
dicated concentration. A A x  = 0.3% supercooled solu- 
tion was obtained by Landau et ~ 1 . ~ ' ~ ~  a t  P =0.5 atm and 
T =0.03 K. In an experiment performed by Watson et 
~ 1 . ' ~ ~  a 9.28% solution, after the disappearance of the 
interphase boundary at P = '7 atm, again split up into 
two phases a t  P =  16 atm on the stratification line. How- 
ever, a s  was noted by the authors, the mixture did not 
hold out until full equilibrium was rea~hed. '~ '  Unfor- 
tunately, a s  f a r  a s  we know, no systematic experimen- 
tal investigations of the considered phenomenon with 
whose results we could have compared the results of 
the present work have s o  fa r  been performed. 

The experimental investigation of the phenomenon in- 
volves the necessity to penetrate fairly far  into the 
metastable region. This can, apparently, be done by 
forcing the solution to flow out slowly from the vessel 
through a "porous membrane" (a capillary o r  a system 
of capillaries). In this case He4 will mainly flow out, 
and the solution in the vessel will grow richer in ~ e ' .  
This corresponds to displacement parallel to the hori- 
zontal axis in the x-T plane. 

In conclusion, we express our gratitude to A. F. 
Andreev and S. T. Boldarev for useful discussions. 

"strictly speaking, for O< T < T, there exists a temperature 
region in which, for high supersaturations, the mean free 
path, X =  tiv+,~-*, of the Fermi excitations turns out to be 
large compared to the nucleus dimensions (i.e., A>>R) and in 
which, consequently, the hydrodynamic description of the 
normal component is incorrect. It can be shown, however, 
that allowance for this circumstance changes the result in- 
significantly, and the hydrodynamic approximation yields 
virtually the correct answer in the dangerous region also. 

2 ' ~ h e  rate, W(Ax, T) , of nucleation contains the dimensional 
factor Nowo. In the equation W(Ax, T)= 1 and the formulas (8) 

following from it, the value of Nowo is taken in the cgs sys- 
tem, which corresponds to the characteristic scales of the 
quantities for the experiments in this region and gives an 
enormous value: lnNowo 80. Therefore, a change of the 
time scale by several orders of magnitude virtually does not 
change the position of the "rapid-nucleation" curve. 
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Quasitwo-dimensional electron-hole liquid in strong 
magnetic fields 

I. V. Lerner and Yu. E. Lozovik 
Institute of Spectroscopy, USSR Academy of Sciences Moscow 
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Zh. Eksp. Teor. Fiz. 74, 274-287 (January 1978) 

A study is made of the formation of an electron-hole liquid in quasitwo-dimensional systems in magnetic 
fields strong enough to ensure that the one-particle spectrum is completely discrete. Thermodynamic 
functions of this kiquid are also calculated. In contrast to other systems, the exchange interaction is 
sufficient to form a liquid in the case considered and the correlation effects associated solely with virtual 
transitions to higher levels are negligible. The phase diagram is obtained and a "van der Waals" theory of 
liquid-gas phase transitions is developed for the investigated system. The possibility of experimental 
observation of the predicted effects is discussed. 

PACS numbers: 71.35.+z, 71.70.Gm 

The behavior of electron and electron-hole systems systems in strong magnetic fields. We shall consider 
in strong magnetic fields is of considerable interest. In the formation of a liquid in a quasi two-dimensional 
particular, there have been many investigations of the electron-hole system in a transverse strong magnetic 
kinetic properties (see, for example, and Wigner field. The system may be, for example, a quantized 
~ r ~ s t a l l i z a t i o n ~ ~ - ~ ~  of quasi two-dimensional electron semimetal film with equilibrium electrons e and holes 
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h, a semiconductor film with nonequilibrium e and h ,  
or  a layer semiconductor. We shall show that such sys- 
tems have properties basically different from those of 
three-dimensional e-h systems in strong magnetic 
fields H, investigated earlier.Cg*lO1 Some of the results 
given below have already been published in a brief com- 
munication ."I 

We shall assume that 

i.e., that the characteristic energy we,, of particles in a 
magnetic field is considerably higher than the charac- 
teristic energy of the Coulomb interaction whose order 
of magnitude, a s  shown below, is 12/rH; here, ti = 1, Y, 

= ( ~ / e H ) l / ~  is the magnetic length, a , ,  = l/me,,Z2 a r e  the 
effective Bohr radii of an electron and a hole, in,,, are  
the effective masses, we,, = eH/me,,c a r e  the cyclotron 
frequencies, dZ=e2/?l., and x is the effective permittivity 
(for example, in the case of a quantized film, this is the 
permittivity of the ambient medium). 

