devoted mainly to this question. 
It will be shown in Sec. 3 that the aggregate of the data 
provided by the reflection and photoemission curves 
can permit, for an entire class of imperfections, the 
reconstruction of the structure of the distortions of the 
crystal lattice over the entire surface layer. In Sec. 2 
we obtain general formulas that describe the angular 
dependence of the emission of the secondary rays, and 
consider the case of an ideal crystal. 

2. FORMULATION OF PROBLEM AND DERIVATION 
OF GENERAL FORMULAS 

Assume that x rays  a r e  incident on a crystal that is 
made slightly imperfect by some external action. Let 
the incidence angle be close to the Bragg angle and let 
the diffracted wave emerge from the irradiated (en- 
trance) surface of the crystal (the so-called Bragg- 
geometry diffraction). We assume that the imperfec- 
tions a re  uniform along the surface, i.e., the para- 
meters of the perturbed layer depend only on the coord- 
inate z, which is the distance to the entrance surface 
of the crystal. The imperfections in the crystal will be 
described by two parameters: the displacement u(z) of 
the atomic planes from positions corresponding to the 
ideal crystal, and by the static Debye-Waller factor ,- wc., , which takes into account the random displace- 
ments of the atoms from the positions corresponding to 
the average displacements. 

The electric-field vector of the x-ray wave in such a 
crystal i s  given by 

where k,, and k, a r e  the wave vectors in the directions 

of the incident and diffracted waves, respectively. For 
the amplitudes Eo(z) and E,(z) we readily obtain directly 
from Maxwell's equations the following system of equa- 
tions, f i rs t  proposed by ~ a k a ~ i [ ' ~ ] :  

Summation over repeated indices is implied throughout, 
k = w/c, q(z) = h u(z), h and Ti= - h a r e  the reciprocal- 
lattice vector multiplied by 2 n, yo,, are  the cosines of 
the angles between the vectors Is,,, , and the inward nor- 
mal to the entrance plane of the crystal. The parameter 
a! determines the deviation from the Bragg condition. 

The Fourier components of the polarizability tensor 
xo, can be represented in the form 

where x,, , and x,, , a r e  proportional to the real  and 
imaginary parts of the amplitude of the scattering by the 
unit cell of the crystal, respectively. As a result of the 
optical theorem, xi0 is linearly connected with the total 
x-ray absorption coefficient p,,. A variety of processes 
contribute to the x-ray absorption: the photoeffect (PH), 
thermal diffuse scattering (TDS), and Compton scatter- 
ing (CS). Accordingly, x i  can be represented a s  a sum 
of terms, each of which describes a definite absorption 
process: 

To find the intensity of the secondary emissions, we 
consider a layer located a t  a depth z and having a thick- 
ness dz. The total x-ray absorption in this layer i s  
obviously determined by the difference between the 
incoming and outgoing fluxes, i.e., 

Using (2), we readily obtain 

z ( z )  = k  [E,," ( z )  xi,"E,'(z) +E,.'' ( 2 )  X,,"lEh' (z) ] 

+2k nc [E," ( z )  ; l , i ; l lEh' (~)  ef~(zl - 'F 'z)  1. (4) 

With the aid of (3) we can easily separate the contri- . 
bution made to the absorption by any of these processes. 
To  this end i t  is  obviously necessary to replace x i  in (4) 
by x {(A)-the quantity corresponding to the process of 
interest to us. If the probability of the secondary emis- 
sion from the crystal is  given by the function P p ( z ) ,  
then the registered intensity is determined a s  follows: 
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We have introduced here explicitly the dependence on 
the angle of incidence of the x rays in the crystal, a 
dependence already contained in Eqs. (2) and (4) above, 
via the parameter a. 

