
to electron-electron saattering, can be the difference 
in the masses of carriers of a single sign.CB171 The 
logic is  probably a s  follows: If the masses of all the 
particles a re  the same, then conservation of momentum 
in the collision leads to current conservation: 

If the masses a re  different, then the current i s  not con- 
served but urelaxes": 

Ap Ap 
AJ-e (2 + 2) + 0. 

nt, m, 

However, such a Nrelaxation of the current," if impor- 
tant at all, matters only in the alternating field. In a 

static field, in a system of carriers of the same sign, 
a stationary state cannot exist (see also Ref. 1). 
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Kinetics of nucleation and stratification of dilute He3-He4 
solutions under pressure at low temperatures 
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It is possible to obtain under pressure, in the absence of a free liquid-vapor surface, a metastable solution 
of liquid He3 in Liquid He4 in the stratification region in the phase diagram. The rate of formation of 
nucleating centers in the volume of such a solution and its dependence on temperature and concentration 
are computed. Classical and quantum conditions for nucleation are analyzed. The cases of the normal and 
the superfluid states of the Fermi component in the solution are considered in the region of the quantum 
regime. It is shown that the stratifcation of the supersaturated solution under the indicated conditions 
should begin not on the phmeqdibrium line, but on the rapid-nucleation line, T,. The T, line is 
constntcted. 

PACS numbers: 67.60. -g 

It is well known that the solubility of HeS in liquid He4 
a t  T <  0.87 K i s  finite.['] Liquid solutions of the helium 
isotopes with He3 contents in the range x, (T, P) < x 
< xu(T, P),  where x =x,(T, P )  and x =x,(T,P) a re  the 
branches of the phase diagram, separate into two equi- 
librium phases with molar concentrations x, (T, P )  and 
x,(T,P). At T < 0.15 K the upper phase is virtually pure 
He3 (xu = I), while the bottom phase is a solution with a 
He3 content within the limits 0.0637 < x ,  < 0.094, depend- 
ing on the p r e s s ~ r e . ~ ~ '  

As has been shown by ~ n d r e e v , ~ ~ ~ '  a film of impurity 
He3 atoms exists a t  the liquid solutionvapor interface. 
As the conditions approach the conditions for phase 
equilibrium a He3-rich phase develops continuously out 
bf the surface The inverse effect is observed 
at the liquid-solid boundary: owing to the van der Waals 
forces, the vessel walls and dust particles get covered 
with ~e~ films,c6171 and these surfaces cannot serve a s  
effective nucleation centers. Thus, in the absence of a 
liquid-vapor boundary (such a situation arises in exper- 
iments under pressure when the vessel is filled with the 
solution at a temperature higher than the stratification 
temperature and then cooled), the stratification of the 
supersaturated solution should occur through the forma- 

tion and growth of nuclei of the stable phase in the vol- 
ume of the metastable medium. 

The appearance of stable nuclei is connected with the 
surmounting of an energy barrier by the system. At 
temperatures close to absolute zero, a supercritical 
nucleus can arise only a s  a result of quantum penetra- 
tion through the barrier.b1 A nucleating center i s  a 
macroscopic formation, and can be described in the 
quasiclassical approximation. In the same way a s  was 
done in Ref. 8, we should write down the classical Ham- 
iltonian and then quantize it. 

If the degree of metastability of the medium is not 
high, then the optimal forms of the density and concen- 
tration distributions correspond to a spherical nucleus 
of the new phase, the thickness of the transition layer 
being small compared to the dimensions of the nucleus, 
i.e., d/R << 1. This circumstance allows us to describe 
the transition region in terms of surface tension. On 
account of the slowness of the motion of the interphase 
boundary (R/U << 1, u is the speed of sound), energy dis- 
sipation can be neglected, i.e., it can be assumed that, 
in the course of the growth of a nucleus, new excitations 
do not arise and all the parameters of the system adia- 
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batically adjust themselves to the instantaneous value of 
R(t), as a result of which it is possible to write down 
the classical Lagrangian of the problem as a function of 
one generalized macroscopic coordinate, R, and i ts  
velocity, R.['] 