Quantization of the Landau spectrum of noninteracting 
particles in a quasi two-dimensional system makes the 
spectrum completely discrete and, for Y, >rH. 2l", all 
the particles a re  in the lowest level since the multi- 
plicity of degeneracy of (each) level is L,L,/~?T./~,; C121 

here, ri =L,L,/rN, where N is the number of electrons 
equal to the number of holes, and L, and L, a re  the di- 
mensions of the system. Thus, the motion of the parti- 
cles in such a system is "quasi zero-dimensional." 

We shall show that the system under discussion has 
the following properties. 

1. Since the particles do not have kinetic energy, 
even the exchange attraction is sufficient to form an e-h 
liquid. The exchange attraction splits the system into 
drops, each of which is compressed to a density such 
that all the vacancies in the lowest level a re  occupied 
(i.e., Y , = Y , . ~ ~ ' ~ )  but further compression is not favored 
because of a strong rise in the energy associated with 
the filling of the next level. This "zero-dimensional" 
aspect makes the properties of the liquid independent of 
ine and nth. 

2. The correlation energy is associated only with vir- 
tual transitions to the next levels and in strong fields H 
the energy of a two-dimensional system falls a s  H-'I2, 
whereas the exchange energy r ises  a s  HI1', SO that the 

Hartree-Fock approximation is asymptotically exact in 
the limit H - m . (It should be noted that the converse is 
true of a three-dimensional system in a strong field H: 
the formation of a liquid is due to the correlation effects 
and the exchange energy is negligible near the equilib- 
rium density .[lo]) 

3 .  In view of the negligible influence of the correla- 
tion, there is no charge screening and collective excita- 
tions are  practically indistinguishable from one-particle 
excitations. 

4. If the initial density (in H =0) is  so  high that the n 
levels are  filled in sufficiently strong fields, a self- 
bound liquid forms at the highest of the levels. 

5. In contrast to conventional Fermi  systems, whose 
specific heat obeys cum T, the system under considera- 
tion is characterized by c, a exp(- we,,/T) for T < we,, 
if the correlations a r e  ignored; this is due to the ab- 
sence of a Fe rmi  surface for  such a degenerate system. 

We shall consider (see 901-3) a purely two-dimen- 
sional e-h system in a strong magnetic field at finite 
temperatures. In 91, we shall deal with the properties 
of the system in the Hartree-Fock approximation. In 
92, we shall calculate the correlation corrections which 
a r e  negligible if Y,<< lOa,,, i.e., for a condition weaker 
than that given by Eq. (1). In 93, we shall study the 
thermodynamic properties of the system and develop a 
"van der  Waals" theory of liquid-gas phase transitions 
in the system. In 04, we shall show that the results ob- 
tained a r e  also applicable to quasi two-dimensional sys- 
tems if the distances between the transverse quantiza- 
tion levels a re  large enough. In the Conclusions, we 
shall consider the conditions under which the predicted 
effects may be observed experimentally. 

$1. HARTREE-FOCK APPROXIMATION 

Following Eq. (I), we shall take the zeroth approxi- 
mation to be a noninteracting electron-hole gas in a 
magnetic field. We shall consider the Coulomb interac- 
tion by means of the temperature diagram technique .[I3 

We a re  interested in the energy of the system in the 
limit T - 0 and its thermodynamic characteristics a t  
T # 0. Since the degree of degeneracy of the system is 
infinite, we cannot apply the conventional diagram meth- 
ods at T = 0 because, for example, it is not clear how to 
define consistently the zeroth -approximation Green 
functions. In the thermodynamic technique, there is no 
such difficulty because averaging is carried out over a 
Gibbs ensemble. All the results obtained a re  valid at a 
temperature a s  low a s  we please, with the exception of 
the nonphysical isolated point T = O .  