Formula (5) provides in fact the complete solution of 
the problem of the angular dependence of the secondary 
emission. Specific features of any particular process 
a r e  expressed via the coefficients xto, *(A) and the function 
P,(z). The amplitudes Eo(z, a) and Eh(z, a ) ,  naturally, 
do not depend on the type of the registered secondary 
radiation and are  determined only by the diffraction- 
scattering process. If the crystal-lattice distortion i s  
known, i.e., if the functions p(z) and W(z) a r e  given, 
then the amplitudes E,, ,(z, a )  can be obtained, for 
example, by numerically solving Eqs. (2) with the 
corresponding boundary conditions. We note that since 
Eqs. (2) contain the complete polarizability tensor, it 
suffices to retain in their solutions only the principal 
contributions to X, i.e., the Thomson scattering and the 
dipole part of the photoelectric absorption. If only these 
processes are  taken into account, the polarizability i s  a 
scalar: dfh= &, ,bi'. In this case, a s  usual, we can 
introduce the unit vectors of the standard polarizations 
no, and o.[" For simplicity we shall assume below that 
the radiation incident on the crystal is u-polarized. 

In the case of an ideal crystal (cp(z)= W(z)=O), the 
field distribution i s  well known: 

E,, h ( i ,  a )  = U E ~ , ~ ( O ,  a)  exp [ ike(a)z l7 ,1 ,  

Eo (0, a )  =Ei., &(O, a) =fiRo(a)Er.. 

Here Eh is the amplitude of the wave incident on the 
crystal, 

The sign in front of the square root in (7) and (8) is 
determined by the condition 1m6 (a )  >O. 

Substituting (6) in (5), we obtain - 
xASd(a)  = IE..12po ( A )  { i + p P x  ( a )  + 2 Y $ ~ e  (er(A)Ro ( a ) ) }  dz P,(z) e-P'a'', 

0 (10) 

where 

po ( A )  =ko'o'~~o" ( A ) ,  - ei;(A) = k o i o ' ~ i ' ( A ) / p a ( A ) ,  

p ( a )  =2 ( k / ~ , )  Im E ( a ) ,  Pn= IR, 1'. 
(11) 

The quantity p(a)  i s  called the interference damping 
coefficient, and P ,  is the reflection coefficient. 

Formula (10) solves the problem of the angular depen- 
dence of the secondary emission from an ideal crystal 
and can be used for any of the secondary processes- 
photoeffect, fluorescence, thermal diffuse scattering, 
and others. A separate analysis of the specifics of each 
of the processes i s  outside the scope of the present 
paper. We shall dwell here only on the most significant 
and rather general consequences of (lo), and make the 

following preliminary remark, Assume that the para- 
meter c;(A) in (10) coincides with the corresponding 
one in Eqs. (2), i.e., 

A s  noted above, xi,, i s  determined by the dipole part of 
the photoelectric absorption, so that condition (12) can 
be regarded a s  satisfied, with a certain degree of 
accuracy, for photoemission and fluoresence from the 
atoms of the main matrix of the crystal. 

In this case, using formulas (7)-(9) and ( l l ) ,  we can 
easily transform the expression in the curly brackets 
of (10) into (1 - P,(a) ) p(a). Formula (10) then becomes 

- 
xr8 ' (a )  =IE,,12p,(d) ( I -PR ( a )  j p(2) d; P., ( z )  e-Mu". (13) 

0 

A formula of this type was derived inc3] and then used 
to analyze the experimental data in a number of suc- 
ceeding studies. It is clear from the foregoing, how- 
ever, that the region of applicability of this formula i s  
limited, and it cannot be used for such processes a s  
thermal diffusion scattering and Compton scattering, or  
fluoresecence from impurities, where condition (12) i s  
certainly not satisfied. 

We note that even in the case of the photoeffect the 
use of formula (13) is not fully correct. Indeed, the 
photoeffect gives rise to various groups of electrons 
that correspond to transitions from different atomic 
shells. Each such group has its own emergence length 
LA, and also its own parameter ( ; (A) ,  since the value 
of t; varies with the electron shell from which the elec- 
tron i s  detached (see, e.g.,C171). Formula (10) should 
therefore be used also in the case of photoelectric ab- 
sorption separately for the different electron groups, 
and only then should the contributions from all the 
groups be summed. 

Thus, although no qualitative differences is observed 
in this case between the yield curves obtained with 
formulas (13) and (lo), formula (10) i s  nevertheless 
preferable, since it is exact, while (13) is approximate. 

We consider now the behavior of the interference 
damping coefficient p(a). Far  from the bragg angle 
( 1 1 >> 1) we have p(a) = po/yo, and in the region ( ( y 1 a 1) 
of total reflection p(a)  increases sharply to a value 
pox = 2/L,, , where L,, i s  the extinction length and i s  
determined by the relation 

A typical behavior of p(a) i s  shown in Fig. 1. 