The potential energy of a nucleus of radius R is com- 
puted as the minimum work necessary for i t s  creation, 
and has the standard formrD1: 

where a is the surface tension of the interphase bounda- 
ry, v3 is the volume occupied by a He3 atom in the 
stable phase, p3 and p, a r e  the chemical potentials, 
measured under external pressure, of He3 in the stable 
and metastable phases, respectively, and pl  - p3 
= (B~,/Bx)Ax, AX being the supersaturation of the solu- 
tion. 

To find the total kinetic energy, K, of the medium, it 
is necessary to write down the expressions for the 
fluxes associated with the growth of a fluctuation, and 
integrate the kinetic-energy density over the volume of 
the metastable phase. Under the above-formulated con- 
ditions, the expres~ion for the kinetic energy becomes 
parametrized: K =MR'R~/~ ,  and the Lagrangian of the 
system assumes the form indicated in Ref. 8: 

where is the effective mass density to be determined. 

The classical Hamiltonian for a fluctuation, 

has the form of the Hamiltonian for the one-dimensional 
motion of a particle of variable mass, My3, moving in 
the field U( y) =ffy2(1 - y), y > 0; here_ y =R/Ro is dimen- 
sionless coordinate, Ro=A/B, M=MRi, ff =ARi, and 
P, = aL/a? =My 'j is the generalized momentum corre- 
sponding to the coordinate y. The oscillatory motion of 
the particle in the region O< y <y,(c) corresponds to 
quantum heterophase fluctuations; the region y,(c) < y 
< y2(<) is classically forbidden, while the region y >y2(c) 
describes the growth of a real  supercritical nucleus, 
y,(d and y,(c) being the roots of the equation c = ~ / f f  

= y2(l - y). The quantization is carried out in the man- 
ner indicated in Ref. 8. 

The probability of formation of a supercritical nucle- 
us  is proportional to the coefficient of penetration 
through the barrier.  Thus, the problem of the compu- 
tation of the probability reduces to the  problem of find- 
ing the effective mass of the fluxes flowing in a quantum 
Fermi-Bose liquid containing a growing nucleation cen- 
ter. At a very low temperature T ST,, another phase 
transformation-the transition of the Fermi component 
into the superfluid state-should occur in the solution, 
and, consequently, three cases should be considered in 
the region of the quantum nucleation regime: T =0, 
O<T<T, and T >T,. 

At T = O  all the Fermi particles a r e  paired, and there 
exist in the liquid two superfluid motions described by 

two-velocity hydrodynamics. In the narrow temperature 
interval 0 < T < T,, there exist three motions in the 
liquid-two superf luid and one normal-which a r e  de- 
scribable in terms of three-velocity hydrodynam- 
icsl' CtO1; a t  T > T, the metastable phase is a solution of 
the normal Fermi liquid and the superfluid Bose liquid, 
motion in which is described by two-velocity hydrody- 
namics of a type different from the one that describes 
the motions at T =o . '~~ '  The liquid can be considered to 
be ideal and incompressible, In this approximation, in 
the case of the two-velocity hydrodynamics the veloci- 
ties a r e  uniquely determined from the continuity equa- 
tions 

div jr=O, div jl=O. (3) 

6, and j2 a r e  the radially symmetric fluxes of the Fermi 
and Bose components, respectively) and the boundary 
conditions a t  r =R(t), which express the conservation of 
particles in crossing the surface of a nucleus, 

where A p, = p, - p,, A p, = -p2, p3 is the density of He3 in 
the stable phase, and p, and p, a r e  the densities of the 
Fermi and Bose components of the solution. The veloc- 
ity profiles have the form v =f~'k/r', where the f's a r e  
constants that can be determined from the boundary 
conditions. 