We shall confine our attention to the temperatures at 
which the Landau levels a r e  not mixed: 

T<o., h .  (2) 

We shall ignore the impurity-induced broadening of the 
Landau levels. 

In the Landau gauge (A, = - Hy , A, =A, = 0) , the Hamil- 
tonian is 

Here, fl, and $,, $, a r e  the creation and annihilation 
operators of electrons and holes, respectively. The 
Hamiltonian does not include the interaction of spins 
with the magnetic field and it is  simplified by omitting 
the spin indices: since X, and Xi,, commute with the 
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spin operator, the motion of particles with different 
spins can be considered independently. 

We shall f i rs t  allow for the interaction of particles in 
the Hartree-Fock approximation and, in 02, we shall 
show that the corrections to this approximation a re  
small. The integrated Hartree-Fock equation for the 
temperature Green functions is shown graphically in 
Fig. 1. In this equation, the straight ( ~ a r t r e e )  terms 
cancel out because of the electrical neutrality condi- 
tions, s o  that the equations for the electron and hole 
Green functions a re  independent. Since the field H sup- 
presses the translational invariance, i t  is convenient to 
use the mixed y-p, representation and carry  out the 
Fourier approximation only in respect of x-x'. In this 
representation, the equation corresponding to Fig. 1 can 
be written in the form 

G ( y .  8 ' ;  px. a )  = Cn ( y ,  y'; y,, a )  - 

. { G o ( y ,  y , ;  p,, f i , ) G ( y , ,  y?; p,', a ' ) G ( y , :  ~ ' ; p . ,  ~ ~ ~ ) l ~ ( y , - y ~ , p - p ~ ' ) e ' " " ) .  

(3) 

In this equation (KO is the MacDonald function), 

represents the Coulomb interaction in the mixed repre- 
sentation. 

The Green function Go of noninteracting electrons 
(holes) will be expanded in terms of the Landau wave 
functions cp,*(x, y): 

(H, is the Hermitian polynomial; the "-" sign applies to 
electrons and "+" to holes). In the mixed y-p, repre- 
sentation, 

where w = rT(2k + 1) and p is the chemical potential of 
the particles (measured, for  a nonequilibrium system, 
from the edge of the relevant band). 

As shown in the Appendix, Eq. (3) has the exact solu- 
tion: 

where the corrections E, to one-particle energy levels, 
associated with the Coulomb interaction, satisfy the 
system of equations 

FIG. 1. Hartree-Fock equation for the temperature Green 
functions. 
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Here, 

a re  the Fermi  factors, representing the populations of 
the modified levels, 

We shall consider the range of densities correspond- 
ing to the level populations m = O  or  1; in this range, 
subject to the condition (2), the functions f,,,(T) a re  ex- 
ponentially small for m 2 2 and the corresponding terms 
make no contribution to Eq. (6). The system (6) should 
be supplemented by the normalization equation for the 
determination of the chemical potential: 

Substituting Eq. (5) in Eq. (7), we obtain 

The range of densities in which only the levels n = O  or  1 
a re  filled (in the limit T-0) is defined by the conditions 
N G  No and No < N s  2N0, respectively (No =L,LY/2nri  is 
the degree of degeneracy), i.e., r s >  rH- 2'" (region 1) 
and r,,- 2''" ts 5, Y,, (region 2). 

We can easily see from Eqs. (6) and (7) that the popu- 
lation of the modified levels depends on r, exactly in the 
same way a s  the population of the Landau levels in a 
noninteracting gas. (This is the "zero-dimensional" 
analog of the Landau theorem on the identical depen- 
dences of the F ermi  momenta of interacting and nonin- 
teracting quasiparticles on the total number of parti- 
cles.) Equations (6) and (7) define the chemical potential 
p a s  a function of T and P: (v = n r i  is the specific vol- 
ume) and the corrections E, to the Landau levels, i.e., 
the modified spectrum of one-particle excitations. The 
solution of these equations gives, in region 1, 

and, in region 2, 

zz[2x) 
E., = - -- [ I , . ,  - I,, (s -- I ) ]  , rt>? .  