It i s  easily seen from (lo), the character of the ang- 
ular dependence %(a) will be determined to a substantial 
degree by the value of the average depth of emergence 
of the secondary emission L, or more accurately by the 
ratio of L and L,,. By way of example we consider the 
limiting cases. At L >> L, it i s  convenient to investigate 
formula (13). In this case the function PA(z), which 
varies slowly in comparison with the exponential factor, 
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FIG. 1. Angular dependence of the x-ray reflection coefficient 
PR(v)/PR - (curve 1). of the damping coefficient p(y)/p- 
(curve 21, and the photoelectron emiesbn %I$)/%% (curve 3 
for an ideal silicon crystal in the case of (111) reflection of the 
Cu Ka line: P, , =0.937, ~ ~ ~ 2 2 . 1  po/%, ands&=2.80 
dd(-). 

can be replaced by its value at z = 0. As a result we get 
for d o ) ,  apart from inessential constant factors, 

In the opposite limiting case L << L, we can replace 
e'"b in (10) by unity. Then 

It follows from (15) that at L >> L, the secondary- 
emission curve is simply the inverted reflection curve, 
i.e., by measuring %(a) we can determine in this case 
accurately the angular position of the Bragg reflection, 
but this does in fact yield no new information on the 
diffraction scattering, compared with the information 
contained in the reflection curve P,(a). Actually, allow- 
ance for the fact that L is finite leads to corrections of 
the order of L,/L in formula (l5), and these already 
contain information on the structure of the wave field at 
the investigated crystal atoms, i.e., those which serve 
as sources of secondary radiation. 

We shall not stop here to analyze this question, which 
has already been discussed in sufficient detailin IS'. We 
note only that the use of radiation of this type with 
L << L,, (meaning all the types of radiation except photo- 
emission), in view of the just mentioned distinctions 
between them, can hardly be of any use for the investi- 
gation of the structure of the imperfect crystal. 

The situation is radically altered in the opposite case 
L << L,. This is precisely the situation typical of 
photoemission. Indeed, in this case the ~ ( a )  curve 
differs strongly from the reflection curve and offers 
a direct representation of the summary wave field at the 
atomic planes. If we disregard the inessential angular 
dependence of the cross section for photoabsorption by 
individual atoms, then formula (16) with allowance for 
(6) can be represented in the form 

It i s  most important here that within the limits of the 
total-reflection region ( 1  y 1 s 1) the modulus of the field 
Eh(O, a )  remains practically unchanged, but its phase 
changes greatly, from zero to n. This behavior can be 

readily seen from formulas (6), (8), and (9). Typical 
curves for xZd.,(cy) and P,(a) are  shown in Fig. 1. A 
clearly pronounced interference pattern in the photo- 
emission curve was first established experimentally 
in t8.91. 

It should be noted that similar results can be obtained 
also by investigating the fluorescence from impurity 
atoms implanted in a surface layer of a crysial. For- 
mula (10) i s  no longer suitable for the description of 
this case, and must be modified. First, the function 
P,(z) must be replaced by ci,(z)P,(z), where c,,(z) i s  
the concentration of the impurity as a function of the 
depth of the implantation. In addition, it i s  necessary to 
replace x,, and x,, by x$.,* and x'f,m', which leads to a 
renormalization of the quantities pO(A) and c ;(A) in 
accordance with formula (11). It i s  quite important 
here that, depending on the location of the impurity in 
the unit cell (p,,), an additional phase factor appears 
exp(ih p,,), and can radically alter the form of the 
x(a) curve. As a result we have 

xcim) (a)  = l ~ , . l ' ~ ~ " '  { I + f P R ( a )  - 
RRC[C: '~'R~!%) exp(ihptl) 1) 1 dz elm (z)P(:)e-*(*)'.  (17) 

0 

If the depth of the impurities is L,,<<L, and p,,=O, 
then we again obtain a formula close to (16). Curves 
of similar type were obtained in [lS1, wherefluorescence 
of arsenic implanted in silicon was investigated. 