For T = 0 the expressions for the fluxes have the form 

where 

a r e  the density coefficients of the liquid with two super- 
fluid components, v,, and v,, a r e  the velocities of the 
superfluid motions, m, is the mass of the He3 atom, 
m,*=m*/(l+F,/3), m* is the effective mass of He3 in 
the solution, N, is the Fermi-particle density, and F ,  
is a Fermi-liquid characteristic, defined in the usual 
manner.C101 The kinetic-energy density is computed 
from the formulaCu1 

At a temperature above the point of transition of the 
Fermi component into the normal state, the fluxes a r e  
given by the following expressions: 

The Fermi-particle distribution function has the form 

where v, characterizes the displacement of the Fermi 
surface in a coordinate system moving with velocity v,, 
and determines the relative velocity of the normal com- 
ponent: 
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In this case the mass flux of the Fesrni component 

The kinetic-energy density in this case 

p is the total mass density of the solution. Integrating 
the energy density over the volume, we obtain expres- 
sions for the effective mass density of the fluxes. 

At T > T, the quantity A? does not depend on tempera- 
ture, and is given by the formula 

In the range T < T,, the quantity G(T) varies from 
$0) to 2,. In this temperature interval the Hamilto- 
nian, which is not given here, has a form that is dif- 
ferent from, and more complex than, that of (2). The 
numerical values of the probability vary insignificantly 
in-the tntire T interval. As i t  turns out, numerically, 
IM,-M(o)I/M,= 1/3. 

The rate of nucleation in a unit volume of the meta- 
stable medium a t  T = O  K is estimated by the formula 
Wo=JoDo, where Jo =Nowo is the flux flowing over a bar- 
rier with zero heterophase-fluctuation level, No is the 
number of virtual nucleation centers, w, is the zero- 
point frequency of the heterophase fluctuations, and Do 
is the quasiclassical coefficient of penetration through 
a barrier with a zero levelca1: 

At T # 0 a supercritical nucleating center appears as a 
result of an optimal combination of thermal activation 
and tunneling leakage, which, for systems with a Ha- 
miltonian of the type derived above, consists in the fol- 
lowing: At 0 < T < T*(Ax) the nucleating centers form by 
purely quantum means (tunneling from the zero level), 
while a t  T > T*(Ax) the nucleation regime is a purely 
thermal-activation regime. The preexponential func- 
tions in both cases can be easily computed: 

T*(Ax) is found from the condition for a change of re- 
gime: 

The index of the exponential function in W is propor- 
tional to for T<T*(Ax) and to the quantity 
A x T "  for T > T*(Ax). The critical dependence of 

W(AX, T) on Ax leads to a situation in which on one side 
of the rapid-nucleation line, T,, determined from the 
equation W(Ax, T,)= 1," i.e., in which for Ax< Ax,, the 
rate of formation of nucleating centers is virtually equal 
to zero, while on the other side, i.e., for Ax> Ax,, the 
solution breaks up practically instantaneously. 

Thus, the stratification of the solutions under pres- 
sure in the T-x plane should begin not on the phase- 
equilibrium line, but on the T, line (it is assumed that 
the liability boundary is located to the right). For the 
T, line we Mve 

T -1 -Y7 'I? 

AX. (0.23 ln [ ~ ~ ~ w .  (1- 7i) } ( b7)  , T < Y .  

At the point where there is a change of nucleation re- 
gime, which point is determined by the relation T,(Ax) 
= T *(Ax), the T, line has a kink defined by 

The shape of the T, line is shown in Fig. 1. 