"r,, 
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The chemical potential p in regions 1 and 2 and in the mination, from the normalization condition, of the cor- 
intermediate matching region is responding corrections to the chemical potential. How- 

r.' r2 ever, we shall use the diagram technique for a fixed 
p . . = ~ . - ~ l n  ( , - I ) .  -- i>2 exp (- s) , 

Lr, 2rrlZ number of particles and calculate the correction to the 
free energy as the sum of vacuum diagrams based on 

W . , ~ - E ~ + E ,  T (r.'i'Sri12- I )  
11.,,= ( Y;) 

2 ''lr - 
the Hartree-Fock-Green functions. We shall then show 

2 that the corresponding correction to the chemical poten- 

These expressions are exact for all the values r, un- 
der consideration, with the exception of very narrow 
ranges at the boundaries of the regions, where the 
smoothing of the solutions is permissible. It should be 
noted that, when the conditions (1) and (2) are  obeyed, 
the expression for p as well as  the formulas for the de- 
rivatives with respect to p can be matched to within 
small parameters r,/a,, o r  T/we,,. It should be noted 
that, at T =0, there is no matching region and the chem- 
ical potential (as well as  several other thermodynamic 
quantities such as pressure) have a discontinuity at 

which justifies the use of this technique. The expres- 
sion for the correlation corrections will only be given 
for region 1, where the population of the Landau levels 
with n# 0 is exponentially small; the corrections for the 
other regions are of the same order of magnitude. 

We shall first calculate the analytic continuation IIR(c) 
of a single-loop polarization operator x(&J from the 
upper half-plane r to the real axis (€,= 2nkT). Knowing 
IIR(c) allows us to determine not only the correlation 
energy but also the permittivity K ( €  , p ) ,  i.e., the screen- 
ing of the interaction, collective excitation (plasmon) 
spectrum, etc. 

r, = r, . 2'", which is further evidence of the inadequacy The single-loop polarization operator is of an analysis of the system only at absolute zero. 

The thermodynamic properties of the system can be T 
. f i ( ( p , .  px: y. ! / ' i -  - - 'P J t l p l ' ~ ( t / .  y': p., o ) ) ~ ( y ' , y :  ps+p/, @+el ) .  found completely if the chemical potential CI. is known as 23  a 

a function of density and temperature. (We shall con- 
sider thermodymanics in 53.) Here, we shall only give We apply the standard techniquet141 to transform the sum 
the expression for the free energy in the Hartree-Fock into an integral and, calculating the analytic continua- 
approximation (per one electron-hole pair), calculated tion in <, we obtain-after elementary integration over 
from the frequencies and application of Eq. (5)- 

In region 1, we have 

F=-=rH+2T where 
ra2 

1 (Ioa) Y,Y' )  -- j d p /  X.,:(Y)%..: ( Y ' ) X N ~ + P ;  ( Y ) X . ~ ~ + P ;  (I I ') .  (12) 
2a 

and, in region 2, 

Since the functions f,(T) are exponentially small for 
F=- m # 0, it is sufficient to calculate only the contribution 

of the terms no, and r,. It is found that the integrals - (12) depend on only y - y'. Calculation of the integrals 
(12) and application of the Fourier transformation give 

2 

( ) + ( ) ( raz ')] 1 0  IIR(c ,p) in the pure momentum representation (we are xln 2 - 2 r H  - 1  ln EL- . 
omitting the exponentially small terms): 

It is clear from Eq. (10) that, in the limit T - 0, the - 
Pfo(T) (no .  h+r,-e,) 

quantity F has an abrupt minimum at the boundary be- n " ( E ' p ) = ~  es - (nr , ,h+e . -eo)2+i~  sign E 
tween regions 1 and 2 (i.e., at r, =r, -21'2)1) which cor- n-* 

responds to the formation of a liquid; its binding energy p2rH' " esp (-p2rHt/2) 

(per one e-h pair) is Eo = ~ ~ ( 2 r ) l '  a/2rH. T )  2nrH'n! ' 
(1 1') 

It is important to note that, in contrast to a three-di- 
$2. CORRELATION EFFECTS mensional system in a strong magnetic field when n is 

dominated by the contribution of the correlations asso- 
Before analyzing the properties of an e-h liquid, we ciated with virtual transitions beyond a one-dimensional 

shall show that the correlation corrections are small. Fermi surface within the limits of the lowest Landau 
A consistent procedure involves calculations of the cor- level,c1o1 the "quasi zero-dimensional" system under 
rections to the Hartree-Fock-Green function and deter- consideration here is characterized by the fact that only 
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virtual transitions from the lowest Landau level to all 
the other levels contribute to n, and there are no cor- 
relations within the same level. This is the physical 
reason for the smallness of the correlations. 