3. PHOTOEMISStON FROM CRYSTALS WITH 
IMPERFECT SURFACE LAYERS 

As noted above, Eqs. (5) and (2) solve completely the 
problem of finding the angular dependence of the secon- 
dary emission, provided that the distortions of the 
crystal lattice a re  known. This raises, however, a 
much more important problem, namely the determina- 
tion of the lattice distortions from the experimentally 
obtained angular dependence 4 a ) .  In this problem, too, 
the photoemission method provides offers exceptionally 
great opportunities, in view of the small depth from 
which the photoelectrons a re  emitted. This can be seen 
already directly from formula (5). Indeed, consider 
the limiting situation, when the emission depth is so 
small that the changes of the fields EOeh(z) and of the 
distortions of the crystal lattice (cp(z) and W(z)) can be 
completely neglected over distances on the order of L. 
In this case we obtain for ~ ( y )  

where 

is the amplitude of the reflection of the x rays by the 
crystal, including the reflection by the perturbed layer. 
We have left out of (18) all the inessential constant fac- 
tors. Moreover, we shall use henceforth the para- 
meter y, o r  more accurately its real part, as the angle 
variable. 

Assume that the perturbations extend over a layer 
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whose thickness L,,, is small compared with the - 

extinction length. With allowance for the approxima- 
tions already made, the case in question i s  determined 
by the inequalities 

We confine ourselves below to an analysis of only this 
situation. It is clear that when condition (19) is satis- 
fied, the increment made to the amplitude R(y) on 
account of reflection in the layer is small compared 
with unity. From (2) it is easy to find that, accurate to 
terms quadratic in the parameter I,,,= L,,JL,, we have 

R(Y) -Ro(Y) +AR(y), (20) 

e - ~ ' Y * ( e - * ~ ~ ~ - w ~ ~ ) - ~ )  

In (21) and everywhere below the coordinate z i s  reck- 
oned in extinction lengths. 

We consider f i rs t  the angle region 1 y ( <l,  where 
I R , ( ~ )  I - 1, and neglect in (20) the correction for the 
scattering by the imperfect layer, i.e., we replace 
R(y) by R,(y). The distortions of the crystal lattice in 
the imperfect layer manifest themselves on the x(y) 
curve via the factor W(0) and the phase 

which is determinedby the displacement u(0) of the crystal 
surface. It is clear that the change of the phase by an 
amount on the order of unity should lead to a sharp change of 
the form of x(y). Figure 2 shows plots of X(y) calculated 
from formula (18), in which R(y) is replaced by Ro(y), 
a t  different values of the phase q(0). We note that, for 
example, the phase q(O)= 7r/2 for  the (333) reflection 
from a diamond-type lattice corresponds to a surface 
displacement of only -a/20, where a is the lattice con- 
stant. On the other hand, x(y) curves with q =  7r/2 and 
q = 0 differ very greatly, and in fact substantially smal- 
l e r  changes of the phase a re  noticeably discernible on 
the x(y) curves. This example demonstrates the degree 
of sensitivity of the photoemission yield curves to per- 
turbations of the crystal structure of the surface layer. 

The high sensitivity of the photoelectron emission 
yield curves to the total displacement of the surface of a 
crystal with a perturbed layer was clearly demonstrated 
by the experiments of Kruglov and Sh~hemelev,~ '~ '  who 
measured the angular dependence of the photoemission 
from a silicon crystal in which boron ions were implan- 
ted. They used the low energy K ,  line of Ca to ensure 
satisfaction of the inequality (19). Etching layer after 
layer of the perturbed surface produced a ser ies  of 
curves corresponding to different values of the phase 
q(O), from 3 7r/4 to zero. 

Independently and somewhat later, similar results 
were obtained by Andersen, Golovchenko, and Mair 
in an investigation of the fluorescence of an arsenic 
impurity in silicon following implantation of nitrogen 
ions. Since the arsenic did not penetrate deeply, the 

-4 - 2  0 2 4 y  

FIG. 2. Angular dependence of the photoelectron yield, calcu- 
lated from formula (18) in the approximation R (y) = R, (y) and 
W(0) = 0, for different values of the phase cp(0) = 0 (curve 1). 
r /2  (curve 2), n (curve 3), and 3n/2 (curve 4). The calculation 
was made for silicon, the Cu K, line, and the (111) reflection 
of the x-ray lines. 

perturbed layer was produced mainly by the nitrogen 
ions. By varying the irradiation dose and the energy of 
the nitrogen ions, Andersen et al. also obtained a 
ser ies  of curves corresponding to different values of the 
phase (0). 