Using the results obtained in measurements of the 
surface energy of the interphase boundary, a = 0.023 
erg-~m*,'~' the chemical potential of HeS in the solu- 
tion, 8p1/8x = 0.39 x 10-l0 erg,"] and the other parame- 
ters  a t  x = 0.07 and P = 0.5 a t ~ n , ~ ' ~ ~  we obtain the numeri- 
cal estimates: 

On the basis of the fact that, for concentrations of up 
to 16%, the derivative of the chemical potential of He3 
in the solution does not vanish: 

Seligman et uZ.'~' suggested that, in the absence of a 
liquid-vapor boundary, HeS-He4 solutions a re  meta- 
stable right up to concentrations not lower than the in- 

FIG. 1. Dependence of the limiting concentration of a super- 
saturated 13e3-~e' solution under a pressure of 0.5 atm on 
temperature (the T, curve); x ,  and xu are the branches of the 
stratification diagram. 
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dicated concentration. A A x  = 0.3% supercooled solu- 
tion was obtained by Landau et ~ 1 . ~ ' ~ ~  a t  P =0.5 atm and 
T =0.03 K. In an experiment performed by Watson et 
~ 1 . ' ~ ~  a 9.28% solution, after the disappearance of the 
interphase boundary at P = '7 atm, again split up into 
two phases a t  P =  16 atm on the stratification line. How- 
ever, a s  was noted by the authors, the mixture did not 
hold out until full equilibrium was rea~hed. '~ '  Unfor- 
tunately, a s  f a r  a s  we know, no systematic experimen- 
tal investigations of the considered phenomenon with 
whose results we could have compared the results of 
the present work have s o  fa r  been performed. 

The experimental investigation of the phenomenon in- 
volves the necessity to penetrate fairly far  into the 
metastable region. This can, apparently, be done by 
forcing the solution to flow out slowly from the vessel 
through a "porous membrane" (a capillary o r  a system 
of capillaries). In this case He4 will mainly flow out, 
and the solution in the vessel will grow richer in ~ e ' .  
This corresponds to displacement parallel to the hori- 
zontal axis in the x-T plane. 

In conclusion, we express our gratitude to A. F. 
Andreev and S. T. Boldarev for useful discussions. 

"strictly speaking, for O< T < T, there exists a temperature 
region in which, for high supersaturations, the mean free 
path, X =  tiv+,~-*, of the Fermi excitations turns out to be 
large compared to the nucleus dimensions (i.e., A>>R) and in 
which, consequently, the hydrodynamic description of the 
normal component is incorrect. It can be shown, however, 
that allowance for this circumstance changes the result in- 
significantly, and the hydrodynamic approximation yields 
virtually the correct answer in the dangerous region also. 

2 ' ~ h e  rate, W(Ax, T) , of nucleation contains the dimensional 
factor Nowo. In the equation W(Ax, T)= 1 and the formulas (8) 

following from it, the value of Nowo is taken in the cgs sys- 
tem, which corresponds to the characteristic scales of the 
quantities for the experiments in this region and gives an 
enormous value: lnNowo 80. Therefore, a change of the 
time scale by several orders of magnitude virtually does not 
change the position of the "rapid-nucleation" curve. 
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A study is made of the formation of an electron-hole liquid in quasitwo-dimensional systems in magnetic 
fields strong enough to ensure that the one-particle spectrum is completely discrete. Thermodynamic 
functions of this kiquid are also calculated. In contrast to other systems, the exchange interaction is 
sufficient to form a liquid in the case considered and the correlation effects associated solely with virtual 
transitions to higher levels are negligible. The phase diagram is obtained and a "van der Waals" theory of 
liquid-gas phase transitions is developed for the investigated system. The possibility of experimental 
observation of the predicted effects is discussed. 

PACS numbers: 71.35.+z, 71.70.Gm 

The behavior of electron and electron-hole systems systems in strong magnetic fields. We shall consider 
in strong magnetic fields is of considerable interest. In the formation of a liquid in a quasi two-dimensional 
particular, there have been many investigations of the electron-hole system in a transverse strong magnetic 
kinetic properties (see, for example, and Wigner field. The system may be, for example, a quantized 
~ r ~ s t a l l i z a t i o n ~ ~ - ~ ~  of quasi two-dimensional electron semimetal film with equilibrium electrons e and holes 
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