The contribution to the correlation energy is made by 
diagrams of the type shown in Fig. 2. Since the polar- 
ization operator is proportional to pZ, the ring diagrams 
(Figs. 2a and 2c) do not exhibit the usual Coulomb diver- 
gence in the limit p-0. Therefore, it is sufficient to 
consider only the second-order ring diagram (Fig. 2a); 
any diagrams of higher orders are  characterized by an 
additional small factor r,/a,,,. For simplicity, we 
shall  give the expression for me =m,, a, =a, =a,, wo = we 
= w,. The contribution of the diagram in Fig. 2a to the 
energy per one e-h pair is a s  follows: 

We shall ignore the residue at zero which makes a 
contribution with an additional small factor T/wo; we 
shall also omit the terms with an additional small factor 
r,/ao, so that simple steps give 

i2(2rr)" r,, 1x1'2 
= 

.)r,l I.,# -- 
( I , ,  (2.7) ''> . 

It is interesting to note that Eq. (13) includes an impor- 
tant contribution to transitions from the lowest Landau 
level to a number of higher levels (allowance for the 
0- 1 transition alone gives a factor of 1 /8 instead of 
ln22 fi: 1 /2). 

We must also include another second-order diagram 
which is the "envelope" shown in Fig. 2b. It corre- 
sponds (in the Matsubara technique) to the expression 

AP -=z ( ~ . ( y ,  y.; u. p 1 ) G , ( y l . ~ ' ;  u + e . p + p r )  
4rV 

kl.,. rr'. 

XG,(y' ,  y,'; p+p", o'+e)G.(y, ' ,  Y ;  o ' , ~ " )  

Here, {. . .) represents integration over all (five) mo- 
mentum and (four) coordinate variables. Summation 
over the frequencies and fairly cumbersome integration 
gives (as before, we are omitting exponentially small 

FIG. 2. Correlation corrections to the free energy: a-direct 
second-order diagram; b-exchange second-order diagram; 
c-higher-order ring diagrams. 

terms) 

where 

(F is the hypergeometric function). 

As in Eq. (13), the expression (14) includes contribu- 
tions due to virtual transitions from the lowest Landau 
level to various other levels. We shall bear in mind 
that there are three diagrams of the type shown in Fig. 
2a, which consist-respectively-of two electron loops, 
two hole loops, and an electron-hole loop (the last dia- 
gram makes a double contribution), and two diagrams 
(electron and hole) of the type shown in Fig. 2b. Thus, 
the correlation corrections are negative and 

times smaller than the Hartree - Fock energy. The cor- 
responding corrections to the chemical potential are  
characterized by the same small factor. It should be 
noted that the corrections are characterized not only by 
the parametric small factor rH/ao but also by an addi- 
tional numerical small factor (this also applies to the 
corrections of higher orders) associated with a weak 
overlap of the wave functions of the particles located in 
various levels. This demonstrates the validity of the 
adopted theory when magnetic fields weaker than those 
defined by Eq. (1) are considered: 

When we know the polarization operator nR(c, p), we 
can immediately determine the longitudinal permittivity 
K(E ,p) which-like XIR- is analytic in the upper half-plane 
e : 

z(t . .  1)) =[ 1-l1"(~. p)Sn?i'/p]x. 

In the case of nR, we can clearly use the single-loop 
approximation since the highe r-order corrections a re  
small. We can easily see that, at  low frequencies 
(c << wo) for any momentum, we have nRP/p << Z2/rHw0 
=rH/a0<< 1 since, at these frequencies, we have K(€, p) 
= K ,  i.e., the Coulomb interaction is not screened. The 
poles of K(E,P) coincide with the poles of the Greenfunc- 
tion G and define the spectrum of one-particle excita- 
tions. The zeros K(€, p) generally define the spectrum 
of collective excitations ("plasmons"). We can easily 
obtain the relevant dispersion law: 

( p r ~ ) ~ ^ - '  p'rN2 F z  
r b ,  -(nw.+e.-r.iZ+2-err (-T) ( n ~ . + e . - e . ) ~ f i .  