The physical cause of the high sensitivity to the sur-  
face displacement is the following. The amplitude of the 
refracted wave Eo(z, y) near the surface (z = 0) differs 
little from E,,, a fact that follows directly from the E, 
boundary conditions. As to the amplitude E,(z, y) of the 
reflevted wave near the surface, it depends on the thick- 
ness of the entire crystal together with the substrate. 
If the substrate thickness is much large than L,, the 
amplitudes E, and Eo in the angle region 1 y 1 < 1 are  
comparable in magnitude, and in this case the field of 
the x-ray wave acquires a clearly pronounced periodi- 
city in the direction of the vector h, and the period is 
smaller by an integer factor than the crystal lattice 
parameter, o r  else is equal to the latter. Owing to the 
weakness of the interaction of the x rays with the cry- 
stal  atoms, this field structure, once produced in the 
substrate, is preserved also in the perturbed layer 
provided that L,,,<<L,. The shift of the surface by an 
amount smaller than the lattice parameter is precisely 
the indication of this periodicity of the x-ray field. 

This can be observed, however, only when a large 
number of the atoms-the sources of the secondary 
radiation-preserve distinct phase relationships, i.e., 
when some long-range order exists on the surface. On 
the other hand it is obvious that the defects in the per- 
turbed layer lead to a certain disorder in the arrange- 
ment of the atoms near the defect. Different atoms 
land in different positions of the "unit cell" of the x-ray 
field, and this leads to a smearing of the phase relation- 
ships, and after averaging over a region near the 
defect-to an extinction of the interference term. Allow- 
ance for the short-range disorder is the task of the 
static Debye-Waller factor e'"". For  a layer that has 
been made completely amorphous e'm'- 0 and the 
interference term drops out completely. We note that 
in this case the ~ ( y )  curve contains new information 
compared with the reflection curve, since x-ray reflec- 
tion is insensitive to the presence of an amorphous 
layer on the crystal surface. 
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We see thus that it is possible to extract directly ' --* 

from the x(v) curves such data on the structure of the 
perturbed layer a s  the total displacement of the crystal 
surface or the degree of amorphization of the structure 
on the surface. In fact, there a re  many more extensive 
possibilities of obtaining information from photoemis- 
sion data. 

Indeed, the quantities p(0) and W(0) a re  determined 
from the character of the X(y) curve in the narrow angle 
region 1 y l  < 1. However the x(y) curve has, a s  a rule, 
also weak contracted "tails" due to scattering by the 
perturbed layer. In this range of angles, the square of 
the ratio E,(Z)/E,(Z) can be neglected in the entire 
crystal and a s  a result we get for R(y) the formula 

Since the measurements of the reflection curve yielded 
the modulus of R(y), while the values of p(0) and W(0) 
in the regions I v l  >1  can be regarded a s  known, it 
follows that according to (18) the data on the angular 
dependence of the photoemission can be used to recon- 
struct also the phase of R(y), i.e., to determine com- 
pletely the reflection amplitude. On the other hand, 
according to (23) the quantity R(v)  in the region I y I > 1 is 
essentially the Fourier component of the function f(z) 
= exp[- ip(z) - W(z)]. A possibility is thus provided for 
reconstructing this function with the aid of an inverse 
Fourier transformation. 

Consequently, simultaneous measurements of the 
reflection curves and of the photoemission in situations 
when the conditions (19) a re  satisfied make it possible 
in principle to reconstruct fully the perturbations of the 
crystal structure in the surface layer, including both 
the average displacements of the atomic planes u(z), 
and the random displacements described by the static 
Debye-Waller factor e'"". The accuracy with which 
these parameters is determined depends, naturally, on 
the degree to which the inequalities (19) hold, on the 
accuracy of the experimental data, on the region of the 
angles y in which the measurements a re  made, and also 
on the angle width of the incident x-ray beam. Each of 
these questions calls for a special study. 