(Zn) ! ! X I . ,  

Thus, only interlevel collective excitations can exist 
in the system and the frequencies of these excitations 
depend weakly on the momentum, coinciding (for p =0) 
with the frequencies of one-particle excitations. (In 
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fact, the collective excitations in this system are indis- 
tinguishable f r o p  one-particle excitations and are of the 
same nature: they involve the excitation of particles 
from the filled ground Landau level to higher levels.) 
There are naturally no plasma oscillations in the same 
Landau level since the particles do not'have kinetic en- 
ergy. 

83. THERMODYNAMIC PROPERTIES OF THE 
INVESTIGATED SYSTEM 

The chemical potential p(r:, T) enables us to deter- 
mine all the thermodynamic properties. Following the 
treatment in 92, we shall use the Hartree-Fock approx- 
imation. The free energy (10) is given in 91. A simple 
combination of Eqs. (9) and (lo), in accordance with the 
formula2' P = ( p  - F)/v gives, for Y, > rH  (when the Lan- 
dau levels with n = 0 and 1 are filled), the expression for 
the pressure as  a function of temperature and volume. 

This equation of state is exact in the limit H- co (the 
corrections are of the order of ?-,/ao). Like the iso- 
therms of the van der Waals equation, the isotherms of 
this equation of state include regions in which the ther- 
modymanic inequality (BP/Bv), < 0 is not satisfied (here, 
v =w: is the two-dimensional specific volume). These 
regions appear formally because we are calculating the 
equation of state assuming that the substance consists of 
a single phase, whereas, normally, at such values of 
the pressure and temperature, the system in question 
becomes stratified, forming gaseous and liquid phases, 
which are in thermodynamic equilibrium. The correct 
dependence P(v) is foundc151 from the Maxwell rule. 
Figure 3 shows the dependences P ( p ) ,  where p/r = l/nr: 
is the density. Curve 1 applies at a temperature T, << Eo 
= 12(2r)1f2/2~H. 

We can see that it corresponds to two phase-coexis- 
tence regions [in which we formally have (BP/B~),<o]. 
Region 1 corresponds to the liquid-gas equilibrium in 
the level n = 0, and region 2 to the corresponding equi- 
librium in the n =l  level (i.e., when the zeroth level is 
filled and liquid is formed in the first level). Curve I1 
corresponds to T, =(3/16)E0, at which the inflection dis- 
appears in region 2, i.e., this temperature is  critical 
for the liquid in the n = 1 level. Curve III corresponds 
to T, = (1/4)E0, which is critical for the liquid in the n 
= O  level. 

We can see that, when the density is sufficiently high 
so that the lowest level is completely filled, a self- 
bound liquid forms in the next level. This is physically 
clear: the high positive energy wo which the particles 
have in the n = 1 level is the same for all the particles 
and is simply a new reference point for measuring the 
energy; the liquid forms under the action of the ex- 
change attraction between the particles (exactly a s  in the 
lowest level). An increase in density gives rise to 
phase-coexistence regions in the higher levels (at suffi- 
ciently low temperatures) so  that a liquid always forms 
in the highest of the levels being filled. Naturally, if 
the density is sufficiently high so that the particles do 
not all occupy the lowest Landau level, they may be 

FIG. 3. Isotherms of the equation of state of an e-h liquid: 
I-TI << Eo; 11-T2= ($/16)E0, which is  critical for a liquid in the 
n = 1 level; 111-T, = 1 / 4 ( ~ ~ ) ,  which i s  critical for a liquid in the 
n =  0 level. For clarity, the isotherms are not to scale. The 
phase equilibrium regions corresponding to different levels 
cannot coexist because equilibrium of the "e-h liquid in the 
n =  1 level-gas in the n= 0 level" type is  impossible. 

transferred to the lowest Landau level corresponding to 
a different spin configuration or to the next transverse 
quantization level (see 84), depending on which of these 
possibilities is preferable from the thermodynamic point 
of view. Nevertheless, the qualitative conclusions are 
still the same: a self-bound e-h liquid forms at the 
highest of the levels being filled provided only condi- 
tions (1) and (2) are  satisfied, i.e., provided there is no 
thermal or  Coulomb mixing of the levels. 

It is interesting to note some thermodynamic features 
of the system. The free energy (10) has the form 
F = a+ bT,  apart from exponentially small terms, so that 
it is clear from E =F + TS that the energy E = a  and the 
entropy S = - b are independent of temperature. The en- 
tropy S does not vanish for any (nonequilibrium) value of 
r, and this is  a consequence of the ground-state degen- 
eracy. For equilibrium values of Y, =r,,~2'/~, it follows 
from Eq. (10) that S = O  (with exponential precision). We 
can easily show that S also vanishes forr, =r,[2(n+ 1)]112 
(n = 0,1,2, . . .), when the n levels are filled completely. 
Physically, this follows from the fact that there is no 
degeneracy in the case of completely filled levels. 

It should also be noted that, since E is independent of 
T, the specific heat is c, = (BE/BT), =0, whereas, in the 
case of nondegenerate many-electron (or electron-hole) 
systems, we have c,a T. The unusual behavior of the 
specific heat of our system is due to the fact that parti- 
cles do not have kinetic energy, i.e., they do not have 
"degrees of freedom" (it is understood that, because of 
the interlevel transitions, the specific heat does not 
vanish completely but the contribution of these transi- 
tions to the specific heat and to all other thermodynamic 
quantities is exponentially small). 

$4. ALLOWANCE FOR TRANSVERSE MOTION 

We have considered so far  a two-dimensional system. 
We shall show that allowance for transverse motion in 
quasi two-dimensional systems simply results in small 
corrections to two-dimensional motion. To be specific, 
we shall consider a quantized film. We shall model the 
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transverse motion in an infinitely deep potential well of 
width d (in this case, the properties of quantized motion 
are only slightly sensitive to the nature of the model po- 
tential). We shall first assume that all the particles are  
at the lowest transverse-motion level. The two-dimen- 
sional potential (4) is then replaced in all the diagrams 
with the effective potential 

d d d p ,  dp,  4 x 2  

0 0 

X ( D O J ( i )  (DEJ( i ' ) c rp [ ip , ( y -y ' )  + i p , ( : - z ' )  1, 

where @,(z) = (2/d)1'2sin(uz/d) is the wave function of the 
ground state of transverse motion. Integration gives 

In the limit d-0, Eq. (18) reduces, a s  expected, to Eq. 
(4). 

The solution of the Hartree-Fock equation (3) with the 
potential (18) replacing (4) has still the same form as 
before [ ~ q s .  (5) and (6)] but the integrals I,,, now depend 
on the parameter d/rH. Expanding these integrals in 
terms of this parameter and restricting the treatment to 

of the liquid-gas transition in such fields is -10°K. If 
(in H=O) the initial density is p>p,(H) =eH/rc in the 
fields in which the above theory is applicable, a liquid 
forms in a Landau level with n+ 0 and an increase in the 
field should produce effects associated with the dropping 
of the liquid to lower levels (in nonequilibriuni systems, 
such a change may be manifested in a luminescence 
spectrum). In 61- 105G, the equilibrium density is p,(H) - 1011 - 1012cm9, which corresponds to the bulk density 
of 1017 - 1018cm4. If the initial density is less, a liquid 
forms in a lower level, splitting into drops when the 
field is increased. The formation of a liquid may be de- 
duced from the appearance of a corresponding line in 
the infrared spectrum. Moreover, the electron specific 
heat may vanish in strong fields. 