Formula (18) was obtained in fact in the limit of an 
infinitesimally small depth L of photoelectron emer- 
gence. We obtain below a more general expression for 
X(y) with allowance for the variation of the fields Eo and 
Eh at the depth L. We find first the change of the wave 
field near the surface. The amplitudes of the field on 
the surface itself a re  assumed given: 

To find the fields Eo,,(z) at  z >0  we use Eqs. (2), 
which are  best recast in a tomewhat different form by 
introducing the quantities Eo. ,(z, y) defined by the rela- 
tions 

E4z) - exp {2 i  -$-- z)& (21, 
P l&l 
%,-a 

B, (2) - exp -2i-z} EA(Z). 1 $"'l~?hl 

Here, a s  before, the unit of length is taken to be L,, 
(14). For the amplitudes E0,,(z) Eqs. (2) take the form 

where 

Formula (5) for (y) is expressed in terms of a s  
follows: 

where 

The amplitudes go,, are  convenient in that, a s  can be 
seen from (26), they vary little over distances smaller 
than L,, whereas the amplitude E,(z) can vary strongly 
also over small distances, because of the presence of 
the additional phase factor. We seek a solution of the 
system (26) in the form 

In the approximation linear in the parameter 1 we have 

Formula (28) with allowance for the obtained changes 
in the fields zo, ,(z) and with retention of only the terms 
linear in the parameter 1 can be easily reduced to the 
form 

x(y) -(f+B'hfi(~))+PIR(y) ('(f+B-"lfr(y)) 

+2$" R e [ R ( y )  (edei*('**))+f,(y)) I .  (31) 

Here f,(y) and f2(y) a re  terms small in the parameter I: 

We have introduced above the notation 

We disregard first  the correction terms connected 
with the functions f,(y) and f,(y). Then the fact that the 
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photoelectrons emerge from a finite depth is reflected 
in formula (31) by the factor 

which goes over in the limit as I - 0 into exp[iq(O) 
- W(0)I. 

Naturally, allowance for the finite emergence depth 
leads primarily to a partial averaging-out of the phase 
factor eivk'. However, even if we assume that the 
change of the phase q(z) near the surface can be neglec- 
ted, we still obtain a substantial deviation from for- 
mula (l8), since the exponential of the integrand in (34) 
contains the term 2iyz. The role of this term is negli- 
gible at values 1 y 1 << $1, but at 1 y 1 2 $2 there is already 
a noticeable averaging out of the factor (34). If the 
photoelectron emission probability is known, then 
this factor can be calculated directly. 

The restriction on the weak change of the phase p(z) 
over distances on the order of I is quite strong and 
greatly decreases the region of applicability of (18) in 
real  situation. The class of investigated perturbations 
can actually be greatly expanded. Assume that over 
distances on the order I it is not the phase which 
changes, but only its first  derivative, i.e., assume that 

In this case we can expand the phase q(z) in powers of 
z near z = 0 and confine ourselves to the linear term of 
the expansion 

We assume also that the factor e-WG' changes little over 
distances on the order I. We then readily obtain from 
(34) 

where 

The quantity yo determines precisely the angular posi- 
tion corresponding to exact satisfaction of the Bragg 
condition for a crystal lattice with the parameters of the 
immediate surface layer. 

In the approximation (36), the functions fl(y) and 
f,(y) can also be expressed in terms of the function (38), 
namely 

Thus, the problem reduces to finding the function 
F(y). According to the presently held opinions, for 
electrons with given energy E ,  the probability of emer- 
gence to the surface is described by the law 

- z /  2 - 4  

(40) 

where La is taken to mean the so-called practical elec- 
tron range, determined in experiment by shooting 
through thin films. A simple empirical formula was 
proposed in C181 for La of simple substances a t  energies 
from 0.1 to 10 keV: 

Here p is  the density of the material (in g/cm3), Z i s  
the atomic number. A i s  the mass number, and E, is 
the energy in keV. 