An increase in the magnetic field causes the cyclotron 
resonance frequency (the frequency of transitions of 
particles from the ground to the first excited state) to 
increase in accordance with the law eH/mc + ~ ~ ( 2 r ) " ~  
xrH/2r:, i.e., to deviate considerably [on condition that 
Eq. (16) applies] from the usual law eH/mc, which is 
only valid in weak fields.cn1 When two phases exist in 
the system, they are characterized by different values 
of r,, so that the cyclotron resonance spectrum should 
have two lines corresponding to these phases. 

the first approximation, we obtain-as in 81-the energy . *PPENDlx 
E in the limit T - 0: 

E(d)=E,  I+ 
1 d 1 We shall substitute function (5) in Eq. (3). After in- [ ( ~ ) " 2 ( ~ - m ) L ] = ~ o ( l + ~ . 1 1 K  . (19) tegration over the frequencies, we apply elementary 

transformations to obtain 
We can see that allowance for the transverse motion in 
the O.lld/r,<< 1 case has practically no influence on the 2 .  & P ( Y ) & P ( Y ' )  = f7 X ~ ( Y ) X * ~ ( Y ' )  

thermodynamic characteristics of the system obtained *mu I O - ~ B ) ~ ~ - E ~ + ) L  I( I - y  t ~ - k ~ . ~ +  p 

in the Hartree-Fock approximation. 

One should also bear in mind that the correlation cor- 
rections include not only contributions of transitions to 
higher Landau levels but also to higher transverse quan- We shall demonstrate the diagonality of the integral 
tization levels. An analysis similar to that given in 52 (where p -prH is a dimensionless quantity) 
easily shows that this contribution is again negligible if 
d s rH -S a,. This condition means that the transverse 2 

L.." = --j d y ,  ~ Y : ~ I J '  dq ~ , ~ ( y ~ ) ~ . . ~ - ( y , )  
quantization energy l/md2 z @/r, is the characteristic (2n) " 

e s p ( i q ( y , - y , )  I (A .2) 
energy of interaction in a magnetic field. It is interest- x X . P . ( ~ / ~ ) X ~ P ( ~ ~ )  

ing to note that, in the limit of infinitely strong fields, I i  + (p -p ' ) ' I"  

the transverse quantization effects should disappear 
since B2/ r ,  -00 and a thin film should behave as  a three- in respect of the indices k and m. We shall consider the 
dimensional object. specific case when k,m an and then [subject to Eq. (4)] 

CONCLUSIONS 
- = 

The effects described above would be easiest to ob- m 

serve in quantized f i l m ~ . ~ ' ~ * l ~ ~  Some experiments on x J  d y  n q ) ( - y Z ) %  (y + -i- i q - p ' f p )  U. ( y  fT 

such films have already been carried outc1841 (in parti- 
- = 

"+"-' ) 
cular, films have been studied in magnetic  field^^^^*^'^). = const exp [- ( P - P ' ) ~ + ~ '  LQ (P+P')  

4 +---I 2 
We shall now estimate the range of parameters in .(!$? + +)k -nLr -n  [ 

which the predicted effects may be observed. For a, 
d d 

amounting to, for example, 100 A, the fields to which 
( p - p ~ z + q f  I 

the theory developed above applies are, on the basis of where L:-" is  the associated Laguerre polynomial. Sub- 
Eq. (16), about 0.7 X 10%. The thickness of quantized stituting this and the conjugate expression in Eq. (A.2), 
films should also be -100 A. The critical temperature we find that simple transformations yield 
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d p d q  p i -  iq '-" p-iq "'-" p 2 f q 2  
= constj ( p i + q 2 )  ',- (I-) ( )  exp (- 7) 

We can see that, for k +  m ,  we have 

which demonstrates the diagonality of I",. Then, after 
simple transformations, we obtain Eq. (6) from Eq. 
(A . l ) ,  which proves that Eq. (5) is the solution of Eq. 
(3). (We have introduced here I;,,, 3 6,kZ,,,,,.) The calcu- 
lation of the integrals I,, for n = 0 o r  1 is relatively sim- 
ple but time-consuming. We then obtain 

"AS pointed out, at T = 0, the chemical potential p has a dis- 
continuity for r,=rH.21'2 but, for any value of T * 0, no mat- 
t e r  how low, we find that the value of p ,  like any other ther-  
modynamic quantity, is  continuous for  any r,. 

''1t should be  noted that Eq. (10) for  F is approximate at the 
boundary between regions 1 and 2 because ( 8 ~ / 8 v ) ~ ,  deduced 
from Eq. ( lo) ,  is  continuous at the equilibrium point. 
Therefore, it is  convenient to use  the above formula in which 
smoothing out is  carried out to the same accuracy a s  in Eq. 
(9). 
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