The photoeffect i s  accompanied by formation of elec- 
tron groups that vary in energy and correspond to tran- 
sitions from the K, L, M,  etc. atomic shells. We 
denote by n, the probability of formation of electrons of 
group a. Then the total probability of the emergence of 
an electron from the crystal  is given by 

Using (28), (40), and (42), we easily obtain 

Formulas (31), (37)-(39), and (43) can be used for a 
much wider class of distortions than formula (18). To  
determine the amplitude R(y) from these expressions, 
however, it is necessary to know the parameter yo. In 
a number of cases, for example for monotonic distor- 
tion profiles, it can be estimated directly from the re- 
flection curves and, a s  seen from (43), a rather rough 
estimate of this parameter with an uncertainty Ay, - 1/1 
is sufficient. The general situation calls for a special 
analysis, and appropriate recommendations for the best 
method of determining yo can be obtained, in our 
opinion, in the analysis of the actual experimental 
material. 

We note in conclusion that experimeters a re  well 
equipped for a realization of the conditions (19). 
Indeed, by changing the order of the reflection it i s  
possible to vary L, in a wide range, and by varying the 
x-ray wavelengths it i s  possible in fact to vary the 
depth from which the photoelectrons emerge.[14' Of 
great interest from this point of view a r e  experiments 
vi th  separation of different groups of electrons. In the 
case of an ideal crystal, the separation yields practi- 
cally no new resultsc1s1 but in the study of perturbed 
layers this method can turn out to be very effective. 
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Excitation and propagation of phonons in anthracene 
crystals 

V. L. Broude, N. A. Vidmont, D. V. Kazakovtsev, V. V. Korshunov, I. 0. Levinson, 
A. A. Maksimov, I. I. TadakwsG, and V. P. Yashnikov 
Institute of Solid State Physics, USSR Academy of Sciences 
and L D. Lundau Institute of Theoretical Physics USSR Academy of Sciences 
(Submitted 26 July 1977) 
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The time dependence of the lumineacencc of thin anthracene plates excited by pulsed lasers is investigated. 
It is shown that the half-widths of the bands in the investigated spectra can be used to estimate the 
number of nonequilibrium phonons produced in the sample as a result of r-on of the electronic 
excitations. Qualitative models of generation and propagation of noncquilibrium phonons in a planar 
sample geometry are constructed. It is shown that the experimental observations are in satisfactory 
agreement with the model-deduced premises. 

PACS numbers: 71.36.+c, 78.55.ICz, 79.60.D~ 

1. INTRODUCTION 

The luminescence of anthracene is accompanied, a s  
is the case for other molecular crystals, by a heat re- 
lease (creation of additional phonons), and the energy 
efficiency of the radiation, in contrast with the quantum 
efficiency, is not equal to unity. This is connected pri- 
marily with the preceding act of luminescence by the 
process of fast (s0.1 nanosec) light-induced electron ex- 
citation to the lowest exciton band. Second, there takes 
place, at least partially, further relaxation of the exci- 
ton states, for example, with participation of those ly- 
ing below the triplet-exciton bands. In anthracene cry- 
stals, ~f course, this process is less probable than the 
direct luminescence of excitons (the exciton lifetime is 
7, = 3 nanosec) and the quantum efficiency of lumines- 

at low pumping is close to unity. Finally, as  a 
result of the luminescent electron transitions, the de- 
veloped system of vibrational sublevels of the ground 
state is filled with nonequilibrium phonons . 

Additional channels of heat release arise with in- 
crease in the intensity of the light that excites the lum- 

inescence. They are  produced by the interaction of ex- 
citons and depend in nonlinear fashion on their concen- 
tration. Evidently, the Auger recombination of excitons 
is most effective for the heat release. In this recom- 
bination, one of the colliding excitons receives the en- 
ergy of the other. The resulting high electron excita- 
tion again relaxes to the lowest exciton band. Under 
these conditions, a drop is experimentally observed in 
the energy yield of the radiation, to 0.1 and below, i.e., 
practically all the light energy incident on the crystal 
is transformed into phonons. 

In the first stage of relaxation of the electron excita- 
tion, high-frequency optical phonons are generated (in- 
tramolecular vibrational modes). Further relaxation is 
accompanied by the breaking down of the intramolecular 
phonons and it is concluded at some stage with the form- 
ation of acoustical phonons that a re  distributed uniform- 
ly over the Brillouin zone. The entire process of re- 
laxation, except the very last, can be regarded as spa- 
tially localized, since the exciton bands, and especially 
the W s  of optical vibrations, are  relatively narrow 
and the free paths of these excitations are small. 
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